Graficzne modelowanie scen 3D. Wykład 4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Graficzne modelowanie scen 3D. Wykład 4"

Transkrypt

1 Wkład 4 Podstawowe pojęcia i definicje

2 . Modelowanie. Definicja Model awiera wsstkie dane i obiekt ora wiąki pomięd nimi, które są niebędne do prawidłowego wświetlenia i realiowania interakcji aplikacją, jak również wmagane pre modł pretwarania niegraficnego np. analia obciążeń i naprężeń materiał projektowanego samolot. W nasm romieni model ostanie proscon do wierchołków, krawędi, ścian ora ich atrbtów kolor i powierchnia.. Proces modelowania Jedną podstawowch operacji modelowania jest tworenie prostch obiektów tp sfera bądź seścian, które mogą bć skalowane, obracane, bądź preswane a następnie miescane w scenie. Każd tch obiektów posiada własn kład odniesienia i może bć transformowan wględem niego lb globalnego kład odniesienia.

3 Utworenie seścian kł. współr. CS Utworenie sfer kł. współr. CS Rotacja, presnięcie Rotacja, presnięcie + Model 3D Tworenie obiektów Lokalne prekstałcenia Składanie kompocja WCS.3 Wświetlanie model Wświetlanie model jest procesem wkonwanm pre program wialiacjn i polega na transformacji model do obra widocnego na ekranie bądź papiere.

4 Trójwmiarowa scena Trójwmiarowa scena składa się e bior obiektów, które tworą końcow obra. Najważniejsmi nich są: model omówion powżej, światło i obserwator. Oświetlenie Podobnie jak w recwistości obiekt msą bć oświetlone, żeb bł widocne. Mogą również emitować własne światło. Podstawowmi atrbtami światła są: kiernkowość, intenswność źródła, barwa i odległość źródła od obiekt. Wróżniam tr podstawowe rodaje oświetlenia scen: Źródło pnktowe emitje promienie pojedncego pnkt podobnie jak żarówka. Jasność takiego światła jest ależna od odległości źródła od obiekt ora oświetlanej powierchni godnie e worem: J = J s d gdie: J s onaca intenswność źródła, natomiast d odległość międ źródłem a obiektem.

5 Źródło kiernkowe promienie pochodą tego samego kiernk są równoległe. Tego tp źródło może wobrażać np. promienie pochodące odległego słońca odległość międ źródłem a obiektem prbliża się jako nieskońconość. Oświetlenie równomierne światło pada e wsstkich kiernków. Ten rodaj światła jest najprosts pnkt widenia grafiki kompterowej, ponieważ wsstkie powierchnie obiektów posiadają jednakowe oświetlenie nieależnie od położenia i orientacji. W prpadk źródła pnktowego lb kiernkowego efekt oświetlenia jest ależn od orientacji powierchni. Jeżeli jest ona prostopadła do padającch promieni, ostaje jasno oświetlona, natomiast gd kąt padania więksa się, oświetlenie powierchni pogarsa się. Światło równomierne Światło pnktowe Światło kiernkowe

6 Modele kolor Modele kolor żwane są do jednonacnego i łatwego opis kolor oświetlenia bądź powierchni. Do najcęściej spotkanch należą: Model HSV he, satration, vale, wan także HSB he, satration, brightness jest orientowan na percepcję kolor i odcienia pre żtkownika. Użwa clindrcnego kład odniesienia a obsar prestreni, w której model jest definiowan twor ostrosłp o podstawie seściokąta foremnego:

7 Podstawa ostrosłpa odpowiada wartości jasności V = co onaca wględnie jasne kolor. Kolor w płascźnie V = nie są jednak jednakowo postregane pod wględem jasności. Barwa jest mierona jako kąt pomięd osią pionową, gdie cerwieni odpowiada o, ieleni o, itd. Wartość nascenia S mienia się od na osi V do na trójkątnch ścianach ostrosłpa.

8 Model RGB red, green, ble jest wkorstwan w monitorach CRT i grafice rastrowej. Opart jest na ficnm składani fal świetlnch określonch cęstotliwości, aś jego opis opart jest na kartejańskim kładie współrędnch. Składowe RGB po dodani dają końcow reltat. Odworowaniem model w prestreni trójwmiarowej jest jednostkow seścian. Prekątna seścian o równch wartościach składowch odwierciedla odcienie sarości od cerni,, do bieli,,.

9 Zawcaj normaliowane wartości składowch opisje się a pomocą sersego akres wartości np. od do 55 składowa jest t licbą binarną ośmiobitową jeden bajt. W takim prpadk maksmalna wartość biel to 55, 55, 55, cerń to,, a np. żółcień 55, 55, Model CMY jest bardo bliżon do RGB, jednak jego ałożenia opierają się na asadie diałanie rądeń drkjącch, skjącch kolor nie popre nakładanie fal tlko odbicie światła od drk. Cli w preciwieństwie do RGB proces skiwania kolor nie polega na

10 dodawani składowch, lec ich odejmowani. Pr CMY składowe to niebieski can, fioletow magenta i żółt ellow. Konwersja pomięd RGB i CMY jest bardo prosta: C = R I M = G Y = B R = C G = M B = Y Natomiast opis kolor a pomocą RGB i HSV spełnia następjącą ależność: V = R + G + B / 3 S = minr, G, B / V

11 Obserwator kamera Obserwator może najdować się w dowolnm miejsc trójwmiarowej prestreni. Jego kąt patrenia jest ściśle powiąan odległością d pomięd środkiem projekcji i płascną projekcji. Poniżs rsnek ilstrje różnicę pomięd dwoma kątami patrenia obserwatora. Mał kąt, d Projekcja równoległa D kąt, małe d Projekcja perspektwicna

12 Kolejnm aspektem, któr należ wiąć pod wagę pr tworeni projekcji obiektów jest tw. wektor kamer. Jest on definiowan pre położenie kamer obserwatora i cel obiekt na któr patr, innmi słow wnaca on pnkt na którm skpiona jest socewka kamer..4. Proces wialiacji Implementacja proces wialiacji może się różnić w ależności od wkorstanch algortmów. Poniżs diagram ilstrje ogólnienie tego proces. Ogólnie mówiąc sprowada się on do prekstałcenia kład odniesienia współrędnch świata WCS, world coordinate sstem w którch stworon jest model do kład odniesienia współrędnch kamer CCS, camera coordinate sstem. Dokonje się tego popre liniowe prekstałcenie w jednorodnm homogenicnm kładie współrędnch. Oświetlenie i swanie niewidocnch krtch powierchni mogą bć wkonwane jednoceśnie pr astosowani odpowiednich algortmów. Projekcja prekstałca prestreń trójwmiarową w jej odworowanie na dwwmiarowej płascźnie. Samo wświetlenie słż dopasowani otrmanego dwwmiarowego obra do warnków ekran.

13 Model 3D Oświetlenie Uswanie niewidocnch powierchni Dekompocja scen Transformacje w jednorodnm kł. współr. Projekcja Wświetlenie Model 3D Podstawowe rodaje modeli: modele analitcne, modele skieletowe stosowane w nasm prpadk, powierchnie aproksmjąca krwe Beiera, B-spline, NURBS, konstrkcjna geometria brłowa solid modeling, drewa ósemkowe.

14 Model skieletow opisan jest a pomocą wierchołków i krawędi. Stanowi on siatkę wnacającą kontr obiekt.

15 Projekcja perspektwicna

16 Uswanie elementów niewidocnch Etap ten wkonje się w cel aoscędenia kostów i asobów potrebnch na obsłgę obiektów i ich fragmentów, które i tak poostaną niewidocne dla obserwatora. Podstawowmi narędiami są: sortowanie ścian Z-bfor

17 Oświetlanie obiektów Podcas tego etap wględnia się następjące cnniki: powierchnie lstrane odbicie światła od obiektów powierchnie matowe pochłonięcie światła obiekt prerocste ałamanie światła

18

19 Tekstrowanie obiektów Tekstra jest obraem płaskim, któr po nałożeni na obiekt trójwmiarow dekorje w określon sposób jego powierchnię. Proces tekstrowania można podielić na następjące etap: generacja tekstr nakładanie na ścian obiektów tekstr i generacja ich obra eliminacja problemów wnikającch gęstości tekstr i jej obra

20

21 Generacja realistcnej scen 3D Pojawiają się ttaj dwie najbardiej nacące metod: śledenia promieni ra tracing na ilstracji poniżej metoda energetcna radiosit

22 Transformacje D W prestreni -wmiarowej możem definiować podstawowe rodaje transformacji transformacje elementarne: presnięcie, miana skali, obrót wokół środka kład odniesienia. Złożone transformacje dokonwane na obiektach można awse opisać są pomocą transformacji składowch, należącch do powżsch tpów.. Transformacje elementarne.. Presnięcie translation Presnięcie dotc mian położenia obiekt wględem kład odniesienia. Be mian poostaje skala ora orientacja obiekt. Jest to najprostsa transformacja elementarna:

23 Ropatrjąc operację presnięcia, dokonjem preniesienia każdego pnkt należącego do obiekt w praktce operację tą wkonje się na charakterstcnch pnktach obiekt o wektor [t, t ]. Dlatego współrędne pnkt, po transformacji spełniają ależność: t t

24 .. Zmiana skali scaling Skalowanie onaca powięksenie/mniejsenie romiarów obiekt: Z matematcnego pnkt widenia skalowanie onaca wkonanie jednokładności e środkiem w pocątk kład współrędnch. Dlatego operacja ta sprowada się do premnożenia współrędnch wsstkich pnktów obiekt w praktce operację tą wkonje się na charakterstcnch pnktach obiekt pre współcnnik skali jednokładności. Kied jest on więks od powięksam obiekt, kied należ on do prediał, dokonjem

25 pomniejsenia. Nie ropatrjem współcnników jemnch, gdż operacja taka może bć astąpiona pre skalowanie o współcnnik dodatnim i obrotem. Ocwiście, skalowanie możem wkonwać nieależnie dla odciętch i rędnch pnktów obiekt. Jednak awcaj prjmjem, że współcnniki skalowania s i s są sobie równe. Współrędne pnkt, po transformacji spełniają ależność: s s.3. Obrót rotation Ta transformacja elementarna jest trochę bardiej skomplikowana od opisanch powżej. Położenie każdego pnkt obiekt w praktce operację tą wkonje się na charakterstcnch pnktach obiekt wględem pocątk kład odniesienia mienia się o kąt obrot φ. Onaca to obrót wektora pnkt, acepionego w pocątk kład współrędnch o kąt φ. Koniec powstałego wektora wnaca obra pnkt po transformacji. Znak kąta określa się godnie odwrotnm kiernkiem wskaówek egara.

26 Zapis transformacji współrędnch pnkt sprowada się do: cos sin cos sin Uasadnienie powżsch worów opiera się na prostm prekstałceni trgonometrcnm:

27 sin cos cos sin sin sin sin cos cos cos r r r r r r gdie: sin cos r r W końc otrmjem: sin cos sin cos

28 .4. Współrędne jednorodne homogeneos coordinates W poprednim wkładie ostało wprowadone pojęcie współrędnch jednorodnch, w którch dokonwane są transformacje obiektów. Koncepcja ta ma na cel proscenie i jednolicenie procedr transformacji pnkt widenia sbkości i łatwości wkonwania potrebnch obliceń pre kompter. Jednak sama koncepcja wcale nie jest nowa ostała opracowana pre Agsta Ferdnanda Möbisa Założenie polega na prekstałceni współrędnch pnkt do wektora:, [ ], [ ] ora posłżeni się macierą transformacji: [ ] [ m m ] m m m 3 m3 w której element m ij stanowią o rodaj transformacji elementarnej. Tak więc we współrędnch jednorodnch operacje opisane powżej wglądają następjąco:

29 Presnięcie i macier presnięcia, t t t t T, ] [ ] [ t t T Zmiana skali i macier mian skali, s s s s S, ] [ ] [ s s S Obrót wokół pocątk kład współrędnch i macier obrot cos sin sin cos R ] [ ] [ R

30 Składanie transformacji Dowolna transformacja może ostać astąpiona łożeniem odpowiednich transformacji prostch elementarnch. Poniżej apreentowane są prkład rokładania łożonch transformacji i bdowania końcowej postaci macier transformacji. Obrót i skalowanie Należ wkonać obrót obiekt wokół pnkt c, c pr równocesnm dwkrotnm pomniejseni:

31 Dokonjem rołożenia tej skomplikowanej transformacji na: I. Presnięcie obiekt ab pnkt c, c nalał się w pocątk kład współrędnch, : p [ ] p [ ] p p T c, c

32 II. Preskalowanie obiekt godnie s =s =½:,, c c s s S T p p III. Obrót obiekt wokół pocątk kład współrędnch o kąt φ:,, R s s S T p p c c

33 IV. Presnięcie obiekt, tak ab pnkt, nalał się w c, c :,,, c c c c T R s s S T p p Po dokonani powżsch operacji widać, że transformację można wraić a pomocą macier transformacji M:,,, c c c c T R s s S T M pr cm M ma postać: 3 3 m m m m m m M

34 a prekstałcenie wgląda następjąco: [ ] [ ] M Efektwnie oblicenie nowch współrędnch pnkt sprowadają się do 4 dodawań i 4 mnożeń miennoprecinkowch. Jest to niewkle mał kost obliceniow. Odbicie lstrane [ ] [ ]

35 Ścinanie shear [ ] [ ] SH

36 3. Transformacje 3D Podobnie jak w prestreni -wmiarowej, dla prestreni 3-wmiarowej definijem transformacje elementarne: presnięcie, miana skali, obrót wokół dowolnej osi współrędnch. Także ttaj łożone transformacje opisje się jako łożenie transformacji elementarnch. 3. Współrędne jednorodne Wkorstwane w grafice 3D współrędne jednorodne wględniają 3 osie współrędnch:,, [,, [ Robdowani lega także macier transformacji, jednak wciąż achowje wmiar, co jest bardo istotne pnkt widenia łożoności arówno obliceń wkonwanch pre kompter jak i kod tworonego pre programistę: ] ]

37 [ M m m m m 3 4 ] [ m m m m 3 4 m m m m m m m m ] M 3.. Transformacje elementarne Zasada dokonwania transformacji elementarnch jest analogicna jak w prestreni -wmiarowej, dlatego nie będą one ttaj ponownie ropatrwane. Istotne są natomiast odpowiadające im maciere transformacji. Presnięcie T t, t, t t t t

38 Skalowanie,, s s s s s s S Obrót wględem osi cos sin sin cos R Obrót wględem osi cos sin sin cos R

39 Obrót wględem osi R cos sin sin cos 3.3 Składanie prekstałceń Metodka składania prekstałceń jest identcna jak w prpadk transformacji D. Poniżej ostał amiescon prkład takich operacji w prestreni 3D. Transformacja polega na obrocie obiekt wokół osi określonej pre parę pnktów,, ora,, o kąt Θ:

40 Wkonanie transformacji sprowada się do wnacenia macier transformacji M.

41 Rachnek wektorow Wgodnie jest w tm cel posłżć się rachnkiem wektorowm wra jego podstawowmi pojęciami: wektor: v dłgość wektora: v sma wektorów: v v, v v ilocn skalarn: v v v v v cos v

42 ilocn wektorow: v v det v v v v sin Repreentacja osi obrot Wgodnie jest oś obrot predstawić a pomocą jej wektora stcnego. Taki wektor bardo łatwo następnie rołożć na wersor repreentjące obrot składowe wględem poscególnch osi kład:

43 Zakładając, że wektor jest acepion w,, będie miał postać: v v v c b a ] [ gdie: v Konsekwencją jest normaliowanie wektora :

44 Kied posiadam jż wektor repreentjąc oś obrot, msim wkonać następjące kroki mające na cel możliwienie wkonania transformacji elementarnch:. Presnięcie osi i obiekt tak, ab oś prechodiła pre pocątek kład współrędnch.. Obrócenie osi i obiekt tak, ab oś stała się współliniowa jedną osi kład np. Z: a położenie osi na płascźnie b obrót wokół osi. 3. Obrót obiekt wokół osi obrot o kąt Θ. 4. Transformacja odwrotna do transformacji pnkt. 5. Transformacja odwrotna do transformacji pnkt.

45 ad. : Pocątek wektora ostał presnięt,, do,, :,, T ad. a: ] [ ] [ ] [ c b c b a

46 Położenie wektora na płascnę jest równonacne obrotem go o kąt α. Można go wnacć do macier obrot potrebjem wartości jego sinsa i cosinsa ilocn skalarnego i wektorowego: c c b Z drgiej stron: cos pr cm: d c b ora W końc otrmjem: d c cos b c b det podobnie: sin sin d Z cego wnika: d b sin Otrmjem macier obrot:

47 cos sin sin cos d c d b d b d c R ad. b: ] [ d a położon poprednio na płascnę wektor ] [ d położn poprednio na oś wektor ] [ wersor osi

48 Podobnie jak poprednio potrebjem wnacć do macier obrot sinβ i cosβ: d d a Z drgiej stron: cos pr cm: c b a c b a d a ora W końc otrmjem: cos det a d a podobnie: sin sin Z cego wnika: a sin

49 Do położenia osi obrot na oś stosjem macier: cos sin sin cos d a a d R ad. 3: Do obrot obiekt wokół osi o kąt Θ wkorstjem macier: cos sin sin cos R ad. 4: Transformacja odwrotna do transformacji krok opiera się na macier: R R

50 ad. 5: Transformacja odwrotna do transformacji krok sprowada się do:,,, T Macier będąca końcowm efektem transformacji obiekt wokół osi obrot:,,,,,, T R R R R R T

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollb.pl Transformacje 3D Podobnie jak w prestreni -wymiarowej, dla prestreni 3-wymiarowej definijemy transformacje RST: presnięcie miana skali obrót

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta

Rozważa się dwa typy odwzorowań: 1. Parametryzacja prosta WYKŁAD MODELOWANIE I WIZUALIZACJA TEKSTURY. Co to jest tekstra obiekt T(,, (,, t( =... tn(,,,, Plan wkład: Co to jest tekstra? Generowanie worów tekstr Wialiaja tekstr Filtrowanie tekstr Co może oiswać

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

GRUPY SYMETRII Symetria kryształu

GRUPY SYMETRII Symetria kryształu GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

Oświetlenie obiektów 3D

Oświetlenie obiektów 3D Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

Algebra z geometrią 2012/2013

Algebra z geometrią 2012/2013 Algebra geometrią 22/23 Seria XVI Javier de Lucas Zadanie. Wnacć rąd macier: A :, B : 2 4 3 4 3 2 3 3 5 7 3 3 6 3 Rowiąanie: Macier A: Sposób: Rąd macier to wmiar prestreni generowanej pre jej kolumn.

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu

GRAKO: ŚWIATŁO I CIENIE. Modele barw. Trochę fizyki percepcji światła. OŚWIETLENIE: elementy istotne w projektowaniu GRAKO: ŚWIATŁO I CIENIE Metody oświetlania Metody cieniowania Przykłady OŚWIETLENIE: elementy istotne w projektowaniu Rozumienie fizyki światła w realnym świecie Rozumienie procesu percepcji światła Opracowanie

Bardziej szczegółowo

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik

Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne

Bardziej szczegółowo

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA

KONWENCJA ZNAKOWANIA MOMENTÓW I WZÓR NA NAPRĘŻENIA ĆWICZENIE 5 KONWENCA ZNAKOWANIA OENTÓW I WZÓR NA NAPRĘŻENIA Wektor momentu pr ginaniu ukośnm można rutować na osie,, będące głównmi centralnmi osiami bewładności prekroju. Prjmujem konwencję nakowania

Bardziej szczegółowo

Fizyka I (mechanika), ćwiczenia, seria 1

Fizyka I (mechanika), ćwiczenia, seria 1 Fizka I (mechanika), ćwiczenia, seria 1 Układ współrzędnch na płaszczźnie. Zadanie 1 Odcinek o stałej długości porusza się tak, że jego punkt końcowe A i B ślizgają się po osiach odpowiednio x i pewnego

Bardziej szczegółowo

I. Rachunek wektorowy i jego zastosowanie w fizyce.

I. Rachunek wektorowy i jego zastosowanie w fizyce. Blok 1: Rachunek wektorow i jego astosowanie w fice Podstawowe wielkości ficne w kinematce Opis ruchu w różnch układach odniesienia Ruch wględn I Rachunek wektorow i jego astosowanie w fice Wsstkie wielkości

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR -IA- Wkład Nr 9 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

Zadania z AlgebryIIr

Zadania z AlgebryIIr Zadania AlgebrIIr Seria () Rowia ι ać uk lad równań: + + t = + = 7 + + t = ; + + = ; + 7 6t = + = 7 + + = 8 = 8 + + t = + 9 = 9 ; + 7t = + = 7 + + t = + 8 7 = () Podać bae ι prestreni rowia ι ań uk ladu:

Bardziej szczegółowo

3. Metody rozwiązywania zagadnień polowych

3. Metody rozwiązywania zagadnień polowych 3. Metod rowiąwania agadnień polowch 3.. Dokładne metod anali pola Dokładne metod anali pola powalają na uskanie dokładnego rowiąania równania róŝnickowego lub całkowego w dowolnm punkcie obsaru diałania

Bardziej szczegółowo

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla

Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla Ćwicenie 13 Wnacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądową metodą badania efektu alla,

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38 Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej.

Przykład 3.7. Naprężenia styczne przy zginaniu belki cienkościennej. Prkład.7. Naprężenia tcne pr ginaniu belki cienkościennej. Wnac rokład naprężenia tcnego w prekroju podporowm belki wpornikowej o prekroju cienkościennm obciążonej na wobodnm końcu pionową iłą P. Siła

Bardziej szczegółowo

Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe

Matematyka 2. Elementy analizy wektorowej cz I Pole wektorowe Matematka Element anali wektorowej c I Pole wektorowe Literatura M.Gewert Z.Skoclas; Element anali wektorowej; Oficna Wdawnica GiS Wrocław 000 W.Żakowski W.Kołodiej; Matematka c II; WNT Warsawa 1984 W.Leksiński

Bardziej szczegółowo

Podstawy wytrzymałości materiałów

Podstawy wytrzymałości materiałów Podstaw wtrmałości materiałów IMiR - MiBM - Wkład Nr 5 Analia stanu odkstałcenia Składowe stanu odkstałcenia, uogólnione prawo Hooke a, prawo Hooke a dla cstego ścinania, wględna miana objętości, klasfikacja

Bardziej szczegółowo

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku Zadanie 3 Zad. 1 Skreśli licby, które są jednoceśnie podielne pre 2 i 3. Odcytaj litery, które najdją się pod skreślonymi licbami, tworą one bardo ważne słowa, o których wsyscy powinni pamiętać na co dień.

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów

Bardziej szczegółowo

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2

TRANSFORMACJE 2-D2 PROCEDURA WIZUALIZACJI 2-D2 WYKŁAD TRANSFORMACJE -D PROCEDURA WIZUALIZACJI -D Plan wkładu: Transforaje eleentarne w przestrzeni -D Składanie transforaji Ogólna proedura wizualizaji w -D Obinanie w oknie prostokątn tn 1. Transforaje

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania

Bardziej szczegółowo

Plan wykładu. Akcelerator 3D Potok graficzny

Plan wykładu. Akcelerator 3D Potok graficzny Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

i = [ 0] j = [ 1] k = [ 0]

i = [ 0] j = [ 1] k = [ 0] Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Teoria światła i barwy

Teoria światła i barwy Teoria światła i barwy Powstanie wrażenia barwy Światło może docierać do oka bezpośrednio ze źródła światła lub po odbiciu od obiektu. Z oka do mózgu Na siatkówce tworzony pomniejszony i odwrócony obraz

Bardziej szczegółowo

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu CMYK ISBN 98-8-888-- Wdanicto Wżsej Skoł Komunikacji i Zarądania - Ponań, ul Różana a tel 8 9, fa 8 9 skiedu danicto@skiponanpl analia89indd Wdanicto Wżsej Skoł Komunikacji i Zarądania Ponaniu 9--8 ::

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Zastosowania grafiki komputerowej Światło widzialne Fizjologia narządu wzroku Metody powstawania barw Modele barw

Bardziej szczegółowo

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A

Rozwiazania zadań. Zadanie 1A. Zadanie 1B. Zadanie 2A Rowiaania adań Zadanie A = ( i) = 4 8i 4 = 8i Badam licbȩ espolon a 8i Jej moduł 8i jest równ 8 Jej postać espolona jest równa 8(cosα + isinα) α = /π St ad cosα = i sinα = Mam pierwiastki które oblicam

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 MECHANIKA OGÓLNA Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Licba godin: sem. II *) - wkład 30 god., ćwicenia 30 god. sem. III *) - wkład 30 god., ćwicenia 30 god., ale dla kier.

Bardziej szczegółowo

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia

LABORATORIUM MECHANIKI EKSPERYMENTALNEJ. Instrukcja do ćwiczenia LABORATORIUM MECHANIKI EKSPERYMENTALNEJ Instrukcja do ćwicenia 3 Ruch precesjn giroskopu Cel ćwicenia Obserwacja jawiska precesji regularnej. Badanie ależności prędkości kątowej precesji od momentu sił

Bardziej szczegółowo

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do 0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. 2 god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

Układy współrzędnych

Układy współrzędnych Układy współrzędnych Układ współrzędnych matematycznie - funkcja przypisująca każdemu punktowi danej przestrzeni skończony ciąg (krotkę) liczb rzeczywistych zwanych współrzędnymi punktu. Układ współrzędnych

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t J. Szantr Wkład nr 3 Przepłw potencjalne 1 Jeżeli przepłw płn jest bezwirow, czli wszędzie lb prawie wszędzie w pol przepłw jest rot 0 to oznacza, że istnieje fnkcja skalarna ϕ,, z, t), taka że gradϕ.

Bardziej szczegółowo

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l

Ćwiczenie 362. Wyznaczanie ogniskowej soczewek metodą Bessela i pomiar promieni krzywizny za pomocą sferometru. Odległość przedmiotu od ekranu, [m] l Nazwisko Data Nr na liśie Imię Wydział Ćwizenie 36 Dzień tyg Godzina Wyznazanie ogniskowej sozewek metodą Bessela i pomiar promieni krzywizny za pomoą serometr I Wyznazanie ogniskowej sozewki skpiająej

Bardziej szczegółowo

Do opisu kolorów używanych w grafice cyfrowej śluzą modele barw.

Do opisu kolorów używanych w grafice cyfrowej śluzą modele barw. Modele barw Do opisu kolorów używanych w grafice cyfrowej śluzą modele barw. Każdy model barw ma własna przestrzeo kolorów, a co za tym idzie- własny zakres kolorów możliwych do uzyskania oraz własny sposób

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Orientacja zewnętrzna pojedynczego zdjęcia

Orientacja zewnętrzna pojedynczego zdjęcia Orientacja zewnętrzna pojedynczego zdjęcia Proces opracowania fotogrametrycznego zdjęcia obejmuje: 1. Rekonstrukcję kształtu wiązki promieni rzutujących (orientacja wewnętrzna ck, x, y punktu głównego)

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu.

Optymalizacja (w matematyce) termin optymalizacja odnosi się do problemu znalezienia ekstremum (minimum lub maksimum) zadanej funkcji celu. TEMATYKA: Optymaliacja nakładania wyników pomiarów Ćwicenia nr 6 DEFINICJE: Optymaliacja: metoda wynacania najlepsego (sukamy wartości ekstremalnej) rowiąania punktu widenia określonego kryterium (musimy

Bardziej szczegółowo

BUDOWA ATOMU cd. MECHANIKA KWANTOWA

BUDOWA ATOMU cd. MECHANIKA KWANTOWA BUDOWA ATOMU cd. ajmuje się opisem ruchu cąstek elementarnch, układ można opiswać posługując się współrędnmi określającmi położenie bądź pęd, współrędne określa się pewnm prbliżeniem, np. współrędną dokładnością

Bardziej szczegółowo

MODELE KOLORÓW. Przygotował: Robert Bednarz

MODELE KOLORÓW. Przygotował: Robert Bednarz MODELE KOLORÓW O czym mowa? Modele kolorów,, zwane inaczej systemami zapisu kolorów,, są różnorodnymi sposobami definiowania kolorów oglądanych na ekranie, na monitorze lub na wydruku. Model RGB nazwa

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

Zajęcia z grafiki komputerowej Pov Ray część 2

Zajęcia z grafiki komputerowej Pov Ray część 2 Zajęcia z grafiki komputerowej Pov Ray część 2 Stwórzmy na początek pustą scenę. #include "colors.inc" camera { location look_at 0 angle 36 White plane { , -1.5 pigment

Bardziej szczegółowo

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx.

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx. Zestaw adań 5: Funkcjonał dwuliniowe i form kwadratowe () Sprawdić, c następujące odworowania ξ : R 3 R 3 R: x x a) ξ( x, c) ξ( x, x ) = xx + + ; b) ξ(, x ) = xx + 2 + ; d) ξ( x, x x ) = x + x + 2; ) =

Bardziej szczegółowo

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki

Zginanie ukośne LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW. Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Katedra Wtrmałości Materiałów i Metod Komputerowch Mechaniki Wdiał Mechanicn Technologicn Politechnika Śląska LABORATORUM WYTRZYMAŁOŚC MATERAŁÓW Zginanie ukośne ZGNANE UKOŚNE 2 1. CEL ĆWCZENA Ćwicenie

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Grafika komputerowa Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności December 12, 2016 1 Wprowadzenie 2 Optyka 3 Geometria 4 Grafika rastrowa i wektorowa 5 Kompresja danych Wprowadzenie

Bardziej szczegółowo