Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech
|
|
- Aleksandra Wawrzyniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne ruchy cząsteczkowe. Przemiana rzejście z jednego stanu równowagi do drugiego od wływem czynnika zewnętrznego. =c m =c m( K - P ) =c rzem m + z otoczenia do układu - z układu do otoczenia 1
2 Równanie stanu gazu Oisuje arametry termodynamiczne dla dowolnego stanu gazu doskonałego =nr Stała gazowa - 8,31 J/mol K =Nk B Stała Boltzmana J K -1 k B R N A Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. ząsteczki znajdują się w ciągłym, rzyadkowym ruchu cielnym. Rozkład ich rędkości nie zmienia się w czasie. ząsteczki zderzają się srężyście ze sobą i ze ściankami naczynia, w którym się znajdują. Nie oddziałują ze sobą w inny sosób.
3 az doskonały / rzeczywisty AZ DOSKONAŁY =nr Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. ząsteczki znajdują się w ciągłym, rzyadkowym ruchu. Rozkład ich rędkości nie zmienia się w czasie. ząsteczki zderzają się srężyście ze sobą i ze ściankami naczynia, w którym się znajdują. Nie oddziałują ze sobą w inny sosób. Model gazu doskonałego zawodzi w rzyadku niskich temeratur i dużych ciśnień 3
4 az rzeczywisty AZ van dr aalsa a,b arametry zależne od gazu Model gazu doskonałego zawodzi w rzyadku niskich temeratur i dużych ciśnień 4
5 Przemiany gazowe =nr 5
6 Kinetyczna teoria gazów Δ x kx x mv x mv x mv Δ x mvsinα Siła oddziaływania (II z.d.n) l x F Δt x t v x F x Zmiana ędu cząsteczki Pęd rzekazany ściance Δx mv x m l F v x1 x v mv l Siła oddziaływania wszystkich cząsteczek x x... v xn x 6
7 Kinetyczna teoria gazów ciśnienie F l x Nmv 3l 3 nr mn μ R v v 3R μ 7
8 Kinetyczna teoria gazów ciśnienie Nmv 3 3l l 3 N F l 3 x mv Nmv 3 3l N 3 E k Nk B E k 3 k B emeratura jest funkcją średniej energii kinetycznej cząsteczek. Nie zależy od masy i rodzaju cząstek Zależy od temeratury emeratura jest miarą ruchu cielnego cząstek 8
9 Zasada ekwiartycji energii E f - ruch ostęowy - ruch obrotowy - drgania k B f liczba stoni swobody. E 1 k B Średnia energia kinetyczna rzyadająca na stoień swobody jest taka sama dla wszystkich cząsteczek. 9
10 Rozkład Boltzmanna Określa liczbę cząstek o określonej energii E w temeraturze energia energia kinetyczna, zależna od rędkości cząstek 10
11 Rozkład Maxwella Określa rawdoodobieństwo, że cząstka będzie miała rędkość v a dokładniej z rzedziału <v, v+dv>) 11
12 emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne ruchy cząsteczkowe. E k 3 k B emeratura jest funkcją średniej energii kinetycznej cząsteczek. 1
13 ieło i raca d F dl S dl Sdl d d k d Δ 13
14 I zasada termodynamiki cieło dostarczone do układu ΔU E K E P raca wykonana rzez układ δu d δ Energia wewnętrzna układu U wzrasta, jeśli układ obiera energię w ostaci cieła i maleje, kiedy układ wykonuje racę δ du δ Dostarczone do układu cieło δ owoduje zwiększenie energii wewnętrznej układu o du i wykonanie rzez układ racy δ rzeciwko siłom zewnętrznym. 14
15 Maszyny cielne cel: zamiana cieła na racę (i odwrotnie) racują cyklicznie racę wykonuje substancja robocza (n. gaz, mieszanka aliwa i owietrza) która: ochłania cieło dostarczane ( ) ze źródła cieła o wyższej temeraturze ( ) część ochłoniętego cieła rzekształca w racę () reszta ochłoniętego cieła ( Z ) rzekazywana jest do chłodnicy o niższej temeraturze ( Z ) aby zachowana była cykliczność rocesu owrót do stanu oczątkowego 15
16 Maszyny cielne Maszyny cielne Maszyny realizują cykl termodynamiczny roces lub szereg rocesów, które dorowadzają układ termodynamiczny z owrotem do warunków oczątkowych cykle odwracalne (doskonała izolacja cielna, brak tarcia i innych oorów ruchu, tzn. otocznie też ma stan odwracalny, n. nie nagrzewa się od tarcia it.) cykle nieodwracalne 16
17 Przemiany gazowe Przemiana izochoryczna =const. =0 U d ΔU n Δ =n v =n v ( - 1 ) ΔU n Δ dla każdego rocesu =nr 1 n R1 n R 1 1 const. 17
18 Przemiany gazowe Przemiana izobaryczna =const. n ΔU n Δ Δ Δ nr Δ n 1 1 Δ n =nr Δ n R Δ const. = +R U d Dostarczona energia jest zamieniana zarówno na rzyrost energii wewnętrznej, jak i na racę wykonaną rzez gaz. 18
19 Przemiany gazowe Przemiana izotermiczna =const. 1 1 = =const U d ieło dostarczone zużywane na racę = K P d n n R R n R ln K P 19
20 Przemiany gazowe Przemiana adiabatyczna 1 1 = = const. 1 1 = = const. =0 ΔU U d κ 1 1 κ const. P1 1 κ1 1 1 κ1 / 1 stoień srężania silnika 0
21 1 Przemiana adiabatyczna d d n d n du d d U 0 d nd ) ( P d d nd R nrd d d nr d d d d d d d d d d d d P P P P
22 Przemiana adiabatyczna d ln d P ln const d d d
23 Przemiany gazowe 3
24 Procesy termodynamiczne Procesy odwracalne Proces jest odwracalny, jeśli za omocą małej (różniczkowej) zmiany arametrów otoczenia można wywołać roces odwrotny Proces jest odwracalny, jeśli o rzejściu rzez niego najierw w normalnym, a nastęnie w rzeciwnym kierunku, zarówno układ jak i otoczenie zewnętrzne wracają do stanu wyjściowego Procesy nieodwracalne Proces nie sełniający warunków odwracalności kiedy rocesowi towarzyszy rozraszanie energii n. na skutek tarcia kiedy roces rzebiega bardzo gwałtownie rocesy jednokierunkowe (które nie mogą zachodzić odwrotnie) Proces izotermicznego srężania/rozrężania (=const.) jest rocesem odwracalnym jeśli rzerowadzany jest bardzo owoli staramy się aby układ był w stanie tylko lekko odbiegającym od stanu równowagi termodynamicznej rzeływ cieła nie jest sowodowany rzez różnicę temeratur 4
25 Srawność maszyn cielnych ykl: roces lub szereg rocesów które dorowadzają układ termodynamiczny z owrotem do warunków oczątkowych. Silnik cielny (silnik) obiera energię z otoczenia (cieło) i wykonuje użyteczną racę Srawność cyklu η definiujemy jako stosunek racy użytecznej wykonanej rzez gaz do cieła dostarczonego do gazu w danym cyklu. Srawność ykonana raca Dostarczone cieło ΔU 0 wracamy do tego samego stanu η Z 5
26 Srawność maszyn cielnych ieło nie może być całkowicie zamienione na racę! Srawność 100% maszyny cielnej nie może być osiągnięta! Srawność ykonana raca Dostarczone cieło ΔU 0 η Z 6
27 ykl arnot Srawność cyklu η definiujemy jako stosunek racy użytecznej wykonanej rzez gaz do cieła dostarczonego do gazu w danym cyklu. Najwyższą srawność osiągamy dla cyklu arnot Srawność ykonana raca Dostarczone cieło ΔU 0 η Z 7
28 ykl arnota η Z 1 Z 8
29 ykl arnota η Z 1 Z η Z 9
30 ykl arnot Srawność cyklu η definiujemy jako stosunek racy użytecznej wykonanej rzez gaz do cieła dostarczonego do gazu w danym cyklu. Najwyższą srawność osiągamy dla cyklu arnot η Z η 1 Z Srawność ΔU 0 η Z ykonana raca Dostarczone cieło 30
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki
Bardziej szczegółowoStany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23
Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy
Bardziej szczegółowo10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.
0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,
Bardziej szczegółowoJednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
Bardziej szczegółowoTermodynamika 2. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
ermodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Siik ciey siikach (maszynach) cieych cieło zamieniane jest na racę. Elementami siika są: źródło cieła
Bardziej szczegółowoPodstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła
Bardziej szczegółowo= T. = dt. Q = T (d - to nie jest różniczka, tylko wyrażenie różniczkowe); z I zasady termodynamiki: przy stałej objętości. = dt.
ieło właściwe gazów definicja emiryczna: Q = (na jednostkę masy) T ojemność cielna = m ieło właściwe zależy od rocesu: Q rzy stałym ciśnieniu = T dq = dt rzy stałej objętości Q = T (d - to nie jest różniczka,
Bardziej szczegółowoWykład 2. Przemiany termodynamiczne
Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const
Bardziej szczegółowoWykład 7. Energia wewnętrzna jednoatomowego gazu doskonałego wynosi: 3 R . 2. Ciepło molowe przy stałym ciśnieniu obliczymy dzięki zależności: nrt
W. Dominik Wydział Fizyki UW ermodynamika 08/09 /7 Wykład 7 Zasada ekwiartycji energii Stonie swobody ruchu cząsteczek ieło właściwe ciał stałych ównanie adiabaty w modelu kinetyczno-molekularnym g.d.
Bardziej szczegółowoJest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :
I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej
Bardziej szczegółowoTERMODYNAMIKA. Termodynamika jest to dział nauk przyrodniczych zajmujący się własnościami
TERMODYNAMIKA Termodynamika jest to dział nauk rzyrodniczych zajmujący się własnościami energetycznymi ciał. Przy badaniu i objaśnianiu własności układów fizycznych termodynamika osługuje się ojęciami
Bardziej szczegółowoZEROWA ZASADA TERMODYNAMIKI
ERMODYNAMIKA Zerowa zasada termodynamiki Pomiar temeratury i skale temeratur Równanie stanu gazu doskonałego Cieło i temeratura Pojemność cielna i cieło właściwe Cieło rzemiany Przemiany termodynamiczne
Bardziej szczegółowo13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:
) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki
Bardziej szczegółowoWykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Bardziej szczegółowoMaszyny cieplne substancja robocza
Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła
Bardziej szczegółowoTermodynamika 1. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Termodynamika Projekt wsółfinansowany rzez Unię Euroejską w ramach Euroejskiego Funduszu Sołecznego Układ termodynamiczny Układ termodynamiczny to ciało lub zbiór rozważanych ciał, w którym obok innych
Bardziej szczegółowotermodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskoowych uogólnienie licznych badań doświadczalnych ois makro i mikro rezygnacja z rzyczynowości znaczenie raktyczne układ termodynamiczny
Bardziej szczegółowo= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
Bardziej szczegółowoFizyka 14. Janusz Andrzejewski
Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych
Bardziej szczegółowoTemperatura. Zerowa zasada termodynamiki
Temperatura Istnieje wielkość skalarna zwana temperaturą, która jest właściwością wszystkich ciał izolowanego układu termodynamicznego pozostających w równowadze wzajemnej. Równowaga polega na tym, że
Bardziej szczegółowoStany skupienia materii
Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -
Bardziej szczegółowoTERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III
Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,
Bardziej szczegółowoWARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO
WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas
Bardziej szczegółowoBudowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -
ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -
Bardziej szczegółowoPodstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
Bardziej szczegółowoWykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Bardziej szczegółowoTermodynamika fenomenologiczna i statystyczna
Termodynamika fenomenologiczna i statystyczna Termodynamika fenomenologiczna zajmuje się zwykle badaniem makroskoowych układów termodynamicznych złożonych z bardzo dużej ilości obiektów mikroskoowych.
Bardziej szczegółowoWykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Bardziej szczegółowoWykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Bardziej szczegółowoprawa gazowe Model gazu doskonałego Temperatura bezwzględna tościowa i entalpia owy Standardowe entalpie tworzenia i spalania 4. Stechiometria 1 tość
5. Gazy, termochemia Doświadczalne rawa gazowe Model gazu doskonałego emeratura bezwzględna Układ i otoczenie Energia wewnętrzna, raca objęto tościowa i entalia Prawo Hessa i cykl kołowy owy Standardowe
Bardziej szczegółowoTERMODYNAMIKA PROCESOWA I TECHNICZNA
ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny
Bardziej szczegółowoDoświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie
Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.
Bardziej szczegółowoProjekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Bardziej szczegółowo11. Termodynamika. Wybór i opracowanie zadań od 11.1 do Bogusław Kusz.
ermodynamia Wybór i oracowanie zadań od do 5 - Bogusław Kusz W zamniętej butelce o objętości 5cm znajduje się owietrze o temeraturze t 7 C i ciśnieniu hpa Po ewnym czasie słońce ogrzało butelę do temeratury
Bardziej szczegółowoPodstawy fizyki sezon 1 X. Elementy termodynamiki
Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika
Bardziej szczegółowoTERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska
1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,
Bardziej szczegółowoWykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów
Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z
Bardziej szczegółowoTemperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
Bardziej szczegółowoMaszyny cieplne i II zasada termodynamiki
Maszyny cieplne i II zasada termodynamiki Maszyny cieplne, chłodnie i pompy tlenowe II zasada termodynamiki Cykl Carnot a Entropia termodynamiczna definicja II zasada termodynamiki i entropia Cykle termodynamiczne.
Bardziej szczegółowoŚr Kin Ruchu Postępowego. V n R T R T. 3 3 R 3 E R T T k T, 2 N 2 B
Termodynamika Podstawowy wzór kinetyczno-molekularnej teorii budowy materii W oarciu o założenia dotyczące właściwości gazu doskonałego (molekuły to unkty materialne ozostające w ciągłym termicznym ruchu,
Bardziej szczegółowoEntalpia swobodna (potencjał termodynamiczny)
Entalia swobodna otencjał termodynamiczny. Związek omiędzy zmianą entalii swobodnej a zmianami entroii Całkowita zmiana entroii wywołana jakimś rocesem jest równa sumie zmiany entroii układu i otoczenia:
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Bardziej szczegółowob) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.
Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.
Bardziej szczegółowoKinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład
Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie
Bardziej szczegółowoMini-quiz 0 Mini-quiz 1
rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą
Bardziej szczegółowoS ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Bardziej szczegółowoBUDOWA I WŁASNOŚCI CZĄSTECZKOWE GAZÓW
BUDOWA I WŁASOŚCI CZĄSTECZKOWE GAZÓW ATOMY I CZĄSTECZKI Jednostka masy: u ( unit) = masy izotou 6C =,66 4 7 kg Jednostkę u rzyjęło się także nazywać daltonem (Da) na cześć twórcy wsółczesnej teorii atomowej
Bardziej szczegółowoTERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Bardziej szczegółowoElementy fizyki statystycznej
5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną
Bardziej szczegółowoUkład termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Bardziej szczegółowoKatedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Pomiar ciepła spalania paliw gazowych
Katedra Silników Salinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Pomiar cieła salania aliw gazowych Wstę teoretyczny. Salanie olega na gwałtownym chemicznym łączeniu się składników aliwa z tlenem, czemu
Bardziej szczegółowoII zasada termodynamiki
TERMODYNAMIKA: DRUGA ZAADA TERMODYNAMIKI ą rocesy zgodne z zasadą zachowania energii, tóre nigdy nie wystęują w rzyrodzie. Przyład: długois leżący na stole Druga zasada termodynamii odowiada na ytanie,
Bardziej szczegółowob) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.
Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania
Bardziej szczegółowoII zasada termodynamiki.
II zasada termodynamiki. Według I zasady termodynamiki nie jest do omyślenia roces, w którym energia wewnętrzna układu doznałaby zmiany innej, niż wynosi suma algebraiczna energii wymienionych z otoczeniem.
Bardziej szczegółowoĆwiczenia do wykładu Fizyka Statystyczna i Termodynamika
Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoGAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.
TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:
Bardziej szczegółowoDRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Bardziej szczegółowoPodstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Bardziej szczegółowoWykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Bardziej szczegółowoFIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Bardziej szczegółowoKalorymetria paliw gazowych
Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cielnych W9/K2 Miernictwo energetyczne laboratorium Kalorymetria aliw gazowych Instrukcja do ćwiczenia nr 7 Oracowała: dr inż. Elżbieta Wróblewska Wrocław,
Bardziej szczegółowoTermodynamika. pv=nrt. f 2 Energia wewnętrzna 1 MAKROSKOPOWO. pv=nk B T MIKROSKOPOWO. Fizyka 1 Wróbel Wojciech. Zderzenia. Pęd przekazywany ściance
ermodynamika MAKROSKOPOWO pv=nr pv=nk B MIKROSKOPOWO Zderzenia Pęd przekazywany ściance Siła oddziaływania na ściankę E k 3 2 k B ciśnienie Średnia energia kinetyczna U nn A E nn A f 2 Energia wewnętrzna
Bardziej szczegółowoGaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną
F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają
Bardziej szczegółowov x Ž WSTĘP DO TERMODYNAMIKI Kinetyczna teoria gazów M RT
WSTĘP DO TERMODYNAMIKI Termodynamika jest działem fizyki, który zajmuje się statystycznym oisem zachowania się układów dużej ilości cząstek. Ciała makroskoowe składają się z ogromnej ilości cząstek (n.
Bardziej szczegółowoTERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Bardziej szczegółowoGAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)
Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła
Bardziej szczegółowoTermodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Bardziej szczegółowop, V, T, U, S, H, F, G Parametry mikroskopowe Parametry makroskopowe 2 k
Parametry mikroskoowe m, < v>, < v >, < E > Fizyka statystyczna k Fizyka statystyczna stara się oisać układy składające się z wielu cząstek. Zajmuje się ona badaniem arametrów mikroskoowych układów, oszukiwaniem
Bardziej szczegółowoM. Chorowski Podstawy Kriogeniki, wykład Metody uzyskiwania niskich temperatur - ciąg dalszy Dławienie izentalpowe
M. Corowski Podstawy Kriogeniki, wykład 4. 3. Metody uzyskiwania niskic temeratur - ciąg dalszy 3.. Dławienie izentalowe Jeżeli gaz rozręża się adiabatycznie w układzie otwartym, bez wykonania racy zewnętrznej
Bardziej szczegółowoEfektywność energetyczna systemu ciepłowniczego z perspektywy optymalizacji procesu pompowania
Efektywność energetyczna systemu ciełowniczego z ersektywy otymalizacji rocesu omowania Prof. zw. dr hab. Inż. Andrzej J. Osiadacz Prof. ndz. dr hab. inż. Maciej Chaczykowski Dr inż. Małgorzata Kwestarz
Bardziej szczegółowoPrzemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
Bardziej szczegółowotermodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ
Bardziej szczegółowoMechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.
Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te
Bardziej szczegółowo16 GAZY CZ. I PRZEMIANY.RÓWNANIE CLAPEYRONA
Włodzimierz Wolczyński 16 GAZY CZ. PRZEMANY.RÓWNANE CLAPEYRONA Podstawowy wzór teorii kinetyczno-molekularnej gazów N ilość cząsteczek gazu 2 3 ś. Równanie stanu gazu doskonałego ż ciśnienie, objętość,
Bardziej szczegółowoTermodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów
Bardziej szczegółowoTermodynamika poziom podstawowy
ermodynamika oziom odstawowy Zadanie 1. (1 kt) Źródło: CKE 2005 (PP), zad. 8. Zadanie 2. (2 kt) Źródło: CKE 2005 (PP), zad. 17. 1 Zadanie 3. (3 kt) Źródło: CKE 2005 (PP), zad. 19. 2 Zadanie 4. (2 kt) Źródło:
Bardziej szczegółowoPodstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Bardziej szczegółowoCiśnienie i temperatura model mikroskopowy
Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy
Bardziej szczegółowoWYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Bardziej szczegółowoRównanie gazu doskonałego
Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.
Bardziej szczegółowoPodstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Bardziej szczegółowoDŁAWIENIE IZENTALPOWE
DŁAWIENIE IZENALPOWE Jeżeli r > σ to dominującymi siłami są siły rzyciągania i energia otencjalna cząstek rzyjmuje wartości ujemne. Oznacza to, że aby zwiększyć odległość omiędzy cząstkami należy zwiększyć
Bardziej szczegółowoTermodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes
Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa
Bardziej szczegółowoTERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
Bardziej szczegółowoTERMODYNAMIKA OGNIWA GALWANICZNEGO
Ćwiczenie nr 3 ERMODYNAMIKA OGNIWA GALWANICZNEGO I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zmian funkcji termodynamicznych dla reakcji biegnącej w ogniwie Clarka. II. Zagadnienia wrowadzające 1.
Bardziej szczegółowoTeoria kinetyczna gazów
Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy
Bardziej szczegółowoELEMENTY TERMODYNAMIKI
ELEMENTY TERMODYNAMIKI 8.1. Rozkład szybkości cząstek gazu Początkowo termodynamika zajmowała się badaniem właściwości cieplnych ciał i ich układów, bez analizowania ich mikroskopowej struktury. Obecnie
Bardziej szczegółowoWykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA
Bardziej szczegółowoOpis techniczny. Strona 1
Ois techniczny Strona 1 1. Założenia dla instalacji solarnej a) lokalizacja inwestycji: b) średnie dobowe zużycie ciełej wody na 1 osobę: 50 [l/d] c) ilość użytkowników: 4 osób d) temeratura z.w.u. z sieci
Bardziej szczegółowoWYKŁAD 2_2. 1.Entropia definicja termodynamiczna. przemiana nieodwracalna. Sumaryczny zapis obu tych relacji
.Entroia definicja termodynamiczna. d d rzemiana odwracaa rzemiana nieodwracaa umaryczny zais obu tych relacji Q d el WYKŁAD _ rzykład a Obliczyć zmianę entroii, gdy 5 moli wodoru rozręŝa się odwracaie
Bardziej szczegółowoMechanika płynów. Wykład 9. Wrocław University of Technology
Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy
Bardziej szczegółowoD. II ZASADA TERMODYNAMIKI
WYKŁAD D,E D. II zasada termodynamiki E. Konsekwencje zasad termodynamiki D. II ZAADA ERMODYNAMIKI D.1. ełnienie I Zasady ermodynamiki jest warunkiem koniecznym zachodzenia jakiegokolwiek rocesu w rzyrodzie.
Bardziej szczegółowoPrzemiany energii w zjawiskach cieplnych. 1/18
Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez
Bardziej szczegółowok=c p /c v pv k = const Termodynamika Techniczna i Chemiczna Część X Q ds=0= T Przemiany charakterystyczne płynów
Przeiany charakterystyczne łynów erodynaika echniczna i Cheiczna Część X Przeiana terodynaiczna zbiór kolejnych stanów czynnika Rodzaj rzeiany zdefiniowany jest rzez sosób rzejścia ze stanu oczątkowego
Bardziej szczegółowoWYZNACZANIE STOSUNKU c p /c v
Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie
Bardziej szczegółowoJ. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe
Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności
Bardziej szczegółowo3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:
Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do
Bardziej szczegółowoRozdział 8. v v p p --~ 3: :1. A B c D
Rozdział 8 Gaz doskonały ulega-kolejnym-rzemianom: 1-+i -+3, zilustrowanym-na rysunku obok w układzie wsółrzędnych T,. Wskaż, na których rysunkach (od A do D) orawnie zilustrowano te rzemiany w innych
Bardziej szczegółowo