Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK

Wielkość: px
Rozpocząć pokaz od strony:

Download "Termodynamika Techniczna dla MWT, wykład 6. AJ Wojtowicz IF UMK"

Transkrypt

1 Wykład 6. Ciepło właściwe substancji prostych. Ciepło właściwe gazów doskonałych.. Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )... ZaleŜność ciepła właściwego C od temperatury.. Molowe ciepło właściwe gazu doskonałego przy stałym ciśnieniu (C ) 3. Stosunek C do C. rzemiana adiabatyczna gazu doskonałego 5. Cztery wybrane przemiany; podsumowanie - 5 -

2 . Ciepło właściwe substancji prostych Definicja ciepła właściwego wiąŝe się ze zmianą temperatury T substancji wywołaną przez dostarczane ciepło Q: Q mc T, gdzie m to masa substancji, a c to ciepło właściwe. Zgodnie z tą definicją, ciepło właściwe to ilość ciepła potrzebna do zmiany temperatury jednostki masy substancji o jeden kelwin (stopień). rzemiana termodynamiczna substancji prostej wywołana przez podgrzewanie podlega I zasadzie termodynamiki, czyli, o ile zaniedbać moŝna zmiany energii kinetycznej i potencjalnej, substancja moŝe, podczas dostarczania ciepła, wykonać pracę zewnętrzną i zmianie moŝe ulec jej energia wewnętrzna: ( ) U( ) Q U + W dla przemiany, lub dla małej zmiany wzdłuŝ drogi przemiany δ Q du+ δw. Rozpatrzymy to wyraŝenie dla substancji prostych i ściśliwych (praca zewnętrzna d) w dwóch waŝnych przypadkach:. Stała objętość. rzy stałej objętości substancja nie wykonuje zewnętrznej pracy objętościowej, gdyŝ pd. oniewaŝ w tej sytuacji δq du mamy: δq U u c C () m δt m T T i zmierzone w tych warunkach ciepło właściwe będzie ciepłem właściwym przy stałej objętości C.. Stałe ciśnienie. rzy stałym ciśnieniu i W d d ( ) ( ) U( ) + U( ) + U( ) Q U zatem dostarczone ciepło jest róŝnicą pewnej funkcji stanu w stanie końcowym i początkowym : ( ) H( ) Q H gdzie funkcja stanu H, zdefiniowana w następujący sposób: H U+, nazywa się entalpią. (Do entalpii powrócimy w następnym wykładzie.) Oczywiście dla dwóch blisko leŝących punktów na drodze przemiany mamy: ( U+ ) dh δ Q du+δw du+ d d gdyŝ dla przemiany izobarycznej: - 5 -

3 Mamy zatem: ( U+ ) du+ d+ d du d dh d +. δq H h c C () m δt m T T i zmierzone w ten sposób ciepło właściwe będzie ciepłem właściwym przy stałym ciśnieniu C. Warto zwrócić uwagę, Ŝe C i C dane przez wyraŝenia () i () są parametrami termodynamicznymi, a więc niezaleŝnymi od drogi po której zaszła przemiana. Ilustracji do tego stwierdzenia dostarcza rys. 6., na którym pokazano dwie drogi przejścia ze stanu początkowego do końcowego; w jednej (proces a) do naczynia z miodem o ustalonej objętości dostarczono pewną ilość ciepła Q (powiedzmy kj); w drugim przypadku (proces b) wykonano na układzie pracę (teŝ kj). W miód miód +Q proces a proces b Rys. 6.. roces a i proces b prowadzą do tego samego stanu końcowego. Zmiana energii wewnętrznej w obu przypadkach będzie taka sama. raktyczniej będzie skorzystać z tablic termodynamicznych dla miodu (o ile istnieją) i przyjąć, Ŝe zachodzi proces a. Zgodnie z I zasadą termodynamiki: U ( ) U( ) Q W, zmiana energii wewnętrznej U będzie taka sama dla obu procesów. Tak więc energię wewnętrzną układu (miodu w tym przypadku) po wykonaniu pracy na układzie moŝna policzyć stosując ciepło właściwe C pomimo, Ŝe do układu wcale nie dostarczaliśmy ciepła. W przypadku, gdy substancja, którą rozwaŝamy jest w stanie skupienia ciekłym lub stałym (a więc jest ona prawie nieściśliwa): dh du+ dv+ vd du gdyŝ zarówno zmiana objętości jak i objętość właściwa dla tych stanów skupienia są względnie małe. A więc: dh du CdT (3) gdzie C jest ciepłem właściwym przy stałej objętości, lub ciepłem właściwym przy stałym ciśnieniu, jako Ŝe róŝnica pomiędzy nimi będzie do pominięcia. Często takŝe, gdy przemiana nie zachodzi w bardzo niskich temperaturach i/lub gdy nie zachodzi ona w szerokim zakresie temperatur, moŝna załoŝyć, Ŝe ciepło właściwe C ze wzoru (3) nie zaleŝy od temperatury. Równanie (3) moŝna wówczas scałkować, otrzymując: - 5 -

4 h rzykład. ( ) h u u C T T. Oszacuj ciepło właściwe przy stałym ciśnieniu C pary technicznej o ciśnieniu Ma w temperaturze 35 C. Skorzystaj z tablic pary technicznej i programu TST. Rozwiązanie. Korzystamy z: C h T Tablice pary technicznej (SBvW, Tabela B..3) Dla Ma h(3) 35,5 kj/kg dla Ma h(35) 357,65. Z tablic: A więc C (357,65-35,5)/5,3 kj/kgk rogram TST: Wywołujemy kalkulator states-system-model C. Wpisujemy dla stanu ciśnienie Ma, temperaturę 3 C, wyliczamy. Otrzymujemy stan pary przegrzanej, co wskazuje, Ŝe wybór kalkulatora był prawidłowy. Wpisujemy dla stanu, Ma, 35 C, wyliczamy. rzechodzimy do panelu I/O, wpisujemy: (h-h)/5, wyliczamy. Wynik,3 kj/kgk. Molowe ciepło właściwe przy stałym ciśnieniu otrzymamy po przemnoŝeniu przez 8 kg/kmol (H O ma masę cząsteczkową 8). rzykład. Oszacuj ciepło właściwe przy stałej objętości C pary technicznej o ciśnieniu Ma i temperaturze 35 C. Skorzystaj z programu TST. Rozwiązanie. Wywołujemy ten sam kalkulator co poprzednio. Wprowadzamy do programu TST dane dla stanu, Ma, 35 C. Wyliczamy. NajwaŜniejszy wynik na tym etapie to objętość właściwa,,87 m 3 /kg. Wprowadzamy stan, nie wprowadzamy ciśnienia (będzie się zmieniać) tylko temperaturę, 35 C. Drugim parametrem intensywnym będzie objętość właściwa (liczymy ciepło właściwe przy stałej objętości). W rubryce v wpisujemy v i wyliczamy. Wprowadzamy stan 3, temperatura 375 C, v3 v i wyliczamy. rzechodzimy do panelu I/O i wpisujemy (u3-u)/5, wyliczamy. Wynik,6 kj/kgk. Molowe ciepło właściwe przy stałej objętości otrzymamy po przemnoŝeniu przez 8 kg/kmol. Warto sprawdzić, czy wynik zaleŝy od T, tutaj przyjmowaliśmy dość duŝo, 5 K. Jeśli powtórzymy obliczenia dla 355 i 35 C ( T K), otrzymany wynik będzie taki sam z dokładnością do 3 miejsc znaczących (błąd poniŝej %).. Ciepło właściwe gazów doskonałych RozwaŜymy teraz ciepło właściwe gazu doskonałego przy stałej objętości i przy stałym ciśnieniu. Zaczniemy od molowego ciepła właściwego gazu doskonałego przy stałej objętości... Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) RozwaŜymy eksperyment, pokazany na rys. 6.. W pojemniku o stałej objętości (zablokowany tłok) znajduje się n moli gazu doskonałego. Ilość ciepła przekazana do układu (gazu) z grzejnika wynosi Q i powoduje zmianę temperatury od T do T + T. Układ nie wykonuje pracy. Zachodząca przemiana pokazana jest na wykresie - (rys. 6.b). rzemiana zachodzi od stanu (ciśnienie, temperatura T, objętość ) do stanu (ciśnienie +, temperatura T + T, objętość ). Stany i leŝą na dwóch róŝnych izotermach

5 Z definicji ciepła właściwego: Q nc T gdzie C to ciepło molowe przy stałej objętości, T to zmiana temperatury wywołana przez ciepło Q doprowadzone do układu. a) b) + ciśnienie T + T 3 K T regulowany grzejnik objętość Rys. 6.a. Gaz doskonały znajdujący się w pojemniku o stałej objętości jest podgrzewany przez grzejnik, kontrolujący temperaturę gazu. Temperatura gazu rośnie od wartości T do T + T. Rys. 6.b. Zachodząca przemiana izochoryczna na wykresie -. Ciepło jest dodawane do układu, układ nie wykonuje pracy. okazano stan początkowy i stan końcowy. Stany i leŝą na dwóch róŝnych izotermach. Z pierwszej zasady termodynamiki: a poniewaŝ mamy: Stąd: du δq δw δ W δ Q du nc dt. C U U () n T T gdzie U (z kreską) to energia wewnętrzna właściwa molowa. Dla gazu jednoatomowego: a więc U nu NkT nn A kt nrt (5) U T du dt 3 nr (energia wewnętrzna U nie zaleŝy od ani )

6 co prowadzi, dla gazu jednoatomowego do: du du 3 J kj C R,5. (6) n dt dt mol K kmol K Dla dowolnego gazu doskonałego lub półdoskonałego, korzystając z powyŝszej zaleŝności i z wcześniej otrzymanych wyraŝeń na energię wewnętrzną róŝnych gazów (doskonałych) przy róŝnych załoŝeniach dodatkowych, moŝemy otrzymać przewidywane wartości molowego ciepła właściwego. Otrzymane wartości liczbowe moŝna porównać z wartościami otrzymanymi dla gazów rzeczywistych (3 K). okazane w Tabeli dane dla gazów półdoskonałych uwzględniają obroty, ale nie uwzględniają oscylacji cząsteczek. Tabela cząsteczka gaz C, kj/kmolk jednoatomowa dwuatomowa wieloatomowa doskonały rzeczywisty, H 3 K Ar półdoskonały rzeczywisty N 3 K O półdoskonały rzeczywisty NH 3 K CO (3/)R,5,5,6 (5/)R,8,7,8 3R,9 9, 9,7 Zmiana energii wewnętrznej gazu doskonałego: T+ T U n C( T) dt (7) T zamkniętego w cylindrze z tłokiem (moŝliwe zmiany objętości i wykonanie pracy), zaleŝy tylko od zmiany temperatury (dla gazu doskonałego) i zmiany z temperaturą ciepła właściwego (dla gazu półdoskonałego), nie zaleŝy natomiast od typu procesu, w wyniku którego nastąpiła zmiana temperatury. ciśnienie T + T T Rys Dla trzech róŝnych przemian, prowadzących z tego samego stanu początkowego (T) do trzech róŝnych stanów końcowych leŝących na tej samej izotermie (T + T), zmiana energii wewnętrznej U będzie taka sama. objętość

7 Na rys pokazano trzy róŝne przemiany, adiabatyczną ( ), izochoryczną ( ) i izobaryczną ( ), dla których zmiana energii wewnętrznej będzie taka sama (przemiany kończą się na tej samej izotermie, T + T). Nie jest istotne, Ŝe wartości ciepła Q i pracy W są róŝne, Ŝe róŝne są takŝe objętości i ciśnienia dla stanów końcowych, waŝna jest tylko zmiana temperatury, która jest taka sama dla trzech pokazanych procesów.... ZaleŜność ciepła właściwego C od temperatury ZaleŜność ciepła właściwego C od temperatury jest efektem kwantowym, wynikającym z wymraŝania rotacyjnych i oscylacyjnych stopni swobody. Dla klasycznego, jednowymiarowego oscylatora harmonicznego mamy: d k m k; cosωt; v ωsinωt; ω. (8) dt m nergia kinetyczna i potencjalna będą równe: gdyŝ: kin pot cos Jak widzimy: mv k mω mω sin. kin pot. sin cos ωt; ωt; kin pot mω mω nergia całkowita klasycznego oscylatora harmonicznego jest ciągła; wszystkie wartości są dozwolone: calk mω. () Z zasady ekwipartycji energii, średnia energia całkowita jednego oscylatora jednowymiarowego (jeden stopień swobody), w zbiorze wielu oscylatorów wymieniających energię, w równowadze termodynamicznej: kin kt kt () ze względu na konieczność uwzględnienia energii potencjalnej. Dla jednowymiarowego kwantowego oscylatora harmonicznego energia całkowita jest skwantowana, a dozwolone wartości energii całkowitej oscylatora wynoszą: calk., n n hω. rawdopodobieństwo, Ŝe oscylator wybrany z duŝego zbioru identycznych oscylatorów będzie miał energię jest proporcjonalne do czynnika Botzmanna: kt ( ) αe prawo Boltzmanna (9)

8 Jaka będzie średnia energia oscylatora w duŝym zbiorze N oscylatorów, z których kaŝdy drga z częstością ω, a prawdopodobieństwo Ŝe oscylator będzie miał energię tot., n n hω jest opisane prawem Boltzmanna? Rozsądne wydaje się przyjąć, Ŝe: calk N Nhω N 3 ( ) 3 ( ) gdzie calk jest całkowitą energią wszystkich N oscylatorów i: hω kt e ; N N + N+ N +... Mamy zatem szereg geometryczny. Suma wyrazów nieskończonego szeregu geometrycznego jest równa: n n a n a. Mianownik wyraŝenia () to szereg geometryczny o ilorazie i pierwszym wyrazie, zatem: Licznik z kolei, to nieskończona suma szeregów geometrycznych, jak pokazano poniŝej: o obliczeniu sum pojedynczych ciągów widzimy, Ŝe ich suma to takŝe szereg geometryczny, o ilorazie i pierwszym wyrazie /(-). Zatem wynik końcowy, po uwzględnieniu licznika i mianownika: ( ). Co oznacza, Ŝe średnia energia pojedynczego oscylatora wyniesie: calk Ncalk Nhω N 3 ( ) hω 3 hω ( ) e kt. ()

9 Dla wysokich temperatur, stosując rozwinięcie funkcji eksponencjalnej (eksponenty) (e + /! + /! + ), biorąc dwa pierwsze wyrazy otrzymujemy: hω kt (wynik klasyczny) (3) h ω + kt Dla temperatury zmierzającej do zera, w granicy, otrzymujemy: hω hω ep kt W ten sposób otrzymujemy w niŝszych temperaturach wymraŝanie drgań i obrotów o wyŝszych częstościach; jak widać, nie dają one wkładu do ciepła właściwego. Oczywiście dla temperatur pośrednich otrzymujemy częściową aktywację drgań i obrotów; zjawisko to jest odpowiedzialne za zaleŝność C od temperatury. Warto zauwaŝyć, Ŝe jeśli znamy częstości drgań cząsteczek (informacji takich dostarcza spektroskopia w podczerwieni, spektroskopia Ramana) to moŝna wykonać dokładne obliczenia wkładów wszystkich oscylacji i rotacji otrzymując w ten sposób dokładne wartości C. Gaz, o zmiennym cieple właściwym, ale spełniający równanie stanu gazu doskonałego to gaz półdoskonały... Molowe ciepło właściwe gazu doskonałego przy stałym ciśnieniu (C ) RozwaŜymy teraz eksperyment, pokazany na rys. 6.. W pojemniku z przesuwającym się tłokiem obciąŝonym stałym cięŝarkiem (stałe ciśnienie) znajduje się n moli gazu doskonałego. Ilość ciepła przekazana do gazu znajdującego się w pojemniku przez grzejnik wynosi Q i powoduje, jak poprzednio, zmianę temperatury o T. odgrzewany gaz zmienia objętość przesuwając tłok; wykonywana jest zatem praca (na podniesienie cięŝarka). Zachodząca przemiana pokazana jest na wykresie - na rys. 6.b. a) b) () ciśnienie T + T 3 K + T regulowany grzejnik objętość Rys. 6.a. Gaz doskonały znajdujący się w pojemniku zamkniętym tłokiem o stałym obciąŝeniu (stałe ciśnienie w pojemniku) jest podgrzewany przez grzejnik, kontrolujący temperaturę gazu. Temperatura gazu rośnie od wartości T do T + T. Rys. 6.b. Zachodząca przemiana izobaryczna na wykresie -. Ciepło jest dodawane do układu, układ wykonuje pracę p (obszar zacieniony) podnosząc obciąŝony tłok. okazano stan początkowy i stan końcowy. Stany i leŝą na dwóch róŝnych izotermach

10 Z definicji ciepła właściwego: Q nc T gdzie C to molowe ciepło właściwe. Z pierwszej zasady termodynamiki: a poniewaŝ: mamy: du δq δw, δ W d nrdt, du+ d d ( U+ ) dh nc dt, gdyŝ d. Mówiliśmy juŝ wcześniej, Ŝe funkcja H U +, to funkcja stanu zwana entalpią (więcej o entalpii w wykładzie 7). A zatem: dh dh C (5) n dt dt gdzie, jak poprzednio, wielkości z kreską odnoszą się do jednego mola (w tym przypadku entalpia właściwa molowa). Z (5), po przekształceniach otrzymujemy: gdyŝ: Ostatecznie: ( v) dh du d C + C + R, dt dt dt du nc dt i v RT, C C + R, gdzie wielkości z kreską, tak jak poprzednio, odnoszą się do jednego mola (lub kilomola). 3. Stosunek C do C Stosunek ciepła właściwego (lub właściwego molowego) przy stałym ciśnieniu do ciepła właściwego (właściwego molowego) przy stałej objętości jest waŝnym parametrem, oznaczonym γ i nazywanym C do C. Ze związku: C C + R po podzieleniu przez C, otrzymamy: oniewaŝ: C γ C + R C ; C R U nc T, U C T γ ; CT R T γ

11 mamy dalej RT ( γ )U dla jednego mola gazu. Dla n moli, mamy: nrt NkT ( γ )U gdzie N to całkowita liczba cząsteczek w rozwaŝanej próbce gazu, a U jest jej całkowitą energią wewnętrzną. Dla pojedynczej cząsteczki: U γ kt skąd znając liczbę aktywnych stopni swobody moŝna wyliczyć γ, czyli C do C lub odwrotnie.. rzemiana adiabatyczna gazu doskonałego Na rysunku 6.5 przedstawiamy realizację przemiany adiabatycznej gazu doskonałego. Gaz doskonały znajduje się w dobrze izolowanym termicznie cylindrze zamkniętym tłokiem. Tłok jest obciąŝony cięŝarkami tak dobranymi, by układ znajdował się w równowadze termodynamicznej. o zdjęciu jednego cięŝarka tłok przesunie się w górę wykonując pracę; jednocześnie, poniewaŝ układ jest izolowany i nie ma dopływu ciepła, obniŝy się temperatura gazu. Zdejmując kolejne cięŝarki przeprowadzimy układ od stanu początkowego do stanu końcowego, tak jak to przedstawiono na rys. 6.5b. a) b) izoterma, T- T izoterma, T+ T ciśnienie izoterma, T adiabata, Q objętość Rys. 6.5a. Realizacja przemiany adiabatycznej. Gaz doskonały znajduje się w dobrze izolowanym termicznie cylindrze zamkniętym tłokiem o malejącym w trakcie przemiany obciąŝeniu. Gaz wykonuje pracę podnosząc obciąŝony tłok. Nie ma wymiany ciepła z otoczeniem. Temperatura gazu obniŝa się. Rys. 6.5b. Zachodząca przemiana adiabatyczna na wykresie -. okazano stan początkowy i stan końcowy. Układ wykonuje pracę (obszar pod zaznaczonym na czarno fragmentem adiabaty, łączącym stan ze stanem. Brak dopływu ciepła powoduje, Ŝe spadek ciśnienia ze wzrostem objętości jest silniejszy dla przemiany adiabatycznej; pokazana adiabata przecina izotermy. roces, w którym nie zachodzi wymiana ciepła z otoczeniem (proces jest bardzo szybki, lub układ jest bardzo dobrze izolowany) nazywamy przemianą adiabatyczną. Wykres przemiany - 6 -

12 adiabatycznej na diagramie - nazywamy adiabatą. Adiabata musi przecinać izotermy; podczas izotermicznego rozpręŝania gazu dopływ ciepła utrzymuje stałą temperaturę i zapobiega zbyt szybkiemu spadkowi ciśnienia (w porównaniu z przemianą adiabatyczną). rzesuwający się tłok wykonuje pracę objętościową: δ W d. oniewaŝ nie ma dopływu ciepła, z I zasady termodynamiki: du δq δw d odbywa się to kosztem energii wewnętrznej. Z równania stanu gazu doskonałego mamy: skąd: n RdT d() d+ d d+ d dt nr odstawiając powyŝsze wyraŝenie do: otrzymujemy: Ostatecznie: ( γ ) d du nc d nc dt d+ d C nr C C γ ( d+ d) ( d d) + d d d+ d; γd d; -γ Całkując otrzymamy: d γ γ ( ) C; const - γ ln ln + C; ln Z równania gazu doskonałego: nrt. o podstawieniu: a takŝe: RT n γ γ- γ nrt const; const; T γ γ T const Ostatecznie, dla przemiany adiabatycznej: γ const; γ- T const; const -γ γ T const - 6 -

13 Zadanie. Dętka rowerowa jest napełniona powietrzem do ciśnienia, atm za pomocą pompki pobierającej powietrze pod ciśnieniem atmosferycznym ( atm), w temperaturze C (93 K). Jaką temperaturę w skali Celsjusza ma powietrze opuszczające pompkę, jeŝeli γ,? omiń straty ciepła na ogrzanie ścianek pompki. Odp. 73 C Zadanie. Dwa gazy, A i B, zajmujące takie same początkowe objętości i mające takie same początkowe ciśnienie zostały gwałtownie spręŝone adiabatycznie, kaŝdy do połowy swojej początkowej objętości. Jakie będą stosunki ich ciśnień końcowych do ciśnienia początkowego, jeŝeli γ A jest równe 5/3 (gaz jednoatomowy), a γ B -7/5 (gaz dwuatomowy)? Odp. A 3,7, B,6 Sprawdzian izoterma K izoterma 5 K izoterma 7 K adiabata,,66 ciśnienie a d b c objętość Uszereguj zaznaczone na wykresie przemiany według ilości ciepła przekazywanego do gazu. Zacznij od wielkości największej. 5. Cztery wybrane przemiany; podsumowanie W Tabeli zestawiono podstawowe informacje dotyczące czterech wybranych przemian omawianych w tym wykładzie, którym podlegać moŝe gaz doskonały. rzemiana stała wielkość nazwa przemiany równania izobaryczna Q nc T, W T izotermiczna U, Q W nrtln( ) 3 γ γ γ γ,t,t adiabatyczna Q, U W izochoryczna Q U nc T, W - 6 -

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C )

Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) Wykład 6 Ciepło właściwe substancji prostych Ciepło właściwe gazów doskonałych Molowe ciepło właściwe gazu doskonałego przy stałej objętości (C ) ZaleŜność stosunku R od temperatury dla gazu doskonałego

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha Ciepło właściwe Autorzy: Zbigniew Kąkol Bartek Wiendlocha 01 Ciepło właściwe Autorzy: Zbigniew Kąkol, Bartek Wiendlocha W module zapoznamy się z jednym z kluczowych pojęć termodynamiki - ciepłem właściwym.

Bardziej szczegółowo

Rozwiązanie: Rozwiązanie najlepiej rozpocząć od sporządzenia szkicu, który jest pierwszym stopniem zrozumienia opisywanego procesu (serii przemian).

Rozwiązanie: Rozwiązanie najlepiej rozpocząć od sporządzenia szkicu, który jest pierwszym stopniem zrozumienia opisywanego procesu (serii przemian). Nowe zadania z termodynamiki. 06.0.00. Zadanie. 0/8, moli gazu azotu (traktować jako gaz doskonały), znajdującego się początkowo (stan ) w warunkach T =00K, =0 a, przechodzi następującą serię przemian

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w

C V dla róŝnych gazów. Widzimy C C dla wszystkich gazów jest, zgodnie z przewidywaniami równa w Wykład z fizyki, Piotr Posmykiewicz 7 P dt dt + nrdt i w rezultacie: nr 4-7 P + Dla gazu doskonałego pojemność cieplna przy stałym ciśnieniu jest większa od pojemności cieplnej przy stałej objętości o

Bardziej szczegółowo

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia

Bardziej szczegółowo

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki) Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 7. AJ Wojtowicz IF UMK Wykład 7. Entalpia układu termodynamicznego.. Entalpia; odwracalne izobaryczne rozpręŝanie gazu.2. Entalpia; adiabatyczne dławienie gazu dla przepływu ustalonego.3. Entalpia; nieodwracalne napełnianie

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 5. AJ Wojtowicz IF UMK Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej Ciśnienie i temperatura gazu doskonałego Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład awella prędkości cząsteczek gazu doskonałego

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

Kontakt,informacja i konsultacje

Kontakt,informacja i konsultacje Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077 . Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla

Bardziej szczegółowo

Ciepło i pierwsza zasada termodynamiki.

Ciepło i pierwsza zasada termodynamiki. Wykład z fizyki, Piotr Posmykiewicz 162 W Y K Ł A D XIII Ciepło i pierwsza zasada termodynamiki. Ciepło jest energią, która jest przekazywana z jednego układu do drugiego w wyniku róŝnicy temperatur obu

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, wykład 4. AJ Wojtowicz IF UMK Wykład 4. Gazy.. Gaz doskonały, półdoskonały i rzeczywisty.. Równanie stanu gazu doskonałego; uniwersalna stała gazowa.3. RównowaŜne sformułowania równania stanu gazu doskonałego; stała gazowa.4. Odstępstwa

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

1 I zasada termodynamiki

1 I zasada termodynamiki 1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 3. AJ Wojtowicz IF UMK Izobaryczne wytwarzanie pary wodnej; diagram T-v przy stałym ciśnieniu

Termodynamika Techniczna dla MWT, wykład 3. AJ Wojtowicz IF UMK Izobaryczne wytwarzanie pary wodnej; diagram T-v przy stałym ciśnieniu Wykład 3 1. Substancje proste i czyste 2. Przemiany w systemie dwufazowym ciecz para 2.1. Izobaryczne wytwarzanie pary wodnej; diagram T-v przy stałym ciśnieniu 2.2. Temperatura wrzenia cieczy, a ciśnienie

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

WYZNACZANIE STOSUNKU c p /c v

WYZNACZANIE STOSUNKU c p /c v Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2, J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)

Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych

Bardziej szczegółowo

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J

Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej

Bardziej szczegółowo

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej

Bardziej szczegółowo

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami

TERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami

Bardziej szczegółowo

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

WYKŁAD 3 TERMOCHEMIA

WYKŁAD 3 TERMOCHEMIA WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7 Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15)

Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) Ćwiczenia rachunkowe z termodynamiki technicznej i chemicznej Zalecane zadania kolokwium 1. (2014/15) (Uwaga! Liczba w nawiasie przy odpowiedzi oznacza numer zadania (zestaw.nr), którego rozwiązanie dostępne

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Doświadczenie B O Y L E

Doświadczenie B O Y L E Wprowadzenie teoretyczne Doświadczenie Równanie Clapeyrona opisuje gaz doskonały. Z dobrym przybliżeniem opisuje także gazy rzeczywiste rozrzedzone. p V = n R T Z równania Clapeyrona wynika prawo Boyle'a-Mario

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,

Bardziej szczegółowo

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Termodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu

Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Wykład 5 Gaz doskonały w ujęciu teorii kinetycznej; ciśnienie gazu Prędkość średnia kwadratowa cząsteczek gazu doskonałego Rozkład Maxwella prędkości cząsteczek gazu doskonałego Średnia energia kinetyczna

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Termochemia efekty energetyczne reakcji

Termochemia efekty energetyczne reakcji Termochemia efekty energetyczne reakcji 1. Podstawowe pojęcia termodynamiki chemicznej a) Układ i otoczenie Układ, to wyodrębniony obszar materii, oddzielony od otoczenia wyraźnymi granicami (np. reagenty

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ

Bardziej szczegółowo

Wykład Temperatura termodynamiczna 6.4 Nierówno

Wykład Temperatura termodynamiczna 6.4 Nierówno ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu

Bardziej szczegółowo

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 bar jest dokładnie równy a) 10000

Bardziej szczegółowo