Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład"

Transkrypt

1 Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład

2 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika

3 Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie jak: ciśnienie, objętość, temperatura. Ciśnienie wywierane przez gaz jest skutkiem zderzeń cząsteczek ze ściankami zbiornika. Zdolność gazu do wypełnienia całej objętości zbiornika jest konsekwencją swobody ruchu cząsteczek. Temperatura i energia wewnętrzna zależą od energii kinetycznej tych cząsteczek Kinetyczna teoria gazów analizuje problem z cząsteczkowego punktu widzenia.

4 Energia wewnętrzna: ciepło Energia wewnętrzna: suma wszystkich rodzajów energii wszystkich cząsteczek ciała U N E E k p Ciepło: jest energią przekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temperatur

5 Energia wewnętrzna: ciepło Kinetyczna teoria gazów. Termodynamika

6 ZASADY TERMODYNAMIKI Zerowa zasada termodynamiki: Jeżeli ciała 1 i są w równowadze termicznej i ciała i 3 są w równowadze termicznej to ciała 1 i 3 są w tej samej równowadze termicznej.

7 ZASADY TERMODYNAMIKI I zasada termodynamiki: Ciepło pobrane przez układ jest równe wzrostowi energii wewnętrznej układu plus pracy wykonanej przez układ nad otoczeniem zewnętrznym. Q U W U Q W du dq dw Widzimy, że zmiana energii wewnętrznej związana jest z ciepłem pobieranym (dq > 0) lub oddawanym (dq < 0) przez układ oraz z pracą wykonaną przez układ (dw > 0) lub nad układem (dw < 0)

8 MECHANIZMY PRZEKAZYWANIA CIEPŁA Przewodnictwo cieplne Q t ks T G L T Z

9 Konwekcja zachodzi w płynach ciecze i gazy Promieniowanie za pośrednictwem fal elektromagnetycznych. Moc promieniowania emitowanego przez ciało w postaci fali elektromagnetycznej: 4 5, W m K P ε zdolność emisyjna powierzchni ciała 4 S T stała Stefana-Boltzmana

10 TEMPERATURA Skalarna wielkość fizyczna, która jest miarą średniej energii kinetycznej cząsteczek Skale temperatur

11 TEMPERATURA Skalarna wielkość fizyczna, która jest miarą średniej energii kinetycznej cząsteczek Daniel Gabriel Fahrenheit ur r. w Gdańsku

12 Ciepło właściwe i ciepło molowe Ilość ciepła ΔQ pobrana przez ciało w procesie ogrzewania c ciepło właściwe m = nm M masa molowa Mc = C ciepło molowe Q mct Q nmct Q nct

13 WŁASNOŚCI GAZU DOSKONAŁEGO Gaz doskonały zwany gazem idealnym jest to gaz spełniający następujące warunki: - cząsteczki gazu traktujemy jak punkty materialne o pomijalnie małej objętości w stosunku do objętości gazu - zderzenia cząsteczek są doskonale sprężyste - cząsteczki oddziałują tylko w momencie zderzeń - między zderzeniami cząsteczki poruszają się ruchem jednostajnym prostoliniowym

14 RÓWNANIE STANU GAZU Doświadczenie pokazuje, że wszystkie gazy rzeczywiste przy dostatecznie małej gęstości można opisać jednym równaniem: p nrt p ciśnienie n liczba moli gazu w próbce T temperatura bezwzględna gazu R stała gazowa; R = 8,31 J/(mol.K) p NkT k stała Boltzmanna; k = 1, J/K N liczba cząsteczek

15 RÓWNANIE STANU GAZU Parametry stanu gazu: p ciśnienie [Pa] 3 - objętość [ m ] T temperatura [K] p p n R T const T p N k T

16 Praca wykonana przez gaz doskonały w stałej temperaturze ROZPRĘŻANIE IZOTERMICZNE W k p pd p nrt 1 1 p nrt const

17 Praca wykonana przez gaz doskonały w procesie rozprężania izotermicznego: W k pd p p nrt W k p nrt d nrt k p d nrt ln k p ln a ln b ln a b Kinetyczna teoria gazów. Termodynamika

18 W nrt ln k p W przypadku procesu rozprężania: k > p zatem: k / p > 1 co daje ln( k / p ) > 0 W nrt ln k 0 p

19 Praca wykonana przez gaz doskonały w stałej objętości Jeżeli objętość gazu jest stała to: PRZEMIANA IZOCHORYCZNA W k p pd W = 0 Praca wykonana przez gaz doskonały przy stałym ciśnieniu PRZEMIANA IZOBARYCZNA Jeżeli ciśnienie gazu jest stałe to: W = p( k - p ) = p

20 PODSTAWOWY WZÓR KINETYCZNEJ TEORII GAZÓW E k p N E k średnia energia kinetyczna cząsteczki gazu 3 Ekwipartycja energii: średnia energia kinetyczna na każdy stopień swobody jest taka sama dla wszystkich cząsteczek. E k i k T i ilość stopni swobody

21 Modele cząsteczek występujących w teorii kinetycznej Hel - przykład cząsteczki jednoatomowej Tlen - przykład cząsteczki dwuatomowej Metan przykład cząsteczki wieloatomowej.

22 PRZEMIANY GAZU DOSKONAŁEGO 1. Przemiana izotermiczna T = const. Przemiana izobaryczna p = const 3. Przemiana izochoryczna = const 4. Przemiana adiabatyczna Q = 0

23 PRACA W PRZEMIANACH GAZOWYCH Praca wykonana w przemianach gazowych liczbowo odpowiada polu zawartemu pod wykresem przemiany w układzie współrzędnych p()

24 Silnik cieplny η Qpobrane 1 W T T z g Kinetyczna teoria gazów. Termodynamika

25 ENTROPIA Entropia jest miarą nieuporządkowania układu cząstek. Im większy jest stan nieporządku położeń i prędkości w układzie tym większe prawdopodobieństwo, że układ będzie w tym stanie. Z definicji entropia S układu jest równa S = k ln gdzie k - stała Boltzmana, - prawdopodobieństwo, że układ jest w danym stanie (w odniesieniu do wszystkich pozostałych stanów). S 0

26 ENTROPIA Entropia S jest termodynamiczną funkcją zależną tylko od początkowego i końcowego stanu układu, a nie od drogi przejścia pomiędzy tymi stanami S Q T lub d S dq dt S dq T Kinetyczna teoria gazów. Termodynamika

27 II zasada termodynamiki Równoważne sformułowania tej zasady: Nie można zbudować perpetuum mobile drugiego rodzaju. Gdy dwa ciała o różnych temperaturach znajdą się w kontakcie termicznym, wówczas ciepło będzie przepływało z cieplejszego do chłodniejszego. Nie można zbudować silnika cieplnego, który w całości zamieniałby dostarczone ciepło na pracę W układzie zamkniętym entropia nie może maleć.

28 III zasada termodynamiki Nie można za pomocą skończonej liczby kroków uzyskać temperatury zera bezwzględnego, jeżeli za punkt wyjścia obierzemy niezerową temperaturę bezwzględną. η Qpobrane 1 W T T z g T g Tz T z

29 Ciśnienie, temperatura i prędkość średnia kwadratowa - n moli gazu doskonałego w zbiorniku o objętości =L 3 - Ściany zbiornika maja stałą temperaturę T L L L

30 W jaki sposób ciśnienie p wywierane przez gaz na ścianki zbiornika zależy od prędkości jego cząsteczek? Kinetyczna teoria gazów. Termodynamika

31 1) Pomijamy zderzenia cząsteczek między sobą. ) Zderzenia cząsteczek ze ścianami naczynia są SPRĘŻYSTE po zderzeniu z zacienioną ścianką naczynia zmienia się tylko składowa prędkości w kierunku osi x, co sprawia, że zmienia się tylko składowa pędu cząsteczki w kierunku osi x: x mv mv mv x x x p co z kolei sprawia, że pęd jakiego doznaje ściana wynosi +mv x

32 x mv mv mv x x x p

33 Cząsteczka regularnie zderza się z zacieniowaną ścianką. Czas jaki mija pomiędzy kolejnymi zderzeniami t równy jest czasowi potrzebnemu na przebycie przez cząsteczkę drogi od jednej ściany do drugiej (L) i z powrotem (L) z prędkością v x : v x p t L t x mv L v x x t Średnia szybkość z jaką cząstka przekazuje pęd ściance naczynia: mv L L v x x

34 Z drugiej zasady dynamiki Newtona: a F F ma m p t x m mv L v x x dv dt mv L x mdv dt m kg s m dp dt kg m s zmiana pędu w czasie to po prostu siła działająca na ściankę. Sumując po wszystkich cząsteczkach otrzymamy wartość siły wypadkowej F x, a dzieląc ją przez powierzchnię ścianki L otrzymamy ciśnienie p wywierane na tą ściankę: p F x L

35 3 1 1 N N x x x x x x x v v v L m L L mv L mv L mv L F p s m kg m s m kg L mv v L mv t p x x x x gdzie N oznacza liczbę cząsteczek. Kinetyczna teoria gazów. Termodynamika

36 Ponieważ: N nn v v v nn v x x x A x śr 1 N A v x śr Gdzie jest średnim kwadratem składowych prędkości w kierunku x. p nmn L 3 A v x śr Ponieważ mn A =M, (gdzie M jest masą molową gazu), oraz L 3 =, mamy: p nm v x śr

37 W 3D: dla dowolnej cząstki mamy: v v v v x y z Ponieważ liczba cząsteczek w zbiorniku jest olbrzymia, a wszystkie poruszają się w przypadkowych kierunkach, średnie wartości kwadratów składowych prędkości są sobie równe, a więc: 1 v v x śr śr 3 p nm 3 v śr

38 Pierwiastek kwadratowy z wyrażenia v jest pewną średnią prędkością śr nazywaną prędkością średnią kwadratową cząsteczek i oznaczoną symbolem v śr.kw.. Aby policzyć v śr.kw. podnosimy wszystkie prędkości do kwadratu, obliczamy ich średnią, a na koniec bierzemy pierwiastek kwadratowy obliczonej wartości. p nm 3 v vśr. kw. v śr nmv śr 3 śr. kw. p nm 3 v śr

39 p nmv 3 śr. kw. Równanie to mówi nam, że ciśnienie gazu (wielkość makroskopowa) zależy od prędkości cząsteczek (wielkości mikroskopowej).

40 Sytuacja odwrotna: ze znajomości ciśnienia p obliczmy v śr.kw.. Korzystając z równania stanu gazu doskonałego: p=nrt, otrzymamy: p nmv 3 śr. kw. nrt nmv 3 śr. kw. v śr. kw. 3RT M

41

42 Z v śr.kw. ściśle związana jest prędkość dźwięku w gazie. W fali dźwiękowej zaburzenie przekazywane jest od cząsteczki do cząsteczki dzięki ich zderzeniom. Fala nie może więc rozchodzić się szybciej niż przeciętna prędkość cząsteczek. Jest za to mniejsza, gdyż nie wszystkie cząsteczki poruszają się w tym samym kierunku co fala. v śr.kw. [m/s] prędkość dźwięku [m/s] Wodór Azot

43 Energia kinetyczna ruchu postępowego W dowolnej chwili energia kinetyczna ruchu postępowego cząsteczki jest równa: Ek 1 mv Średnia energia kinetyczna ruchu postępowego cząsteczki w pewnym przedziale czasu wynosi: E k śr. 1 mv śr 1 1 mv m v śr śr. kw. 3 v śr. kw. RT M 1 3RT k. m M E śr

44 1 3RT k. m M E śr M m k N A R N A E k śr. E k śr. 3RT N 3 A kt

45 E k śr. 3 kt W danej temperaturze T wszystkie cząsteczki gazu doskonałego niezależnie od swojej masy mają taką samą energię kinetyczna ruchu postępowego, równą 3/ kt. Mierząc temperaturę gazu, wyznaczamy jednocześnie średnią energię kinetyczną ruchu postępowego cząsteczek.

46 Średnia droga swobodna Parametrem charakteryzującym przypadkowy ruch cząsteczek jest średnia droga swobodna l. Określa ona jaką drogę pokonuje średnio cząsteczka między swoimi kolejnymi zderzeniami. Większa gęstość => mniejsze l Większe cząsteczki => mniejsze l 1 d N Kinetyczna teoria gazów. Termodynamika

47 Rozkład prędkości cząsteczek Rozkład Maxwella-Boltzmanna (185 r.) Mv RT P 4 v e v M RT 3 P(v) funkcja rozkładu prawdopodobieństwa: dla dowolnej prędkości v iloczyn P(v)dv (wielkość bezwymiarowa) wskazuje, jaki ułamek cząsteczek ma prędkość z przedziału o szerokości dv i środku w punkcie v. Całkowite pole pod krzywą określa całkowitą liczbę cząsteczek.

48 Rozkład Maxwella dla tlenu dla trzech temperatur ( 100 C, temperatura pokojowa i 600 C). Wartość funkcji odpowiada liczbie cząsteczek spośród 1 miliona cząsteczek, jaka będzie poruszać się z prędkością v±0,5 m/s. Kinetyczna teoria gazów. Termodynamika

49 Rozkład Maxwella dla tlenu, butanu, amoniaku i dwutlenku węgla w temperaturze pokojowej (0 C). Wartość funkcji odpowiada liczbie cząsteczek spośród 1 miliona cząsteczek, jaka będzie poruszać się z prędkością v±0,5 m/s. Kinetyczna teoria gazów. Termodynamika

50 Rozkład Maxwella dla prędkości cząsteczek tlenu w temperaturze T = 300 K. Na wykresie zaznaczono trzy prędkości charakterystyczne Kinetyczna teoria gazów. Termodynamika

51 Całkowite prawdopodobieństwo (pole pod krzywą): 0 P vdv 1 Ułamek cząsteczek o prędkości od v 1 do v : Prędkość średnia: v śr n v v 1 0 v v 1 Pvdv vp v dv 8RT M

52 Średni kwadrat prędkości: Prędkość średnia kwadratowa: 3RT v śr dv M v Pv 0 v vśr. kw. śr 3 v śr. kw. RT M Prędkość najbardziej prawdopodobna dp/dv=0: RT v p M

53 RT v p M v śr 8RT M 3 v śr. kw. RT M

54 Molowe ciepło właściwe gazu doskonałego Jak przypadkowy ruch atomów lub cząstek tworzących gaz przekłada się na energię gazu? ENERGIA WEWNĘTRZNA Jednoatomowy gaz doskonały: hel, neon lub argon. Średnia energia kinetyczna ruchu postępowego pojedynczego atomu zależy tylko od temperatury gazu: 3 E k śr kt

55 Energia wewnętrzna gazu doskonałego jest równa sumie energii kinetycznych związanych z ruchem postępowym tworzących go atomów. Próbka n moli zawiera nn A atomów. Energia wewnętrzna E w próbki jest więc równa: E w nn E nn kt A k śr A 3 k R N A 3 E w nrt Energia wewnętrzna E w gazu doskonałego zależy TYLKO od temperatury gazu; nie zależy ona od żadnej innej wielkości opisującej jego stan.

56 MOLOWE CIEPŁO WŁAŚCIWE GAZU DOSKONAŁEGO PRZY STAŁEJ OBJĘTOŚCI C Kinetyczna teoria gazów. Termodynamika

57 dostarczone ciepło => temperatura T nc Q C molowe ciepło właściwe gazu przy stałej objętości T n E C W T nc E W Q E w w w W=0 ponieważ =0 Kinetyczna teoria gazów. Termodynamika

58 Pamiętając, że energia wewnętrzna E w gazu jednoatomowego jest równa: a zmiana energii wewnętrznej: 3 E w nrt E w 3 nrt Ew 3 C R 1. 5 nt J mol K

59 Ostatecznie zmiana energii wewnętrznej gazu zwiazana ze zmianą jego temperatury wynosi: E w nc T Zmiana energii wewnętrznej gazu doskonałego zamkniętego w zbiorniku zależy TYLKO od zmiany temperatury gazu, nie zależy natomiast od typu procesu, w wyniku którego nastąpiła zmiana temperatury. Kinetyczna teoria gazów. Termodynamika

60 MOLOWE CIEPŁO WŁAŚCIWE GAZU DOSKONAŁEGO PRZY STAŁYM CIŚNIENIU C P Kinetyczna teoria gazów. Termodynamika

61 dostarczone ciepło => temperatura T nc Q p C P molowe ciepło właściwe gazu przy stałej objętości (C P >C ) R C C R C C T nr p W W Q E p p w T nc E w Kinetyczna teoria gazów. Termodynamika

62 STOPNIE SWOBODY A MOLOWE CIEPŁO WŁAŚCIWE Kinetyczna teoria gazów. Termodynamika

63 Możliwe ruchy: -Ruch postępowy -Ruch obrotowy -Ruch drgający (cząsteczka wieloatomowa)

64 ZASADA EKWIPARTYCZJI ENERGII (równego podziału energii) Każdy rodzaj cząsteczek charakteryzuje pewna liczba STOPNI SWOBODY f, które dają cząsteczce niezależne sposoby przechowywania energii. Na każdy stopień swobody przypada - średnio energia równa 1/kT na cząsteczkę (lub 1/RT w przeliczeniu na mol) f E w nrt

65

66 Rozprężanie adiabatyczne gazu doskonałego Proces przeprowadzany bardzo szybko (jak w przypadku fali dźwiękowej) lub w dobrze izolowanym zbiorniku.

67 Równanie przemiany adiabatycznej (zmienne p oraz ): gdzie p const C C p Adiabata opisana jest równaniem: p const

68 Równanie przemiany adiabatycznej (zmienne T oraz ): nrt const Ponieważ n oraz R są stałymi: T 1 const Dla gazu podlegającego przemianie od stanu początkowego P do stanu końcowego K można napisać: T p 1 T 1 p k k

69 Ponieważ ciśnienie w butelce jest większe od ciśnienia atmosferycznego, po jego otwarciu gaz rozpręża się, co oznacza, że wykonuje on pracę przeciwko ciśnieniu atmosferycznemu. Ponieważ dzieje się to bardzo szybko, przemianę można uznać za adiabatyczną, a więc praca wykonywana jest kosztem energii wewnętrznej. Ponieważ maleje energia wewnętrzna, obniża się również temperatura gazu, co sprawia, że para wodna w gazie ulega kondensacji, tworząc maleńkie kropelki, widoczne w postaci mgiełki. T 1 T 1 p p k k k p T k T p Kinetyczna teoria gazów. Termodynamika

70 KONIEC Dziękuję za uwagę

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab

Rozkłady statyczne Maxwella Boltzmana. Konrad Jachyra I IM gr V lab Rozkłady statyczne Maxwella Boltzmana Konrad Jachyra I IM gr V lab MODEL STATYCZNY Model statystyczny hipoteza lub układ hipotez, sformułowanych w sposób matematyczny (odpowiednio w postaci równania lub

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

1 I zasada termodynamiki

1 I zasada termodynamiki 1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może

Bardziej szczegółowo

WYZNACZANIE STOSUNKU c p /c v

WYZNACZANIE STOSUNKU c p /c v Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO

WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO W3 WSTĘP DO ĆWICZEŃ DOTYCZĄCYCH CIEPŁA WŁAŚCIWEGO Ciepło właściwe jest jedną z podstawowych cech termodynamicznych ciał, mającą duże znaczenie praktyczne. Zależność ciepła właściwego różnych ciał od temperatury

Bardziej szczegółowo

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 1 Termodynamika 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Termodynamika Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk

Bardziej szczegółowo

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne

Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne Joanna Sowińska: Elementy tworzące świat i ich wzajemne oddziaływanie: b) zjawiska cieplne Temperatura. Skale termometryczne. Przedmioty znajdujące się w naszym otoczeniu mogą być gorące, ciepłe, chłodne

Bardziej szczegółowo

Przemiany energii w zjawiskach cieplnych. 1/18

Przemiany energii w zjawiskach cieplnych. 1/18 Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Opracował: dr inż. Tadeusz Lemek

Opracował: dr inż. Tadeusz Lemek Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Opracował:

Bardziej szczegółowo

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. 1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła i pracy wykonanej nad ciałem lub układem ciał.

Zmiana energii wewnętrznej ciała lub układu ciał jest równa sumie dostarczonego ciepła i pracy wykonanej nad ciałem lub układem ciał. Temat : Pierwsza zasada termodynamiki. Wyobraźmy sobie następującą sytuację : Jest zima. Temperatura poniżej zera. W wyniku długotrwałego wystawiania dłoni na działanie lodowatego powietrza, odczuwamy,

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Rozdział 3 Elementy termodynamiki 3.1 Gaz doskonały 3.1.1 Ciśnienie i temperatura gazu. Równanie stanu gazu doskonałego W tym podrozdziale omówimy w skrócie podstawowe prawa doświadczalne dotyczące gazów.

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7 Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę

Bardziej szczegółowo

Podstawy fizyki wykład 6

Podstawy fizyki wykład 6 Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały

Bardziej szczegółowo

Wykład 10 Równowaga chemiczna

Wykład 10 Równowaga chemiczna Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

Ciepło i pierwsza zasada termodynamiki.

Ciepło i pierwsza zasada termodynamiki. Wykład z fizyki, Piotr Posmykiewicz 162 W Y K Ł A D XIII Ciepło i pierwsza zasada termodynamiki. Ciepło jest energią, która jest przekazywana z jednego układu do drugiego w wyniku róŝnicy temperatur obu

Bardziej szczegółowo

Jak mierzyć i jak liczyć efekty cieplne reakcji?

Jak mierzyć i jak liczyć efekty cieplne reakcji? Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie

Bardziej szczegółowo

WYKŁAD 3 TERMOCHEMIA

WYKŁAD 3 TERMOCHEMIA WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. DKOS-5002-2\04 Anna Basza-Szuland FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor. WYMAGANIA NA OCENĘ DOPUSZCZAJĄCĄ DLA REALIZOWANYCH TREŚCI PROGRAMOWYCH Kinematyka

Bardziej szczegółowo

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych

Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych Podstawowe pojęcia i prawa chemiczne, Obliczenia na podstawie wzorów chemicznych 1. Wielkości i jednostki stosowane do wyrażania ilości materii 1.1 Masa atomowa, cząsteczkowa, mol Masa atomowa Atomy mają

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe

Bardziej szczegółowo

Wykład 5. Początki nauki nowożytnej część 3 (termodynamika)

Wykład 5. Początki nauki nowożytnej część 3 (termodynamika) Wykład 5 Początki nauki nowożytnej część 3 (termodynamika) 1 Temperatura Termoskopy powietrzne Awicenna Santorio Santori (1612) pierwszy opis termometru powietrznego pierwszy rysunek termometru Robert

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

Energetyka odnawialna i nieodnawialna

Energetyka odnawialna i nieodnawialna Energetyka odnawialna i nieodnawialna Repetytorium Podstawy termodynamiczne Wykład WSG Bydgoszcz Prowadzący: prof. Andrzej Gardzilewicz gar@imp. imp.gda.pl, 601-63 63-22-84 Materiały y uzupełniaj niające:

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

Prawa gazowe- Tomasz Żabierek

Prawa gazowe- Tomasz Żabierek Prawa gazowe- Tomasz Żabierek Zachowanie gazów czystych i mieszanin tlenowo azotowych w zakresie użytecznych ciśnień i temperatur można dla większości przypadków z wystarczającą dokładnością opisywać równaniem

Bardziej szczegółowo

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość"

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu Era inżyniera - pewna lokata na przyszłość Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość" 1. Informacje ogólne Kierunek studiów: Profil kształcenia: Forma

Bardziej szczegółowo

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.

= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt. ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,

Bardziej szczegółowo

Rodzaje pracy mechanicznej

Rodzaje pracy mechanicznej Rodzaje pracy mechanicznej. Praca bezwzględna Jest to praca przekazana przez czynnik termodynamiczny na wewnętrzną stronę denka tłoka. Podczas beztarciowej przemiany kwazystatycznej praca przekazana oczeniu

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana

Wykład 7: Układy cząstek. WPPT, Matematyka Stosowana Wykład 7: Układy cząstek WPPT, Matematyka Stosowana Jak odpowiesz na pytania? Honda CRV uderza w Hondę Civic jak będzie wyglądał wypadek? Uderzasz kijem w kule bilardowe czy to uda ci się trafić w kieszeń?

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin

Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin Biofizyka wykład: dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Biofizyka - wykłady Biotechnologia III rok Tematyka (15 godz.): dr hab. Jerzy Nakielski dr Joanna Szymanowska-Pułka dr

Bardziej szczegółowo

Fizyka Termodynamika Chemia reakcje chemiczne

Fizyka Termodynamika Chemia reakcje chemiczne Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych

Bardziej szczegółowo

18 TERMODYNAMIKA. PODSUMOWANIE

18 TERMODYNAMIKA. PODSUMOWANIE Włodzimierz Wolczyński 18 TERMODYNAMIKA. PODSUMOWANIE Zadanie 1 Oto cykl pracy pewnego silnika termodynamicznego w układzie p(v). p [ 10 5 Pa] 5 A 4 3 2 1 0 C B 5 10 15 20 25 30 35 40 V [ dm 3 ] Sprawność

Bardziej szczegółowo

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła :

Zestaw zadań na I etap konkursu fizycznego. Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : Zestaw zadań na I etap konkursu fizycznego Zad. 1 Kamień spadał swobodnie z wysokości h=20m. Średnia prędkość kamienia wynosiła : A) 5m/s B) 10m/s C) 20m/s D) 40m/s. Zad.2 Samochód o masie 1 tony poruszał

Bardziej szczegółowo

OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH

OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH 1 OBLICZENIA STECHIOMETRIA STECHIOMETRIA: INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH Np.: WYZNACZANIE ILOŚCI SUBSTRATÓW KONIECZNYCH DLA OTRZYMANIA OKREŚLONYCH ILOŚCI PRODUKTU PODSTAWY OBLICZEŃ CHEMICZNYCH

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Absolutna skala temperatur.

Absolutna skala temperatur. Wykład z fizyki, Piotr Posmykiewicz 88 Absolutna skala temperatur. W wykładzie XII skala temperatur dla gazu doskonałego została zdefiniowana za pomocą własności gazów posiadających małą gęstość. PoniewaŜ

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE

TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE TECHNIKI NISKOTEMPERATUROWE W MEDYCYNIE Przechowywanie cieczy kriogenicznych i rodzaje izolacji cieplnych Imię i nazwisko: Olga Gałązka i Mateusz Pawelec Rok akademicki: 2011/2012 Semestr: II magisterski

Bardziej szczegółowo

Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza.

Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza. 1 Część teoretyczna Powietrze wilgotne układ złożony z pary wodnej i powietrza suchego, czyli mieszaniny azotu, tlenu, wodoru i pozostałych gazów Z punktu widzenia różnego typu przemian skład powietrza

Bardziej szczegółowo

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr Jednostki Ukadu SI Wielkość Nazwa Symbol Długość metr m Masa kilogram kg Czas sekunda s Natężenie prądu elektrycznego amper A Temperatura termodynamiczna kelwin K Ilość materii mol mol Światłość kandela

Bardziej szczegółowo

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona Ilość ruchu, stan ruchu danego ciała opisuje pęd Siły - wektory Ilość ruchu, stan ruchu danego ciała opisuje pęd Zasady dynamiki Newtona I Każde ciało trwa w stanie spoczynku lub

Bardziej szczegółowo

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa Praca, moc, energia 1. Klasyfikacja energii. Jeżeli ciało posiada energię, to ma również zdolnoć do wykonania pracy kosztem częci swojej energii. W = Epoczątkowa Ekońcowa Wewnętrzna Energia Mechaniczna

Bardziej szczegółowo

LABORATORIUM METROLOGII

LABORATORIUM METROLOGII LABORATORIUM METROLOGII POMIARY TEMPERATURY NAGRZEWANEGO WSADU Cel ćwiczenia: zapoznanie z metodyką pomiarów temperatury nagrzewanego wsadu stalowego 1 POJĘCIE TEMPERATURY Z definicji, która jest oparta

Bardziej szczegółowo

Liczba Avogadro: N A 6 10 23. Słońce. M = 2 10 30 kg

Liczba Avogadro: N A 6 10 23. Słońce. M = 2 10 30 kg Mikroskopowa i makroskopowa teoria gazów i cieczy Zadania do ćwiczeń (J. Matulewski), wersja z dnia 10 października 00 Najnowsza wersja dostępna w sieci: http://www.phys.uni.torun.pl/~jacek/dydaktyka/fizyka.pdf

Bardziej szczegółowo

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca

- podaje warunki konieczne do tego, by w sensie fizycznym była wykonywana praca Fizyka, klasa II Podręcznik: Świat fizyki, cz.2 pod red. Barbary Sagnowskiej 6. Praca. Moc. Energia. Lp. Temat lekcji Wymagania konieczne i podstawowe 1 Praca mechaniczna - podaje przykłady wykonania pracy

Bardziej szczegółowo

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz

Kinetyka reakcji chemicznych. Dr Mariola Samsonowicz Kinetyka reakcji chemicznych Dr Mariola Samsonowicz 1 Czym zajmuje się kinetyka chemiczna? Badaniem szybkości reakcji chemicznych poprzez analizę eksperymentalną i teoretyczną. Zdefiniowanie równania kinetycznego

Bardziej szczegółowo

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według

Bardziej szczegółowo

Termochemia efekty energetyczne reakcji

Termochemia efekty energetyczne reakcji Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty

Bardziej szczegółowo

T E R M O D Y N A M I K A

T E R M O D Y N A M I K A T E R M O D Y N A M I K A st. kpt dr inż. Jerzy Gałaj st. kpt. mgr inż. Marek Świątkiewicz Katedra Techniki Pożarniczej Zakład Hydromechaniki i Przeciwpożarowego Zaopatrzenia w Wodę pokój nr 310 e-mail:

Bardziej szczegółowo

TERMOCHEMIA SPALANIA

TERMOCHEMIA SPALANIA TERMOCHEMIA SPALANIA I ZASADA TERMODYNAMIKI dq = dh Vdp W przemianach izobarycznych: dp = 0 dq = dh dh = c p dt dq = c p dt Q = T 2 T1 c p ( T)dT Q ciepło H - entalpia wewnętrzna V objętość P - ciśnienie

Bardziej szczegółowo

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:

Bardziej szczegółowo

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki. http://kepler.am.gdynia.pl/~karudz Kartezjański układ współrzędnych: Wersory osi: e x x i e y y j e z z k r - wektor o współrzędnych [ x 0, y 0, z 0 ] Wektor położenia: r t =[ x t, y t,z t ] każda współrzędna zmienia się w czasie. r t =

Bardziej szczegółowo

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Zderzenia Zasada zachowania pędu Pęd i druga zasada dynamiki Pęd cząstki (ciała) to wektor prędkości pomnożony przez masę. r p = r mv

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału w

Bardziej szczegółowo

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła

Bardziej szczegółowo

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I

dr Dariusz Wyrzykowski ćwiczenia rachunkowe semestr I Podstawowe prawa i pojęcia chemiczne. Fizyczne prawa gazowe. Zad. 1. Ile cząsteczek wody znajduje się w 0,12 mola uwodnionego azotanu(v) ceru Ce(NO 3 ) 2 6H 2 O? Zad. 2. W wyniku reakcji 40,12 g rtęci

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO Wielkościami liczbowymi charakteryzującymi pracę silnika są parametry pracy silnika do których zalicza się: 1. Średnie ciśnienia obiegu 2. Prędkości

Bardziej szczegółowo

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła.

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła. M. Chorowski, Podstawy Kriogeniki, wykład 0 7. Chłodziarki z regeneracyjnymi wymiennikami ciepła. W chłodziarkach z regeneracyjnymi wymiennikami ciepła wstępne obniżenie temperatury gazu zachodzi w regeneratorze,

Bardziej szczegółowo

Fizyka - zakres materiału oraz kryteria oceniania. w zakresie rozszerzonym kl 2 i 3

Fizyka - zakres materiału oraz kryteria oceniania. w zakresie rozszerzonym kl 2 i 3 Fizyka - zakres materiału oraz kryteria oceniania w zakresie rozszerzonym kl 2 i 3 METODY OCENY OSIĄGNIĘĆ UCZNIÓW Celem nauczania jest kształtowanie kompetencji kluczowych, niezbędnych człowiekowi w dorosłym

Bardziej szczegółowo

PRACA. MOC. ENERGIA. 1/20

PRACA. MOC. ENERGIA. 1/20 PRACA. MOC. ENERGIA. 1/20 Czym jest energia? Większość zjawisk w przyrodzie związana jest z przemianami energii. Energia może zostać przekazana od jednego ciała do drugiego lub ulec przemianie z jednej

Bardziej szczegółowo

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki

Wymagania na poszczególne oceny przy realizacji programu i podręcznika Świat fizyki Klasa II Wymagania na poszczególne oceny przy realizacji i podręcznika Świat fizyki 6. Praca. Moc. Energia 6.1. Praca mechaniczna podaje przykłady wykonania pracy w sensie fizycznym podaje jednostkę pracy

Bardziej szczegółowo

A. 0,3 N B. 1,5 N C. 15 N D. 30 N. Posługiwać się wzajemnym związkiem między siłą, a zmianą pędu Odpowiedź

A. 0,3 N B. 1,5 N C. 15 N D. 30 N. Posługiwać się wzajemnym związkiem między siłą, a zmianą pędu Odpowiedź Egzamin maturalny z fizyki z astronomią W zadaniach od 1. do 10. należy wybrać jedną poprawną odpowiedź i wpisać właściwą literę: A, B, C lub D do kwadratu obok słowa:. m Przyjmij do obliczeń, że przyśpieszenie

Bardziej szczegółowo

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota

Wykład 12 Silnik Carnota z gazem doskonałym Sprawność silnika Carnota z gazem doskonałym Współczynnik wydajności chłodziarki i pompy cieplnej Carnota Wykła Silnik Carnota z azem oskonałym Sprawność silnika Carnota z azem oskonałym Współczynnik wyajności chłoziarki i pompy cieplnej Carnota z azem oskonałym RównowaŜność skali temperatury termoynamicznej

Bardziej szczegółowo

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI 3 Copyright by Zbigniew Osiak Wszelkie prawa zastrzeżone. Rozpowszechnianie i kopiowanie całości lub części publikacji zabronione bez pisemnej zgody autora. Portret

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

Imię i nazwisko ucznia Data... Klasa...

Imię i nazwisko ucznia Data... Klasa... Przygotowano za pomocą programu Ciekawa fizyka. Bank zadań Copyright by Wydawnictwa Szkolne i Pedagogiczne sp. z o.o., Warszawa 2011 strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Wyraź

Bardziej szczegółowo

Dr Andrzej Bąk Wykład KRIOGENIKA

Dr Andrzej Bąk Wykład KRIOGENIKA Dr Andrzej Bąk Wykład KRIOGENIKA KRIOGENIKA ZASTOSOWANIA TECHNICZNE 1. Droga do zera bezwzględnego rys historyczny 2. Termometria niskich temperatur termometry gazowe, ciśnieniowe, oporowe, magnetyczne,

Bardziej szczegółowo

2.2 Wyznaczanie ciepła topnienia lodu(c4)

2.2 Wyznaczanie ciepła topnienia lodu(c4) Wyznaczanie ciepła topnienia lodu(c4) 81 2.2 Wyznaczanie ciepła topnienia lodu(c4) Celem ćwiczenia jest pomiar ciepła topnienia lodu. Zagadnienia do przygotowania: temperatura i energia wewnętrzna; przepływ

Bardziej szczegółowo

wyprowadza wzór na okres i częstotliwość drgań wahadła sprężynowego posługuje się modelem i równaniem oscylatora harmonicznego

wyprowadza wzór na okres i częstotliwość drgań wahadła sprężynowego posługuje się modelem i równaniem oscylatora harmonicznego Wymagania edukacyjne z fizyki poziom rozszerzony część 2 uch drgający Treści spoza podstawy programowej. Zagadnienie 5.3. Drgania sprężyn (Okres i częstotliwość drgań ciała na sprężynie. Wykresy opisujące

Bardziej szczegółowo

Przemiany substancji

Przemiany substancji Przemiany substancji Poniżej przedstawiono graf pokazujący rodzaje przemian jaki ulegają substancje chemiczne. Przemiany substancji Przemiany chemiczne Przemiany fizyczne Objawy: - zmiania barwy, - efekty

Bardziej szczegółowo

FIZYKA. dr inż. Janusz Tomaszewski.

FIZYKA. dr inż. Janusz Tomaszewski. FIZYKA dr inż. Janusz Tomaszewski Centrum Nauczania Matematyki i Fizyki PŁ Budynek C3 ( Akwarium ) pokój nr 504 tel. 42 6313654 e-mail: jtomasz@p.lodz.pl http://cmf.p.lodz.pl/jtomasz WYKŁAD Cele, metody

Bardziej szczegółowo

Odwracalność przemiany chemicznej

Odwracalność przemiany chemicznej Odwracalność przemiany chemicznej Na ogół wszystkie reakcje chemiczne są odwracalne, tzn. z danych substratów tworzą się produkty, a jednocześnie produkty reakcji ulegają rozkładowi na substraty. Fakt

Bardziej szczegółowo

ZBIÓR ZADAŃ STRUKTURALNYCH

ZBIÓR ZADAŃ STRUKTURALNYCH ZBIÓR ZADAŃ STRUKTURALNYCH Zgodnie z zaleceniami metodyki nauki fizyki we współczesnej szkole zadania prezentowane uczniom mają odnosić się do rzeczywistości i być tak sformułowane, aby każdy nawet najsłabszy

Bardziej szczegółowo

Lewobieżny obieg gazowy Joule a a obieg parowy Lindego.

Lewobieżny obieg gazowy Joule a a obieg parowy Lindego. Lewobieżny obieg gazowy Joule a a obieg parowy Lindego. Adam Nowaczyk IM-M Semestr II Gdaosk 2011 Spis treści 1. Obiegi termodynamiczne... 2 1.1 Obieg termodynamiczny... 2 1.1.1 Obieg prawobieżny... 3

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

Wyznaczanie ciepła topnienia lodu

Wyznaczanie ciepła topnienia lodu C4 Wyznaczanie ciepła topnienia lodu Celem ćwiczenia jest wyznaczenie ciepła topnienia lodu metoda kalorymetryczną. Zagadnienia do przygotowania: temperatura i energia wewnętrzna; ciepło, ciepło właściwe,

Bardziej szczegółowo