Podstawy termodynamiki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy termodynamiki"

Transkrypt

1 Podstawy termodynamiki Wykład Wroław University of ehnology Podstawy termodynamiki 0 ermodynamika klasyzna Ois układu N ząstek na grunie mehaniki klasyznej wymaga rozwiązania N równań ruhu. d dt L q& L k q k 0 Dla duŝej lizby ząstek zadanie raktyznie niewykonalne. Posługujemy się wartośiami średniki wynikająymi z teorii statystyznyh.

2 Podstawy termodynamiki 0 Lizba Avogadro Jeden mol to lizba atomów w róbe węgla - o masie g. (SI) Ile atomów lub ząstezek stanowi jeden mol? N A mol Lizba moli n w róbe dowolnej substanji jest równa ilorazowi lizby ząstezek N w tej róbe i lizby ząstezek w molu N A : n N N A Lizbę moli n w róbe moŝemy wyznazyć, znają masę róbki M r i jej masę molową M (masę mola) lub masę ząstezkową m (masę jednej ząstezki): M r n M M mn r A Podstawy termodynamiki 0 Gaz doskonały ozatrujemy układ N ząstek, które nie oddziałują ze sobą (ząstki to unkty materialne) oruszająe się w zbiorniku o ojemnośi (bok L). Odbiia od śianek doskonale sręŝyste. Zmiana ędu r mv śr Posługujemy się wartośiami średniki wynikająymi z teorii statystyznyh. PoniewaŜ lizba ząstezek w zbiorniku jest olbrzymia, a wszystkie oruszają się w rzyadkowyh kierunkah, moŝna załoŝyć, Ŝe średnio /N ząstezek orusza się w kaŝdym z trzeh kierunków. 4

3 Podstawy termodynamiki 0 Gaz doskonały F r t N mv śr Nmv śr L v śr L NE L kśr Ciśnienie mv śr E kśr F N Pa S m N NEkśr Ekśr L nn A E kśr 5 Podstawy termodynamiki 0 Zasada ekwiartyji energii Energia rozkłada się równomiernie między wszystkie stonie swobody (/k na stoień swobody); k stała Boltzmanna (k J/K) i E k Cząstezka jednoatomowa i stonie translayjne Cząstezka dwuatomowa i 5 stonie translayjne + rotayjne Cząstezka trój- i więej atomowa i 6 stonie translayjne + rotayjne Osylator linowy i energia kinetyzna + energia otenjalna Dla ząstek o skomlikowanej budowie mogą wystęować stonie swobody rotayjne i osylayjne oszzególnyh gru. 6

4 Podstawy termodynamiki 0 ównanie gazu doskonałego Dla gazu jednoatomowego i (tylko translayjne stonie swobody) k E kśr dla 00K k J Podstawiają to wyraŝenie do równania na iśnienie: nn A E kśr / nn / A / nn k / gdzie k N A stała gazowa (8. J/molK). Ostateznie otrzymujemy równanie Clausiusa-Claeyrona gazu doskonałego: n A k emeratura w skali bezwględnej [K]! 7 Podstawy termodynamiki 0 Średnia rędkość kwadratowa ząstek Porównują energie: mv śr, kw A vśr, kw k k m kn µ µ gdzie: n N N A m µ GAZ masa molowa v śr,kw [0 kg/mol] [m/s] H 840 He 4 05 H O 8 65 N 8 49 O

5 Podstawy termodynamiki 0 Zerowa zasada termodynamiki JeŜeli iała A i B są w stanie równowagi termodynamiznej z trzeim iałem, to są one takŝe w stanie równowagi termodynamiznej ze sobą nawzajem. Parametrem termodynamiznym harakteryzująym stan układu jest temeratura. KaŜde iało ma ewną właśiwość, którą nazywamy temeraturą. Kiedy dwa iała znajdują się w stanie równowagi termodynamiznej, ih temeratury są równe. I na odwrót". 9 Podstawy termodynamiki 0 emeratura i ieło Przekazywana energia termizna jest nazywana iełem i oznazana symbolem Q. Cieło uwaŝamy za dodatnie, jeŝeli energia jest rzekazywana z otozenia do układu (mówimy, Ŝe układ obiera ieło) i wzrasta jego energia termizna. Cieło jest ujemne, jeŝeli układ zmniejsza swoją energię termizną, rzekazują jej zęść do otozenia (mówimy, Ŝe układ oddaje ieło). ys. a, kiedy U > 0, energia jest rzekazywana z układu do otozenia, a wię ieło Q ma wartość ujemną. ys. b, kiedy U 0, nie ma wymiany energii, ieło Q jest równe zeru, a wię nie obserwujemy ani oddawania, ani obierania ieła. ys., kiedy U < 0, energia jest rzekazywana z otozenia do układu i dlatego Q ma wartość dodatnią. 0 5

6 Podstawy termodynamiki 0 Pohłanianie ieła Pojemność ielna C ewnego iała jest stałą roorjonalnośi omiędzy iełem Q obieranym lub oddawanym rzez to iało, a sowodowaną tym roesem zmianą temeratury. ( ) Q C C kon oz Cieło właśiwe zyli ojemność ielną na jednostkę masy", nie jest związane z konkretnym iałem, lez z jednostką masy substanji, z której jest ono zbudowane. Q m Q ( ) m kon oz J kg K Podstawy termodynamiki 0 I zasada termodynamiki Układ izolowany nie wymienia energii i ząstek z otozeniem. W mehanie klasyznej E E + E k W termodynamie E E + Ek + U U E term + E oddz. miedzyzatezkowyh E + E k - układu jako ałośi omijamy. U Q + W U energia wewnętrzna Q W -ieło dostarzone do układu - raa wykonana nad układem 6

7 Podstawy termodynamiki 0 I zasada termodynamiki U dq + dw U - energia kinetyzna ruhu termiznego ząstezek (energia translaji, rotaji i osylaji ząstezek), - energia oddziaływań międzyząstezkowyh, - energia owłok elektronowyh. δq i δw du δ Q + δw - zaleŝą od rodzaju roesów dlatego nie są jednoznaznie określone stanem ozątkowym i końowym układu. Praa i ieło są formami rzekazywania energii! Podstawy termodynamiki 0 Praa Zabieramy kilka ziarenek śrutu z ojemnika obiąŝająego tłok, ozwalają, aby gaz, działają siłą F, rzesunął tłok i resztęśrutu w górę na bardzo małą odległość dx owodują niewielką zmianę objętośi d. PoniewaŜ rzemieszzenie jest bardzo małe, moŝemy załoŝyć, Ŝe siła F jest w jego trakie stała. Siła F ma wartość S, gdzie oznaza iśnienie gazu w ylindrze, a S owierzhnię tłoka. d Sdx Praa wykonana rzez gaz wynosi dw F dx dw d S dx 4 7

8 Podstawy termodynamiki 0 Praa i rzemiany gazowe 5 Podstawy termodynamiki 0 Przemiany gazowe Pierwsza zasada termodynamiki: CZEY PZYPADKI Przemiana Warunek Wynik IZOEMICZNA onst. du 0 IZOCHOYCZNA onst. δw 0 IZOBAYCZNA onst. W ADIABAYCZNA δq 0 du -δw 6 8

9 Podstawy termodynamiki 0 Przemiany gazowe Przemiana izotermizna onst. onst. PoniewaŜ U in/ dla onst. U onst. wię du 0. Z I zasady termodynamiki wynika, Ŝe dq - dw. Praa wykonana odzas rzemiany izotermiznej: W d d ln UWAGA: Dla jednego mola (n ) 7 Podstawy termodynamiki 0 Przemiany gazowe Przemiana izohoryzna onst. PoniewaŜ onst., d 0 i dw d 0 onst. Z I zasady termodynamiki du dq dq d ieło molowe rzy stałej objętośi onst du d du d 8 9

10 Podstawy termodynamiki 0 Przemiany gazowe Przemiana izobaryzna onst. PoniewaŜ onst.: onst. Zmiana energii wewnętrznej: Praa. dw d, onst W d ( ) onst du dq + dw d + dw d 9 Podstawy termodynamiki 0 Przemiany gazowe Przemiana izobaryzna dw d onst. + dw d d d dw d d dw d + 0 0

11 Podstawy termodynamiki 0 Cieło molowe gazów. GAZ JEDNOAOMOWY i U du d 5 5 κ.67. GAZ DWUAOMOWY i 5 5 U du d κ Podstawy termodynamiki 0 Cieło molowe gazów. GAZ ÓJAOMOWY i 6 6 U du d κ 4 4. Lizba GAZ κ atomów J/mol J/mol He O H H O C H 5 OH

12 Podstawy termodynamiki 0 Przemiany gazowe Przemiana adiabatyzna (bez wymiany ieła z otozeniem) dq 0 du δw d d d d / : d d + κ Podstawy termodynamiki 0 Przemiany gazowe Przemiana adiabatyzna (bez wymiany ieła z otozeniem) 0 d ( κ ) κ d ln 0 ( κ ) onst. κ ównanie adiabaty ównanie adiabaty moŝna zaisać odają zaleŝnośi (), () lub () ln 0 κ onst. κ κ onst. 4

13 Podstawy termodynamiki 0 II zasada termodynamiki Przemiana nieodwraalna w układzie zamkniętym owoduje zawsze wzrost entroii S układu - nigdy jej sadek. Entroia róŝni się od energii tym, Ŝe nie ma zasady jej zahowania. Energia układu zamkniętego jest zahowana - zawsze ozostaje stała. W rzemianah nieodwraalnyh entroia układu zamkniętego zawsze rośnie. 5 Podstawy termodynamiki 0 II zasada termodynamiki Gaz w ozątkowym stanie równowagi P, zamknięty za omoą zaworu w lewej zęśi izolowanego ielnie zbiornika. Otwieramy zawór, gaz wyełnia takŝe rawą zęść zbiornika i o ewnym zasie ustala się końowy stan równowagi K. Proes ten jest nieodwraalny; ząstezki gazu nie zgromadzą się samorzutnie w lewej zęśi zbiornika. 6

14 Podstawy termodynamiki 0 II zasada termodynamiki Zmianę entroii układu S kon - S oz dla rzemiany, która rzerowadza układ od stanu ozątkowego P do stanu końowego K, definiuje się: S S kon S oz kon oz dq Q oznaza energię obieraną lub oddawaną w ostai ieła rzez układ w trakie roesu, a - temeraturę układu w kelwinah. Zmiana entroii zaleŝy nie tylko od energii rzekazywanej w ostai ieła, ale takŝe od temeratury, w której ta rzemiana zahodzi. PoniewaŜ temeratura jest zawsze dodatnia, zmiana entroii S ma taki sam znak jak ieło Q. Jednostką entroii i zmiany entroii w układzie SI jest dŝul na kelwin [J/K]. 7 Podstawy termodynamiki 0 II zasada termodynamiki Entroia układu zamkniętego wzrasta w rzemianah nieodwraalnyh i nie zmienia się w rzemianah odwraalnyh. Entroia nigdy nie maleje. S 0 II zasada termodynamiki Znak większy niŝ" odnosi się do rzemian nieodwraalnyh, a znak równa się" do rzemian odwraalnyh. Nierówność ma zastosowanie jedynie do układów zamkniętyh. W rzezywistym świeie wszystkie rzemiany są w zasadzie nieodwraalne ze względu na obeność taria, turbulenji itd., a wię entroia wszystkih rzezywistyh układów zamkniętyh rośnie. Proesy, w któryh entroia układu zahowuje stałą wartość, zawsze są idealizają. 8 4

15 Podstawy termodynamiki 0 Statystyzna interretaja entroii Wielokrotność konfiguraji - określa lizbę mikrostanów odowiadająyh danej konfiguraji. W N! n! n! Wszystkie mikrostany są tak samo rawdoodobne. Boltzmann wyrowadził związek omiędzy entroią S i wielokrotnośią W dla danej konfiguraji: S k lnw 9 5

v! są zupełnie niezależne.

v! są zupełnie niezależne. Zasada ekwiartyji energii 7-7. Zasada ekwiartyji energii ównowaga termizna układów Zerowa zasada termodynamiki Jeżeli układy A i B oraz A i są arami w równowadze termiznej, to również układy B i są w równowadze

Bardziej szczegółowo

I zasada termodynamiki

I zasada termodynamiki W3 30 Układ termodynamizny ównowaga termodynamizna Praa I zasada dla układu zamkniętego Entalia I zasada dla układu otwartego Cieło o właśiwew К Srawność jest zastosowaniem zasady zahowania energii do

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

PLAN WYKŁADU. Ciepło właściwe Proces adiabatyczny Temperatura potencjalna II zasada termodynamiki. Procesy odwracalne i nieodwracalne 1 /35

PLAN WYKŁADU. Ciepło właściwe Proces adiabatyczny Temperatura potencjalna II zasada termodynamiki. Procesy odwracalne i nieodwracalne 1 /35 PLAN WYKŁADU Cieło właśiwe Proes adiabatyzny emeratura otenjalna II zasada termodynamiki Proesy odwraalne i nieodwraalne 1 /35 Podręzniki Salby, Chater 2, Chater 3 C&W, Chater 2 2 /35 CIEPŁO WŁAŚCIWE 3

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Kirchhoffa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Kirchhoffa ZADANIA Z HEII Efekty energetyzne reakji hemiznej - rawo Kirhhoffa. Prawo Kirhhoffa Różnizkują względem temeratury wyrażenie, ilustrująe rawo Hessa: Otrzymuje się: U= n r,i U tw,r,i n s,i U tw,s,i () d(

Bardziej szczegółowo

Entropia i druga zasada termodynamiki

Entropia i druga zasada termodynamiki Entroia-drga zasada- Entroia i drga zasada termodynamiki.9.6 :5: Entroia-drga zasada- Przemiana realizowana w kładzie rzedstawionym na rys. 3.7 jest równowagową rzemianą beztariową. Jest ona wię odwraalna.

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej. Wykład IV Proste przemiany cd: Przemiana adiabatyczna Przemiana politropowa

Fizykochemiczne podstawy inżynierii procesowej. Wykład IV Proste przemiany cd: Przemiana adiabatyczna Przemiana politropowa Fizykoheizne odstawy inżynierii roesowej Wykład IV Proste rzeiany d: Przeiana adiabatyzna Przeiana olitroowa Przeiana adiabatyzna (izentroowa) Przeiana adiabatyzna odbywa się w układzie adiabatyzny tzn.

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Ć W I C Z E N I E N R C-3

Ć W I C Z E N I E N R C-3 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA FIZYKI CZĄSTECZKOWEJ I CIEPŁA Ć W I C Z E N I E N R C-3 WYZNACZANIE STOSUNKU DLA POWIETRZA METODĄ

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Temat:Termodynamika fotonów.

Temat:Termodynamika fotonów. Temat:Termodynamika fotonów. I Wstę Jak już sam temat sugeruje ostaram się rzedstawić 'termodynamikę' fotonów. Skąd taki omysł? Przez ewien zas hodziłem śieżki termodynamiki gazu doskonałego, lizyłem srawnośi

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykohemizne odtay inżynierii roeoej Wykład III Prote rzemiany termodynamizne Prote rzemiany termodynamizne Sośród bardzo ielu możliyh rzemian termodynamiznyh zzególną rolę odgryają rzemiany ełniająe

Bardziej szczegółowo

Maszyny cieplne i II zasada termodynamiki

Maszyny cieplne i II zasada termodynamiki Maszyny ieplne i II zasada termodynamiki Maszyny ieplne, łodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamizna definija II zasada termodynamiki i entropia Cykle termodynamizne.

Bardziej szczegółowo

UZUPEŁNIENIA DO WYKŁADÓW D, E

UZUPEŁNIENIA DO WYKŁADÓW D, E . Hofman, Wykłady z Chemii fizyznej I - Uzuełnienia, Wydział Chemizny PW, kierunek: ehnologia hemizna, sem.3 2017/2018 D. II ZASADA ERMODYNAMIKI UZUPEŁNIENIA DO WYKŁADÓW D, E D.1. Warunki stabilnośi, określająe

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwenia: WYZNACZANIE WYKŁADNIKA IZENTROPY κ DLA POWIETRZA Wyznazanie wykłnika

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Maszyny cieplne i II zasada termodynamiki

Maszyny cieplne i II zasada termodynamiki Maszyny ieplne i II zasada termodynamiki Maszyny ieplne, łodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamizna definija II zasada termodynamiki i entropia Cykle termodynamizne.

Bardziej szczegółowo

ZEROWA ZASADA TERMODYNAMIKI

ZEROWA ZASADA TERMODYNAMIKI ERMODYNAMIKA Zerowa zasada termodynamiki Pomiar temeratury i skale temeratur Równanie stanu gazu doskonałego Cieło i temeratura Pojemność cielna i cieło właściwe Cieło rzemiany Przemiany termodynamiczne

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Stan równowagi chemicznej

Stan równowagi chemicznej Stan równowagi hemiznej Równowaga hemizna to taki stan układu złożonego z roduktów i substratów dowolnej reakji odwraalnej, w którym szybkość owstawania roduktów jest równa szybkośi ih rozadu Odwraalność

Bardziej szczegółowo

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość

prawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość 5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe

Bardziej szczegółowo

1. Cykl odwrotny Carnota reprezentują poniższe diagramy w zmiennych p-v ( ) i T-S

1. Cykl odwrotny Carnota reprezentują poniższe diagramy w zmiennych p-v ( ) i T-S Zad. domowe nr 5: druga zasada termodynamiki, elementy termodynamiki statystyznej, rawo Gaussa. Grua 1 II zasada termodynamiki 1. Cykl odwrotny Carnota rerezentują oniższe diagramy w zmiennyh -V (3 2 1

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

Podstawowe przemiany cieplne

Podstawowe przemiany cieplne Podstawowe rzemiay iele Przemiaa izohoryza zahodzi, gdy objętość układu ozostaje stała ( ost), zyli 0. ówaie izohory () ost rzemiaie tej ie jest wykoywaa raa, bo 0, wię zgodie z ierwszą zasadą termodyamiki,

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny

Bardziej szczegółowo

Entalpia swobodna (potencjał termodynamiczny)

Entalpia swobodna (potencjał termodynamiczny) Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA

16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA Włodzimierz Wolczyński 16 GAZY CZ. PRZEMANY.RÓWNANE CLAPEYRONA Podstawowy wzór teorii kinetyczno-molekularnej gazów N ilość cząsteczek gazu 2 3 ś. Równanie stanu gazu doskonałego ż ciśnienie, objętość,

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Termodynamika fenomenologiczna i statystyczna

Termodynamika fenomenologiczna i statystyczna Termodynamika fenomenologiczna i statystyczna Termodynamika fenomenologiczna zajmuje się zwykle badaniem makroskoowych układów termodynamicznych złożonych z bardzo dużej ilości obiektów mikroskoowych.

Bardziej szczegółowo

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Własności falowe cząstek. Zasada nieoznaczoności Heisenberga.

Własności falowe cząstek. Zasada nieoznaczoności Heisenberga. Własnośi falowe ząstek. Zasada nieoznazonośi Heisenberga. Dlazego ząstka o określonej masie nie moŝe oruszać się z rędkośią równą rędkośi światła? Relatywistyzne równanie określająe energię oruszająego

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA

TERMODYNAMIKA PROCESOWA ERMODYNAMIKA PROCESOWA Wykład IV Charakterystyka ośrodków termodynamiznyh Prof. Antoni Kozioł, Wydział Chemizny Politehniki Wroławskiej Charakterystyka ośrodków termodynamiznyh właśiwośi termodynamizne

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej. Wykład V Charakterystyka ośrodków termodynamicznych

Fizykochemiczne podstawy inżynierii procesowej. Wykład V Charakterystyka ośrodków termodynamicznych Fizykohemizne odstawy inżynierii roesowej Wykład V Charakterystyka ośrodków termodynamiznyh Charakterystyka ośrodków termodynamiznyh Z inżynierskiego unktu widzenia bardzo ważny jest ois ośrodka który

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej Ciśnienie i temperatura gazu doskonałego Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład awella prędkości cząsteczek gazu doskonałego

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne

Rozkład Maxwell a prędkości cząsteczek gazu Prędkości poszczególnych cząsteczek mogą być w danej chwili dowolne Rozkład Maxwll a rędkośi ząstzk gazu 9-9. Rozkład Maxwll a rędkośi ząstzk gazu Prędkośi oszzgólnyh ząstzk ogą być w danj hwili dowoln 3 a tylko rędkość śrdnia kwadratowa wynosi sk. Można się jdnak sodziwać,

Bardziej szczegółowo

D. II ZASADA TERMODYNAMIKI

D. II ZASADA TERMODYNAMIKI WYKŁAD D,E D. II zasada termodynamiki E. Konsekwencje zasad termodynamiki D. II ZAADA ERMODYNAMIKI D.1. ełnienie I Zasady ermodynamiki jest warunkiem koniecznym zachodzenia jakiegokolwiek rocesu w rzyrodzie.

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt

Wykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt W. Dominik Wydział Fizyki UW ermodynamika 08/09 /7 Wykład 7 Zasada ekwiartycji energii Stonie swobody ruchu cząsteczek ieło właściwe ciał stałych ównanie adiabaty w modelu kinetyczno-molekularnym g.d.

Bardziej szczegółowo

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w Wykład z fizyki, Piotr Posmykiewicz 7 P dt dt + nrdt i w rezultacie: nr 4-7 P + Dla gazu doskonałego pojemność cieplna przy stałym ciśnieniu jest większa od pojemności cieplnej przy stałej objętości o

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując

f s moŝna traktować jako pracę wykonaną przez siłę tarcia nad ślizgającym się klockiem. Porównując Wykład z fizyki. Piotr Posmykiewiz 63 s = ma s = m v f vi = mvi 7- f W równaniu powyŝszym zastosowano równanie Porównują równania 7-0 i 7- otrzymamy: i a s = v f v i v f = 0 ( Patrz równanie -). f s =

Bardziej szczegółowo

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu.

Przeanalizujmy układ termodynamiczny przedstawiony na rysunku 1. - początkowa, przejściowa i końcowa objętość kontrolnej ilości gazu w naczyniu. M. Chorowski Podstawy Kriogeniki, wykład 5. 3. Metody zyskiwania niskih temperatr - iąg dalszy 3.3. Wypływ swobodny ze stałej objętośi Rozważmy adiabatyzną ekspansję gaz wypływająego z nazynia o stałej

Bardziej szczegółowo

Kontakt,informacja i konsultacje

Kontakt,informacja i konsultacje Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.

11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz. ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych

FIZYKA STATYSTYCZNA. Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych FIZYKA STATYSTYCZA Liczne eksperymenty dowodzą, że ciała składają się z wielkiej liczby podstawowych elementów takich jak atomy czy cząsteczki. Badanie ruchów pojedynczych cząstek byłoby bardzo trudnym

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3)

u (1.2) T Pierwsza zasada termodynamiki w formie różniczkowej ma postać (1.3) obl_en_wew_enal-2.do Oblizanie energii wewnęrznej i enalii 1. Energia wewnęrzna subsanji rosej Właśiwa energia wewnęrzna, u[j/kg] jes funkją sanu. Sąd dla subsanji rosej jes ona funkją dwóh niezależnyh

Bardziej szczegółowo

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury - ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -

Bardziej szczegółowo

Fale rzeczywiste. dudnienia i prędkość grupowa

Fale rzeczywiste. dudnienia i prędkość grupowa Fale rzezywiste dudnienia i rędkość gruowa Czysta fala harmonizna nie istnieje. Rzezywisty imuls falowy jest skońzony w zasie i w rzestrzeni: Rzezywisty imuls falowy (iąg falowy) można rzedstawić jako

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

Rozwiązanie: Rozwiązanie najlepiej rozpocząć od sporządzenia szkicu, który jest pierwszym stopniem zrozumienia opisywanego procesu (serii przemian).

Rozwiązanie: Rozwiązanie najlepiej rozpocząć od sporządzenia szkicu, który jest pierwszym stopniem zrozumienia opisywanego procesu (serii przemian). Nowe zadania z termodynamiki. 06.0.00. Zadanie. 0/8, moli gazu azotu (traktować jako gaz doskonały), znajdującego się początkowo (stan ) w warunkach T =00K, =0 a, przechodzi następującą serię przemian

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Fizyka cząstek elementarnych

Fizyka cząstek elementarnych Wykład II lementy szzególnej teorii względnośi W fizye ząstek elementarnyh mamy zwykle do zynienia z obiektami oruszająymi się z rędkośiami orównywalnymi z rędkośią światła o owoduje koniezność stosowania

Bardziej szczegółowo

Krzywa izobarycznego ogrzewania substancji rzeczywistej. p=const. S wrz. S top. Ttop. Twrz. T dt. top. top. Równanie Clausiusa-Clapeyrona (1)

Krzywa izobarycznego ogrzewania substancji rzeczywistej. p=const. S wrz. S top. Ttop. Twrz. T dt. top. top. Równanie Clausiusa-Clapeyrona (1) ykła Entroia.. Równanie Clausiusa-Claeyrona rania równowai faz Iealna maszyna ielna Cykl Carnot. Dominik yział Fizyki U ermoynamika 8/9 /9 Entroia - rzyomnienie Entroia S jest miarą stanu uorząkowania

Bardziej szczegółowo

BUDOWA I WŁASNOŚCI CZĄSTECZKOWE GAZÓW

BUDOWA I WŁASNOŚCI CZĄSTECZKOWE GAZÓW BUDOWA I WŁASOŚCI CZĄSTECZKOWE GAZÓW ATOMY I CZĄSTECZKI Jednostka masy: u ( unit) = masy izotou 6C =,66 4 7 kg Jednostkę u rzyjęło się także nazywać daltonem (Da) na cześć twórcy wsółczesnej teorii atomowej

Bardziej szczegółowo

Śr Kin Ruchu Postępowego. V n R T R T. 3 3 R 3 E R T T k T, 2 N 2 B

Śr Kin Ruchu Postępowego. V n R T R T. 3 3 R 3 E R T T k T, 2 N 2 B Termodynamika Podstawowy wzór kinetyczno-molekularnej teorii budowy materii W oarciu o założenia dotyczące właściwości gazu doskonałego (molekuły to unkty materialne ozostające w ciągłym termicznym ruchu,

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

Mechanika płynów. Wykład 9. Wrocław University of Technology

Mechanika płynów. Wykład 9. Wrocław University of Technology Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy

Bardziej szczegółowo

Elementy dynamiki relatywistycznej r r

Elementy dynamiki relatywistycznej r r Elementy dynamiki relatywistyznej r r F ma - nieaktualne r r d p F - nadal aktualne dt ale pod warunkiem, że r r m r p γ m gdzie m - masa spozynkowa. Możliwa interpretaja: r r m p m gdzie masa zależy od

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo