MODEL MATEMATYCZNY OBRACAJĄCYCH SIĘ TŁUMIONYCH BELEK PODATNYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODEL MATEMATYCZNY OBRACAJĄCYCH SIĘ TŁUMIONYCH BELEK PODATNYCH"

Transkrypt

1 ODELOWANIE INśNIERSKIE ISSN Gliice 8 ODEL ATEATCZN OBRACAJĄCCH SIĘ TŁUIONCH BELEK PODATNCH SŁAWOIR śółkiewski Inyu Auomayzacji Proceó Technologicznych i Zinegroanych Syemó Wyarzania Poliechnika Śląka laomirzolkieki@pollpl Srezczenie W lieraurze znane ą pozycje opiujące poó modeloania układó echnicznych znajdujących ię rakcie ykonyania ruchu orooego [-8] Niniejza praca je rozzerzeniem emayki ziązanej z analizą płyu ruchu układu na model drgań o uzględnienie modelu maemaycznym elemenó ziązanych z łumieniem Przedaiony opracoaniu model je yproadzeniem rónań ruchu łumionych elek podanych a dodakoe uzględnienie łumienia je krokiem dzięki kóremu moŝlie ędzie zliŝenie proponoanego modelu do aplikacji rzeczyiych WSTĘP Sounkoo noym podejściem do analizy dynamicznej oracających ię układó elkoych je jednoczene uzględnienie modelu maemaycznym efeku ruchu unozenia oraz łumienia i elemenó z nim ziązanych Opracoania przedaione reści niniejzego arykułu doyczą dynamiki układó elkoych znajdujących ię ruchu orooym Przeieg charakeryyk dynamicznych iony poó zaleŝy od prędkości z jaką poruza ię rozaŝany układ Okazuje ię Ŝe ruch głóny układu ma pły na jego lokalne drgania co z kolei ma pły na zmianę charakeryyki dynamicznej Celem pracy je analiza dynamiczna układó ruchu unozenia raz z uzględnieniem yproadzonym modelu maemaycznym ił łumiących Rozprozenie energii mechanicznej poaci łumienia je nierozłącznie ziązane z ruchem analizoanych układó Doychczaoe modeloanie układó pręoych ruchu unozenia z jednej rony częo je opare na uprozczeniu i załoŝeniu Ŝe łumienie układzie je pomijalne naomia z drugiej rony rozaŝania rzadko doyczą układó kórych uzględnia ię efek ruchu unozenia ODELOWANE BELKI odel elki oodnej ZałoŜono Ŝe na jeden z końcó elki przedaionej na ry działa harmoniczna iła poprzeczna o jednokoej ampliudzie ziązku z definicją podaności dynamicznej

2 38 S śółkiewski Drugiemu końcoi elki przypiano zeroy momen zginający oraz zeroą iłę poprzeczną Układ rónań opiujących arunki rzegoe zapiano naępującej poaci: ( ) ( ) E Iz x ( l ) E Iz x l ( l ) jω jω E Iz F δ( x l) e dx e x x kaŝdej chili > () Ry odel rozaŝanej elki oodnej z łumieniem odel elki uierdzonej na orooym ole Na oodny koniec elki (ry ) działa iła o jednokoej ampliudzie naomia przemiezczenie miejcu zamocoania je róne zeru z kolei momeny zginające zaróno punkcie podparcia jak i na oodnym końcu elki ą eŝ róne zeru Ry odel analizoanej elki uierdzonej z łumieniem

3 ODEL ATEATCZN OBRACAJĄCCH SIĘ TŁUIONCH BELEK PODATNCH 39 Warunki rzegoe cechuje ięc naępujący układ rónań: ( ) EIz x ( ) EIz x x ( l ) EIz x l ( l ) jω jω EIz F ( ) δ x l e dx e x x kaŝdej chili > () 3 Zagadnienie łane Pozukuje ię roziązania poaci iloczynu funkcji łanych zmiennej przemiezczenia oraz funkcji łanych zmiennej czau jako: ( x ) ( x) W( ) (3) gdzie: x - funkcja łana przemiezczenia ( ) W( ) - funkcja łana czau Uzględniając harmoniczny przeieg funkcji łanej zmiennej czau przyjęo co naępuje: jω ( x ) ( x) e (4) gdzie: Ω - częość iły poprzecznej j - jednoka urojona Ciąg arości łanych elki oodnej moŝna przyliŝyć yraŝeniem: n k π n k l (5) Funkcja łana przemiezczenia elki oodnej je róna: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) kl h kl kl h kl ( x) ( kx) ( kx) h( kx) h ( kx) (6) kl h kl kl h kl

4 33 S śółkiewski Ciąg funkcji łanych elki uierdzonej moŝna przyliŝyć naępującą zaleŝnością: π k ( n ) n 3 l (7) A dalej po przyliŝeniu orzymanych ynikó opiano funkcję łaną przemiezczenia elki uierdzonej poprzez formułę: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) kl h kl kl h kl ( x) ( kx) ( kx) h( kx) h ( kx) kl h kl kl h kl (8) 3 ODEL ATEATCZN RÓWNANIA RUCHU W rozdziale przedaiono yproadzenie rónań ruchu oracających ię elek z uzględnieniem łumienia Rónania ruchu yproadzono za pomocą meod klaycznych zakładając półrzędne uogólnione jako pozczególne półrzędne opiujące połoŝenie i orienację analizoanego przekroju oraz prędkości uogólnione jako odpoiednie pochodne zględem czau z ych półrzędnych: dq q r q r v d dq q r q r v d (9) Siły uogólnione zapiano zaleŝności od elemenó macierzy roacji kórej uŝyo jako meody do ranformacji pozczególnych arości z lokalnego układu półrzędnych do gloalnego układu półrzędnych i ak zględem oi iła ma poać: FgQ F () x Siły uogólnione zględem oi gloalnego układu półrzędnych ą naępujące: FgQ F () x Zgodnie z praem Koeniga zapiano energię kineyczną ruchu płakim funkcji odpoiednich prędkości uogólnionych jako: T [ Q( S ) ] ( Q ) [ Q ( S ) ] ( ir ) ( jr ) r r Q 3 ()

5 ODEL ATEATCZN OBRACAJĄCCH SIĘ TŁUIONCH BELEK PODATNCH 33 Dyypację (moc ra ynikającą z łumienia) układu określono zaleŝności od prędkości uogólnionych naępujący poó: ( ) [ ] ( ) ( ) ( ) r r r r D j i Q S Q (3) W dalzych rozaŝaniach przyjęo naępującą rónoaŝność zapiu: [ ] ( ) ( ) ( ) r r j i j i (4) Po proych przekzałceniach maemaycznych rónania ruchu przedaiono poaci macierzoej jako: x F g (5) Siłę poprzeczną działającą na elkę z uzględnieniem jej pręŝyości przedaiono zaleŝności od odkzałcenia kóre je funkcją Przemiezczenia Ziązek en zgodny je z uogólnionym praem Hooke`a; ąd eŝ zaleŝność między napręŝeniami a odkzałceniami opiana je naępującej poaci: j Z j g q E I q F (6) gdzie:

6 33 S śółkiewski E moduł ounga Z I momen ezładności przekroju poprzecznego elki Po przyjęciu Ŝe oś elki pokrya ię z oią x lokalnego układu półrzędnych załoŝono Ŝe zykie iły poprzeczne kóre zrócone ą przecinie do zrou oi y lokalnego układu półrzędnych yołują momeny ujemne naomia iły zrócone zgodne ze zroami oi y lokalnego układu półrzędnych yołują dodanie momeny (iły i momeny poodujące ugięcie elki ypukłością dół przyjęo jako dodanie) Po uzględnieniu zaleŝności ynikających z (6) orzymano rónania ruchu poaci macierzoej: 4 4 x A E Iz ρ (7) Przyjęo naępujące oznaczenia: π π (8) ąd ekor przemiezczenia linioego przekroju poprzecznego elki proopadły do jej oi oraz rónoległy do oi y lokalnego układy półrzędnych yznaczony zględem gloalnego układu odnieienia odróŝnieniu od kóre odpoiada ekoroi przemiezczenia układzie lokalnym j i (9) Oaecznie uzględniając zaleŝności (9) orzymano rónania ruchu łumionej elki drgającej gięnie ruchu unozenia zrzuoane na oie i gloalnego układu półrzędnych: Rzu na oś :

7 ODEL ATEATCZN OBRACAJĄCCH SIĘ TŁUIONCH BELEK PODATNCH E Iz 4 ( ) ( ) ρ A x () Rzu na oś : E Iz 4 4 ( ) ( ) ρ A x () 4 PODSUOWANIE W pracy przedaiono model maemayczny oracających ię łumionych elek podanych Zamodeloano elki oodne oraz elki uierdzone orooym ruchu unozenia W pracy załoŝono ępną znajomość poaci drgań elek poługując ię modelem elek acjonarnych Roziązanie o je penym uprozczeniem jednak przedaionym przykładzie nie ma płyu na końcoą poać yproadzonego modelu maemaycznego Wyproadzone rónania ruchu ą ępem do dalzej analizy dynamicznej zaróno poaci charakeryyk ampliudoo-częoliościoych jak i ępem do analizy układó ieloognioych Praca ykonana ramach granu N 5 7 3/379 finanoanego przez iniero Nauki i Informayzacji laach 6-9 Thi ork ha een conduced a a par of reearch projec N 5 7 3/379 uppored y he iniry of Science and Higher Educaion in 6-9 LITERATURA Buchacz A śółkieki S: Tranvere viraion of he elaic mulielemen manipulaor in erm of plane moion and aking ino conideraion he ranporaion effec W: 8 h Conference on Dynamical Syem Theory and Applicaion Łódź Proceeding Vol p Buchacz A śółkieki S: Equaion of moion of he o-link yem viraing ranverally and longiudinally in ranporaion Inernaional Conference of achine- Building and Technophere of he I Cenury Sevaopol 6 Vol 4 p Buchacz A śółkieki S: Dynamic analyi of he mechanical yem viraing ranverally in ranporaion Journal of Achievemen in aerial and anufacuring Engineering 7 Vol iue - 7 p Gena G: Dynamic of roaing yem Ne ork : Springer 5 5 Szefer G: Dynamic of elaic odie in erm of plane fricional moion Journal of Theoreical and Applied echanic 39 6 Vance J : Roordynamic of uromachinery Wiley śółkieki S: ahemaical model of roaing damped flexile eam yem W: LVII Sympozjon PTTS odeloanie echanice Wiła 8 p 3-3

8 334 S śółkiewski 8 śółkieki S: Analyi and modelling of roaional yem ih he modyfi applicaion Journal of Achievemen in aerial and anufacuring Engineering 8 Vol 3 i p ATHEATICAL ODEL OF ROTATING DAPED FLEIBLE BEA SSTES Summary In he lieraure here are knon poiion decried he ay of modelling of echnical yem in roaional moion [-8] Thi hei i a developmen of ujec maer conneced ih he analyi of effec of yem moion on he model of viraion Thi developmen i conneced ih aking ino accoun elemen of damping in he mahemaical model Preened model in hi aricle i a derivaion of equaion of moion of damped flexile eam yem Addiionally aking ino conideraion he damping of yem i a ep o ringing cloer ogeher of he propoed model and acual applicaion

x k3 y k3 x k1 y k1 x 2

x k3 y k3 x k1 y k1 x 2 A. RANFORMACJA RZEMEZCZEŃ obrębie bryły ztynej Andrzej Wite odtay ontrcji mazyn y x - - y x - C x - O x x - x y - - Ry.. chemat tranformacji przemiezczeń Znany jet mały rch bryły ztynej (ry.) pncie O opiany

Bardziej szczegółowo

PODATNOŚĆ DYNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM W RUCHU UNOSZENIA

PODATNOŚĆ DYNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM W RUCHU UNOSZENIA MODELOWANIE INŻNIERSKIE ISSN 896-77X 38, s. 3-38, Gliwice 9 PODATNOŚĆ DNAMICZNA OBUSTRONNIE PODPARTEJ BELKI Z TŁUMIENIEM W RUCHU UNOSZENIA SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji Procesów Technologicznych

Bardziej szczegółowo

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s. 7-34, Gliwice 007 DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA ANDRZEJ BUCHACZ, SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji

Bardziej szczegółowo

Wykład 9. Stateczność prętów. Wyboczenie sprężyste

Wykład 9. Stateczność prętów. Wyboczenie sprężyste Wykład 9. Stateczność prętó. Wyoczenie sprężyste 1. Siła ytyczna pręta podpartego soodnie Dla pręta jak na rysunku 9.1 eźmiemy pod uagę możliość ygięcia się pręta z osi podczas ściskania. jest modułem

Bardziej szczegółowo

Część 1 9. METODA SIŁ 1 9. METODA SIŁ

Część 1 9. METODA SIŁ 1 9. METODA SIŁ Część 1 9. METOD SIŁ 1 9. 9. METOD SIŁ Metoda ił jet poobem rozwiązywania układów tatycznie niewyznaczalnych, czyli układów o nadliczbowych więzach (zewnętrznych i wewnętrznych). Sprowadza ię ona do rozwiązania

Bardziej szczegółowo

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów

Przekształcenie Laplace a. Definicja i własności, transformaty podstawowych sygnałów Przekzałcenie Laplace a Deinicja i właności, ranormay podawowych ygnałów Tranormaą Laplace a unkcji je unkcja S zmiennej zepolonej, kórą oznacza ię naępująco: L[ ] unkcja S nazywana bywa również unkcją

Bardziej szczegółowo

Skręcanie prętów napręŝenia styczne, kąty obrotu, projektowanie 3

Skręcanie prętów napręŝenia styczne, kąty obrotu, projektowanie 3 Skręcanie pręów napręŝenia yczne, kąy obrou, projekowanie W przypadku kręcania pręa jego obciąŝenie anowią momeny kręcające i. Na ry..1a przedawiono przykład pręa zywno zamocowanego na ewym końcu (punk

Bardziej szczegółowo

Belki na podłożu sprężystym

Belki na podłożu sprężystym Belki na podłożu sprężystym podłoże inkleroskie, rónanie różniczkoe ugięcia belki, linie płyoe M-Q-, belki półnieskończone, sposób Bleicha, przykład obliczenioy odłoże inkleroskie Założenia Winklera spółpracy

Bardziej szczegółowo

PRZYKŁAD ZASTOSOWANIA METODY ODPORNEJ W MODELOWANIU FINANSOWYCH SZEREGÓW CZASOWYCH WSTĘP

PRZYKŁAD ZASTOSOWANIA METODY ODPORNEJ W MODELOWANIU FINANSOWYCH SZEREGÓW CZASOWYCH WSTĘP Agnieszka Ora Uniersye Śląski Kaoicach e-mail: agaora@pocza.one.pl, aora@ux.mah.us.edu.pl PRZYKŁAD ZASTOSOWANIA METODY ODPORNEJ W MODELOWANIU FINANSOWYCH SZEREGÓW CZASOWYCH Sreszczenie: ZałoŜenia, na kórych

Bardziej szczegółowo

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VIII Przekształcenie Laplace a

WYBRANE DZIAŁY ANALIZY MATEMATYCZNEJ. Wykład VIII Przekształcenie Laplace a 8. Geneza przekzałcenia Laplace a. Wykład VIII Przekzałcenie Laplace a Warunek bezwzględnej całkowalności w przedziale niekończonym, nakładany na oryginały przekzałceń Fouriera, bardzo ogranicza ich klaę.

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim

Zasada pędu i popędu, krętu i pokrętu, energii i pracy oraz d Alemberta bryły w ruchu postępowym, obrotowym i płaskim Zasada pędu i popędu, kręu i pokręu, energii i pracy oraz d Alembera bryły w ruchu posępowym, obroowym i płaskim Ruch posępowy bryły Pęd ciała w ruchu posępowym obliczamy, jak dla punku maerialnego, skupiając

Bardziej szczegółowo

Temat 4. ( t) ( ) ( ) = ( τ ) ( τ ) τ = ( ) ( ) ( ) ( ) ( ) ( ) ( ) = ( ) Podstawowe własności dystrybucji δ(t) (delta Diraca)

Temat 4. ( t) ( ) ( ) = ( τ ) ( τ ) τ = ( ) ( ) ( ) ( ) ( ) ( ) ( ) = ( ) Podstawowe własności dystrybucji δ(t) (delta Diraca) Tema 4 Opracował: Leław Dereń Kaedra Teorii Sygnałów Inyu Telekomunikacji Teleinformayki i Akuyki Poliechnika Wrocławka Prawa auorkie zarzeżone Podawowe właności dyrybucji δ() (dela Diraca) ( ) δ gdy (

Bardziej szczegółowo

Skręcanie prętów projektowanie 5

Skręcanie prętów projektowanie 5 Skręcane pręó projekoane 5 Spoó rozązyana pręó kręcanych zoał omóony rozdzae. Zadana projekoe proadzają ę do okreśena ymaró przekroju poprzecznego pręa na podae arunku nośnośc /u arunku użykoana. przypadku

Bardziej szczegółowo

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w

RUCH FALOWY. Ruch falowy to zaburzenie przemieszczające się w przestrzeni i zmieniające się w RUCH FALOWY Ruch alowy to zaburzenie przemiezczające ię w przetrzeni i zmieniające ię w czaie. Podcza rozchodzenia ię al mechanicznych elementy ośrodka ą wytrącane z położeń równowagi i z powodu właności

Bardziej szczegółowo

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q,

q s,t 1 r k 1 t k s q k 1 q k... q n 1 q n q 1 i ef e, v 1 q, Maemayka finanowa i ubezpieczeniowa - 3 Przepływy pienięŝne 1 Warość akualna i przyzła przepływów dykrenych i ciągłych Oprocenowanie - dykonowanie ciągłe ze zmienną opą (iłą). 1. Sopy przedziałami ałe

Bardziej szczegółowo

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m

Drgania. W Y K Ł A D X Ruch harmoniczny prosty. k m Wykład z fizyki Piotr Posmykiewicz 119 W Y K Ł A D X Drgania. Drgania pojawiają się wtedy, gdy układ zostanie wytrącony ze stanu równowagi stabilnej. MoŜna przytoczyć szereg znanych przykładów: kołysząca

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria eroania - udia nieacjonarne Ai opień azimierz Duzinkieicz, dr hab. nż. aedra nżynerii Syemó Seroania Wykład 5-6/7 yemó eroania azimierz Duzinkieicz, dr hab. inż. aedra nżynierii Syemó Seroania Poznane

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Meody Lagrange a i Hamilona w Mechanice Mariusz Przybycień Wydział Fizyki i Informayki Sosowanej Akademia Górniczo-Hunicza Wykład 7 M. Przybycień (WFiIS AGH) Meody Lagrange a i Hamilona... Wykład 7 1 /

Bardziej szczegółowo

PRZYKŁAD: Wyznaczyć siłę krytyczną dla pręta obciążonego dwiema siłami, jak na rysunku. w k

PRZYKŁAD: Wyznaczyć siłę krytyczną dla pręta obciążonego dwiema siłami, jak na rysunku. w k ZYKŁAD: Wyznaczyć siłę rytyczną dla pręta ociążonego diema siłami, ja na rysunu. (c) A K c B, a m,. ónania rónoagi A c c / () Y () X H ( c ) (3). ónanie ugięć przedziale BK ( ) (4) ( ) () (6) (7) E I -

Bardziej szczegółowo

drgania h armoniczne harmoniczne

drgania h armoniczne harmoniczne ver-8..7 drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne () An cos( nω + ϕ n ) N n Fig (...) analiza Fouriera małe drgania E p E E k E p ( ) jeden sopień swobody: -A A E p

Bardziej szczegółowo

Zginanie ze ściskaniem

Zginanie ze ściskaniem Zginanie ze ściskaniem sformułoanie probemu przkład roziązań przkład obiczenioe Sformułoanie probemu W probemach tego tpu nie można stosoać zasad zesztnienia - konstrukcję naeż rozpatrać konfiguracji odkształconej

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś

Bardziej szczegółowo

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI ĆWICZENIE NR SKALOWANIE ZWĘśKI. Cel ćiczenia: Celem ćiczenia jest ykonanie cechoania kryzy pomiaroej /yznaczenie zaleŝności objętościoego natęŝenia przepłyu poietrza przez zęŝkę od róŝnicy ciśnienia na

Bardziej szczegółowo

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione

WYKŁAD FIZYKAIIIB 2000 Drgania tłumione YKŁD FIZYKIIIB Drgania łumione (gasnące, zanikające). F siła łumienia; r F r b& b współczynnik łumienia [ Nm s] m & F m & && & k m b m F r k b& opis różnych zjawisk izycznych Niech Ce p p p p 4 ± Trzy

Bardziej szczegółowo

Naprężenia styczne i kąty obrotu

Naprężenia styczne i kąty obrotu Naprężenia tyczne i kąty obrotu Rozpatrzmy pręt pryzmatyczny o przekroju kołowym obciążony momentem kręcającym 0 Σ ix 0 0 A A 0 0 Skręcanie prętów o przekroju kołowym, pierścieniowym, cienkościennym. Naprężenia

Bardziej szczegółowo

ver b drgania harmoniczne

ver b drgania harmoniczne ver-28.10.11 b drgania harmoniczne drgania Fourier: częsość podsawowa + składowe harmoniczne N = n=1 A n cos nω n Fig (...) analiza Fouriera małe drgania E p E E k jeden sopień swobody: E p -A E p A 0

Bardziej szczegółowo

( ) ( ) ( τ) ( t) = 0

( ) ( ) ( τ) ( t) = 0 Obliczanie wraŝliwości w dziedzinie czasu... 1 OBLICZANIE WRAśLIWOŚCI W DZIEDZINIE CZASU Meoda układu dołączonego do obliczenia wraŝliwości układu dynamicznego w dziedzinie czasu. Wyznaczane będą zmiany

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Kinematyka

Podstawy Procesów i Konstrukcji Inżynierskich. Kinematyka Podawy Proceów i Konrukcji Inżynierkich Kinemayka Prowadzący: Kierunek Wyróżniony rzez PKA Mechanika Kinemayka Dynamika Bada ruch ciał nie wnikając w rzyczyny warunkujące en ruch Bada ruch w związku z

Bardziej szczegółowo

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego

Wykorzystanie rozkładu GED do modelowania rozkładu stóp zwrotu spółek sektora transportowego PUCZYŃSKI Jan CZYŻYCKI afał Wykorzyanie rozkładu GED do modelowania rozkładu óp zwrou półek ekora ranporowego WSTĘP Jednym z najczęściej prowadzonych badań doyczących rynku kapiałowego ą badania doyczące

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM

ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM ANALIZA WPŁYWU ZUŻYCIA NA RUCH DYNAMICZNEGO TŁUMIKA DRGAŃ Z TARCIEM SUCHYM JAN AWREJCEWICZ, YURIY PYRYEV Politechnika Łódzka, Katedra Automatyki i Biomechaniki, 9-94 Łódź, ul. Stefanoskiego /5, e-mail:

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym .Wproadzenie. Wyznaczanie profilu prędkości płynu rurociągu o przekroju kołoym Dla ustalonego, jednokierunkoego i uarstionego przepłyu przez rurę o przekroju kołoym rónanie aviera-stokesa upraszcza się

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Wiesław Jażdżyński 4 października INSTRUKCJA I MATERIAŁY POMOCNICZE Ćwiczenie Przedmiot: Elektromechaniczne Układy Napędowe

Wiesław Jażdżyński 4 października INSTRUKCJA I MATERIAŁY POMOCNICZE Ćwiczenie Przedmiot: Elektromechaniczne Układy Napędowe Wiesła Jażdżyński 4 października 2017 INSTRUKCJA I MATERIAŁY POMOCNICZE Ćiczenie Przedmio: Elekromechaniczne Układy Napędoe MPS Tema: Dynamika maszyny prądu sałego Zakres ćiczenia: 1. Pomiary do idenyfikacji

Bardziej szczegółowo

2. MODELOWNY UKŁAD MECHATRONICZNY ORAZ PRZYJĘTE ZAŁOśENIA

2. MODELOWNY UKŁAD MECHATRONICZNY ORAZ PRZYJĘTE ZAŁOśENIA MODELOWANIEINśYNIERSKIE ISSN 1896-771X 37, s. 35-0, Gliwice 009 IĄG DYSKRETNO IĄGŁYH MODELI MATEMATYZNYH UKŁADU MEHATRONIZNEGO ANDRZEJ BUHAZ, MAREK PŁAZEK Instytut Automatyzacji Procesów Technologicznych

Bardziej szczegółowo

Wykład 4: Transformata Laplace a

Wykład 4: Transformata Laplace a Rachunek prawdopodobieńwa MAP164 Wydział Elekroniki, rok akad. 28/9, em. leni Wykładowca: dr hab. A. Jurlewicz Wykład 4: Tranformaa Laplace a Definicja. Niech f() będzie funkcją określoną na R, przy czym

Bardziej szczegółowo

{ } = ( ) Przekształcenie Laplace a i jego zastosowania. Rozdział Obliczanie transformat Laplace a i transformat odwrotnych

{ } = ( ) Przekształcenie Laplace a i jego zastosowania. Rozdział Obliczanie transformat Laplace a i transformat odwrotnych Rozdział 8 Przekzałcenie aplace a i jego zaoowania Opracował: eław Dereń Inyu Telekomunikacji Teleinformayki i Akuyki Prawa auorkie zarzeżone 8 Obliczanie ranforma aplace a i ranforma odwronych NajwaŜniejze

Bardziej szczegółowo

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO

IDENTYFIKACJA MODELU MATEMATYCZNEGO ROBOTA INSPEKCYJNEGO MODELOWANIE INśYNIERSKIE ISSN 896-77X 36,. 87-9, liwice 008 IDENTYFIKACJA MODELU MATEMATYCZNEO ROBOTA INSPEKCYJNEO JÓZEF IERIEL, KRZYSZTOF KURC Katedra Mechaniki Stoowanej i Robotyki, Politechnika Rzezowka

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

Ćwiczenie N 14 KAWITACJA

Ćwiczenie N 14 KAWITACJA LABORATORIUM MECHANIKI PŁYNÓW Ćiczenie N 1 KAWITACJA 1. Cel ćiczenia ośiadczalne yznaczenie ciśnienia i strumienia objętości kaitacji oraz charakterystyki przepłyu zęŝki, której postaje kaitacja.. Podstay

Bardziej szczegółowo

VII. ZAGADNIENIA DYNAMIKI

VII. ZAGADNIENIA DYNAMIKI Konderla P. Meoda Elemenów Skończonych, eoria i zasosowania 47 VII. ZAGADNIENIA DYNAMIKI. Równanie ruchu dla zagadnienia dynamicznego Q, (7.) gdzie M NxN macierz mas, C NxN macierz łumienia, K NxN macierz

Bardziej szczegółowo

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów.

MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II. Zdający może rozwiązać zadania każdą poprawną metodą. Otrzymuje wtedy maksymalną liczbę punktów. MODEL ODPOWIEDZI I SCHEMAT OCENIANIA ARKUSZA II Zdający może roziązać każdą popraną metodą. Otrzymuje tedy maksymalną liczbę punktó. Numer Wykonanie rysunku T R Q Zadanie. Samochód....4.6 Narysoanie sił

Bardziej szczegółowo

Rozruch silnika prądu stałego

Rozruch silnika prądu stałego Rozruch silnika prądu sałego 1. Model silnika prądu sałego (SPS) 1.1 Układ równań modelu SPS Układ równań modelu silnika prądu sałego d ua = Ra ia + La ia + ea d równanie obwodu wornika d uf = Rf if +

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s

s Dla prętów o stałej lub przedziałami stałej sztywności zginania mianownik wyrażenia podcałkowego przeniesiemy przed całkę 1 EI s Wprowadzenie Kontrukcja pod wpływem obciążenia odkztałca ię, a jej punkty doznają przemiezczeń iniowych i kątowych. Umiejętność wyznaczania tych przemiezczeń jet konieczna przy prawdzaniu warunku ztywności

Bardziej szczegółowo

Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1

Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów Wykłady 3,4, str. 1 Poliechnia Poznańsa, Kaedra Serowania i Inżynierii Sysemów Wyłady 3,4, sr. 5. Charaerysyi logarymiczne (wyresy Bodego) Lm(ω) = 20 lg G(jω) [db = decybel] (20) (Lm(ω) = [db] 20 lg G(jω) = G(jω) = 0 /20,22

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

ODPOWIEDZI, KRYTERIA OCENIANIA I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY. ZADANIE punktów. r r r

ODPOWIEDZI, KRYTERIA OCENIANIA I SCHEMAT PUNKTOWANIA POZIOM ROZSZERZONY. ZADANIE punktów. r r r Okęoa Koija zainacyjna Poznaniu Maeiał ćiczenioy z fizyki i aonoii 011. Pozio ozzezony Kyeia oceniania i chea punkoania 1 ODPOWIDZI, KYTIA OCNIANIA I SCHMAT PUNKTOWANIA POZIOM OZSZZONY ZADANI 1. 10 punkó

Bardziej szczegółowo

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie

ĆWICZENIE 7 WYZNACZANIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA. Wprowadzenie ĆWICZENIE 7 WYZNACZIE LOGARYTMICZNEGO DEKREMENTU TŁUMIENIA ORAZ WSPÓŁCZYNNIKA OPORU OŚRODKA Wprowadzenie Ciało drgające w rzeczywisym ośrodku z upływem czasu zmniejsza ampliudę drgań maleje energia mechaniczna

Bardziej szczegółowo

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2.

1. Wykres momentów zginających M(x) oraz sił poprzecznych Q(x) Rys2. Zadanie. Zginanie prote belek. Dla belki zginanej obciążonej jak na Ry. wyznaczyć:. Wykre oentów zginających M(x) oraz ił poprzecznych Q(x).. Położenie oi obojętnej.. Wartość akyalnego naprężenia noralnego

Bardziej szczegółowo

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach

ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/2007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach ROZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 7/007 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Kaowicach WYZNAZANIE PARAMETRÓW FUNKJI PEŁZANIA DREWNA W UJĘIU LOSOWYM * Kamil PAWLIK Poliechnika

Bardziej szczegółowo

Przekształcenie Laplace a i jego zastosowania

Przekształcenie Laplace a i jego zastosowania Przekzałcenie Laplace a i jego zaoowania Funkcje pecjalne i dyrybucje Funkcja koku jednokowego (nazywana również funkcją Heaviide a) ( ) gdy > gdy < ( ) gdy gdy > < ( ) ( ) f a e > < e a ( ) f f ( ) A

Bardziej szczegółowo

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Wprowadzenie A.M.D.

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Wprowadzenie A.M.D. aboraorium Elekroechniki i elekroniki ABORAORIUM AMD6 ema ćwiczenia: SANY NIEUSAONE W OBWODAH EEKRYZNYH Wprowadzenie Przejście od jednego anu pracy układu elekrycznego złożonego z elemenów R,, do innego

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA ZESZYTY NAUKOWE UNIWERSYTETU SZCZECI SKIEGO NR 394 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 15 2004 JÓZEF HOZER Uniwersye Szczeci ski ODPOWIED NA PYTANIE PROFESORA RAUTSKAUKASA 1. PYTANIE PROFESORA RAUTSKAUKASA

Bardziej szczegółowo

WERYFIKACJA DOKŁADNOŚCI METODY PRZYBLIŻONEJ GALERKINA W MODELOWANIU I BADANIU DRGAJĄCYCH UKŁADÓW MECHATRONICZNYCH

WERYFIKACJA DOKŁADNOŚCI METODY PRZYBLIŻONEJ GALERKINA W MODELOWANIU I BADANIU DRGAJĄCYCH UKŁADÓW MECHATRONICZNYCH MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 39, s. 41-48, Gliwice 2010 WERYFIKACJA DOKŁADNOŚCI METODY PRZYBLIŻONEJ GALERKINA W MODELOWANIU I BADANIU DRGAJĄCYCH UKŁADÓW MECHATRONICZNYCH ANDRZEJ BUCHACZ, MAREK

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA aboratorium z Fizyki Materiałów 010 Ćwiczenie WYZNCZNIE MODUŁU YOUNG METODĄ STRZŁKI UGIĘCI Zadanie: 1.Za pomocą przyrządów i elementów znajdujących ię w zetawie zmierzyć moduł E jednego pręta wkazanego

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Naza modułu Modeloanie i izualizacja procesó fizycznych Naza modułu języku angielskim Modeling

Bardziej szczegółowo

Kinematyka płynów - zadania

Kinematyka płynów - zadania Zadanie 1 Zadane jest prawo ruchu w zmiennych Lagrange a x = Xe y = Ye t 0 gdzie, X, Y oznaczają współrzędne materialne dla t = 0. Wyznaczyć opis ruchu w zmiennych Eulera. Znaleźć linię prądu. Pokazać,

Bardziej szczegółowo

Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002

Wyniki wymiarowania elementu żelbetowego wg PN-B-03264:2002 Wyniki ymiaroania elementu żelbetoego g PN-B-0364:00 RM_Zelb v. 6.3 Cechy przekroju: zadanie Żelbet, pręt nr, przekrój: x a=,5 m, x b=3,75 m Wymiary przekroju [cm]: h=78,8, b =35,0, b e=00,0, h =0,0, skosy:

Bardziej szczegółowo

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii

FALE MECHANICZNE C.D. W przypadku fal mechanicznych energia fali składa się z energii kinetycznej i energii FALE MECHANICZNE CD Gętość energii ruchu alowego otencjalnej W rzyadku al mechanicznych energia ali kłada ię z energii kinetycznej i energii Energia kinetyczna Energia kinetyczna małego elementu ośrodka

Bardziej szczegółowo

Projekt nr 4. Dynamika ujęcie klasyczne

Projekt nr 4. Dynamika ujęcie klasyczne Projekt nr 4 Dynamika POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI Projekt nr 4 Dynamika ujęcie klasyczne Konrad Kaczmarek

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) niestacjonarne (stacjonarne / niestacjonarne) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Naza modułu Modeloanie i izualizacja procesó fizycznych Naza modułu języku angielskim Modeling

Bardziej szczegółowo

Laboratorium Mechaniki Technicznej

Laboratorium Mechaniki Technicznej Laboratorium Mechaniki Technicznej Ćwiczenie nr 5 Badanie drgań liniowych układu o jednym stopniu swobody Katedra Automatyki, Biomechaniki i Mechatroniki 90-924 Łódź, ul. Stefanowskiego 1/15, budynek A22

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

i odwrotnie: ; D) 20 km h

i odwrotnie: ; D) 20 km h 3A KIN Kinematyka Zadania tr 1/5 kin1 Jaś opowiada na kółku fizycznym o wojej wycieczce używając zwrotów: A) zybkość średnia w ciągu całej wycieczki wynoiła 0,5 m/ B) prędkość średnia w ciągu całej wycieczki

Bardziej szczegółowo

Mierniki cyfrowe. Mierniki, których wskazania są dyskretną funkcją wartości wielkości mierzonej. Realizowane głównie jako multimetry Zaciski pomiarowe

Mierniki cyfrowe. Mierniki, których wskazania są dyskretną funkcją wartości wielkości mierzonej. Realizowane głównie jako multimetry Zaciski pomiarowe Przearzanie C/C Przearzanie cyfroo-cyfroe (C/C) realizoane jes poprzez układy cyfroe (od elemenarnych po mikroprocesoroe), kóre operują sygnałami cyfroymi zaróno na ejściu jak i na yjściu. Sygnały cyfroe

Bardziej szczegółowo

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska

Model efektywny dla materiałów komórkowych w zakresie liniowo-sprężystym Małgorzata Janus-Michalska Model efektywny dla materiałów komórkowych w zakreie liniowo-prężytym Małgorzata Janu-Michalka Katedra Wytrzymałości Materiałów Intytut Mechaniki Budowli Politechnika Krakowka PAN PREZENTACJI. Wprowadzenie.

Bardziej szczegółowo

, , , , 0

, , , , 0 S T E R O W N I K G R E E N M I L L A Q U A S Y S T E M 2 4 V 4 S E K C J I G B 6 9 6 4 C, 8 S E K C J I G B 6 9 6 8 C I n s t r u k c j a i n s t a l a c j i i o b s ł u g i P r z e d r o z p o c z ę

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych

Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych Modelowanie wektora magnetycznego serca na podstawie jonowych prądów komórkowych Wstęp Podstawy modelu komórkowego Proces pobudzenia serca Wektor magnetyczny serca MoŜliwości diagnostyczne Wstęp Przepływający

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność - definicja 1 O układzie możemy mówić, że jest stabilny gdy wytrącony ze stanu równowagi

Bardziej szczegółowo

z d n i a 1 5 m a j a r.

z d n i a 1 5 m a j a r. C h o r ą g i e w D o l n o l ą s k a Z H P D e c y z j a n r 1 4 / I X / 2 0 1 5 K o m e n d a n t a C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 1 5 m a j a 2 0 1 5 r. w s p r a w i e g

Bardziej szczegółowo

/ / * ** ***

/ / * ** *** 91 / / * ** *** 93/3/31 : 9/11/0 :. 1385. 1390... :.P51 C61 G1:JEL 139 / 51 Email: kiaee@isu.ac.ir. Email: abrihami@u.ac.ir. Email: sobhanihs@u.ac.ir..7.*..**..*** 136. 1363 30.... Dynamic Sochasic ) (Opimizaion....

Bardziej szczegółowo

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu

λ = 92 cm 4. C. Z bilansu cieplnego wynika, że ciepło pobrane musi być równe oddanemu Odpowiedzi i rozwiązania:. C. D (po włączeniu baterii w uzwojeniu pierwotny płynie prąd tały, nie zienia ię truień pola agnetycznego, nie płynie prąd indukcyjny) 3. A (w pozotałych przypadkach na trunie

Bardziej szczegółowo

n ó g, S t r o n a 2 z 1 9

n ó g, S t r o n a 2 z 1 9 Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z

Bardziej szczegółowo

W siła działająca na bryłę zredukowana do środka masy ( = 0

W siła działająca na bryłę zredukowana do środka masy ( = 0 Popęd i popęd bryły Bryła w ruchu posępowym. Zasada pędu i popędu ma posać: p p S gdie: p m v pęd bryły w ruchu posępowym S c W d popęd siły diałającej na bryłę w ruchu posępowym aś: v c prędkość środka

Bardziej szczegółowo

Analiza wpływu tłumienia wiskotycznego na charakterystyki dynamiczne belki

Analiza wpływu tłumienia wiskotycznego na charakterystyki dynamiczne belki Analiza wpływu tłumienia wiskotycznego na charakterystyki dynamiczne belki Roman Lewandowski, Mariusz Wróbel, Radosław PyŜanowski Poznań, maj 2009 Strona 1 1 Wstęp Kładki dla pieszych to zazwyczaj konstrukcje

Bardziej szczegółowo

WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU POCIĄGU 1

WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU POCIĄGU 1 A R C H I W U M I N S T Y T U T U I N Ż Y N I E R I I L Ą D O W E J Nr 5 ARCHIVES OF INSTITUTE OF CIVIL ENGINEERING 017 WPŁYW PODATNOŚCI GŁÓWKI SZYNY NA ROZKŁAD PRZEMIESZCZEŃ WZDŁUŻNYCH PRZY HAMOWANIU

Bardziej szczegółowo

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.

Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,

Bardziej szczegółowo

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze Równania kwadratowe Zad : Dany jest wielomian W(x) = x mx + m m + a) Dla jakich wartości parametru m wielomian ten ma dwa pierwiastki, których suma jest o jeden większa od ich iloczynu? *b) Przyjmij, Ŝe

Bardziej szczegółowo

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice.

Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. Wykład z modelowania matematycznego. Przykłady modelowania w mechanice i elektrotechnice. 1 Wahadło matematyczne. Wahadłem matematycznym nazywamy punkt materialny o masie m zawieszony na długiej, cienkiej

Bardziej szczegółowo

Temat VIII. Drgania harmoniczne

Temat VIII. Drgania harmoniczne Tema VIII Drgania harmoniczne Równanie ruchu F k Siła k m Równanie ruchu sin cos Położenie równowagi w ruchu drgającym Położenie równowagi o akie położenie, w kórym siły wymuszające ruch równoważą się

Bardziej szczegółowo

PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej

PODSTAWY CHEMII KWANTOWEJ. Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoretycznej Zespół Chemii Kwantowej Grupa Teorii Reaktywności Chemicznej PODSTWY CHEMII KWTOWEJ Jacek Korchowiec Wydział Chemii UJ Zakład Chemii Teoreycznej Zespół Chemii Kwanowej Grupa Teorii Reakywności Chemicznej LITERTUR R. F. alewajski, Podsawy i meody chemii kwanowej:

Bardziej szczegółowo

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Badanie obwodów II-go rzędu - pomiary w obwodzie RLC A.M.D. u C

Temat ćwiczenia: STANY NIEUSTALONE W OBWODACH ELEKTRYCZNYCH Badanie obwodów II-go rzędu - pomiary w obwodzie RLC A.M.D. u C aboraorium eorii Obwodów ABOAOIUM AMD6 ema ćwiczenia: SANY NIEUSAONE W OBWODAH EEKYZNYH Badanie obwodów II-go rzędu - pomiary w obwodzie Obwód II-go rzędu przedawia poniżzy ryunek.. ównanie obwodu di()

Bardziej szczegółowo

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów

Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów Z n a k s p r a w y G C S D Z P I 2 7 1 03 7 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A W y k o n a n i e r e m o n t u n a o b i e k c i e s p o r t o w y mp

Bardziej szczegółowo

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, 2010 Spis treści Część I. STATYKA 1. Prawa Newtona. Zasady statyki i reakcje więzów 11 1.1. Prawa Newtona 11 1.2. Jednostki masy i

Bardziej szczegółowo

RUCH HARMONICZNY. sin. (r.j.o) sin

RUCH HARMONICZNY. sin. (r.j.o) sin RUCH DRGJĄCY Ruch harmoniczny Rodzaje drgań Oscylaor harmoniczny Energia oscylaora harmonicznego Wahadło maemayczne i fizyczne Drgania łumione Drgania wymuszone i zjawisko rezonansu RUCH HRMONICZNY Ruch

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

Dynamika punktu materialnego

Dynamika punktu materialnego Dynaia punu aerialnego dr inż. Sebaian Pauła Wydział Inżynierii Mechanicznej i Roboyi Kaedra Mechanii i Wibroauyi ail: paula@agh.edu.pl www: hoe.agh.edu.pl/~paula/ dr inż. Sebaian Pauła - Kaedra Mechanii

Bardziej szczegółowo

J. Szantyr Wykład 27bis Podstawy jednowymiarowej teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 27bis Podstawy jednowymiarowej teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 7bis Podstay jednoymiaroej teorii irnikoych maszyn przepłyoych a) Wentylator lub pompa osioa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkoa d) Turbina odna promienioo-

Bardziej szczegółowo

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA

dr inż. Paweł Szeptyński materiały pomocnicze do przedmiotu MECHANIKA TEORETYCZNA DYNAMIKA - ZADANIA NAZEWNICTWO LINIOWE RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE O STAŁYCH WSPÓŁCZYNNIKACH d n u a n d x + a d n 1 u n n 1 d x +... + a d 2 u n 1 2 d x + a d u 2 1 d x + a u = b( x) Powyższe równanie o niewiadomej funkcji

Bardziej szczegółowo