Wprowadzenie do Metody Elementu Skończonego



Podobne dokumenty
Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Metoda elementów skończonych

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

METODY KOMPUTEROWE W MECHANICE

Metody numeryczne Wykład 4

1. PODSTAWY TEORETYCZNE

Projektowanie elementów z tworzyw sztucznych

Aproksymacja funkcji a regresja symboliczna

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Łagodne wprowadzenie do Metody Elementów Skończonych

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

5. Rozwiązywanie układów równań liniowych

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

INTERPOLACJA I APROKSYMACJA FUNKCJI

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Metody numeryczne w przykładach

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

8. Metody rozwiązywania układu równań

Metody rozwiązania równania Schrödingera

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012

Metody obliczeniowe - modelowanie i symulacje

Sieci obliczeniowe poprawny dobór i modelowanie

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

PRZEWODNIK PO PRZEDMIOCIE

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

PRZEWODNIK PO PRZEDMIOCIE

Karta (sylabus) przedmiotu

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

Projektowanie systemów EM. Metoda elementów skończonych

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

3. Interpolacja. Interpolacja w sensie Lagrange'a (3.1) Dana jest funkcja y= f x określona i ciągła w przedziale [a ;b], która

zakładane efekty kształcenia

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Wykład Ćwiczenia Laboratorium Projekt Seminarium 15 30

TEORETYCZNE PODSTAWY INFORMATYKI

Układy równań liniowych. Krzysztof Patan

Modelowanie w projektowaniu maszyn i procesów cz.5

Ćwiczenia nr 9. TEMATYKA: Triangulacja i triangulacja Delaunay a

Metoda elementów skończonych w mechanice konstrukcji / Gustaw Rakowski, Zbigniew Kacprzyk. wyd. 3 popr. Warszawa, cop

Metody numeryczne. Sformułowanie zagadnienia interpolacji

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

Opis efektów kształcenia dla programu kształcenia (kierunkowe efekty kształcenia) WIEDZA. rozumie cywilizacyjne znaczenie matematyki i jej zastosowań

Pendolinem z równaniami, nierównościami i układami

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Wzornictwo Przemysłowe I stopień (I stopień / II stopień) akademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Metody obliczeniowe - modelowanie i symulacje

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Teoria pola elektromagnetycznego 1. Wprowadzenie

I. Potęgi. Logarytmy. Funkcja wykładnicza.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

Numeryczna algebra liniowa

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Metoda Różnic Skończonych (MRS)

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

PROJEKT I ANALIZA WYTRZYMAŁOŚCIOWA STOJAKA MOTOCYKLOWEGO W ŚRODOWISKU AUTODESK INVENTOR

KARTA MODUŁU KSZTAŁCENIA

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

Zastosowanie wybranych metod bezsiatkowych w analizie przepływów w pofalowanych przewodach Streszczenie

Metody numeryczne. Sformułowanie zagadnienia interpolacji

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności

Symulacja przepływu ciepła dla wybranych warunków badanego układu

W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.

Fizyka komputerowa(ii)

Matematyka dyskretna dla informatyków

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Całkowanie numeryczne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

WYKŁAD 9 METODY ZMIENNEJ METRYKI

zna metody matematyczne w zakresie niezbędnym do formalnego i ilościowego opisu, zrozumienia i modelowania problemów z różnych

01, 02, 03 i kolejne numer efektu kształcenia. Załącznik 1 i 2

Metody numeryczne. materiały do wykładu dla studentów

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Metody numeryczne. dr Artur Woike. Ćwiczenia nr 2. Rozwiązywanie równań nieliniowych metody połowienia, regula falsi i siecznych.

Transkrypt:

Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie: fatcat.ftj.agh.edu.pl/~i6balone/mes.pdf, fatcat.ftj.agh.edu.pl/~i6gozdur/mes.pdf Streszczenie Metoda elementów skończonych (MES) jest jednym z szeroko stosowanych narzędzi obliczeniowych w nauce i inżynierii. W niniejszej pracy staraliśmy się przedstawić podstawowe właściwości metody i jej zastosowania. Na początku przedstawiamy pojęcie elementu skończonego i matematyczne uzasadnienie jego wprowadzenia, następnie opisujemy algorytm wykorzystywany w MES i strukturę wykorzystujących go aplikacji. Na koniec przeglądamy dziedziny w których MES znalazł zastosowanie i określamy jego miejsce wśród narzędzi obliczeniowych.

SPIS TREŚCI 2 Spis treści 1 Wprowadzenie 3 2 Analiza Skończenie Elementowa 3 2.1 Element Skończony.......................... 3 2.2 Analiza Skończenie Elementowa................... 5 3 Matematyczna teoria FEM 5 4 Etapy rozwiązywania problemu 6 5 Adaptacyjna metoda elementów skończonych 8 6 Zagadnienia wielkiej skali 8 7 Etapy realizacji symulacji 8 8 Struktura aplikacji 8 9 Obszary zastosowań MES 9 10 Podsumowanie 9

1 Wprowadzenie 3 1 Wprowadzenie Metoda Elementów Skończonych(z ang FEM - Finite Element Method) jest jednym z podstawowych narzędzi stosowanych w obliczeniach inżynierskich i naukowych. Podstawowym założeniem tej metody jest rezygnacja z analitycznego rozwiazania problemu na rzecz podziału obszaru na elementy skończone (np. odcinki dla przestrzeni jednowymiarowej) i przeprowadzenie obliczeń tylko dla wyróżnionych punktów (węzłów tego podziału). Poza węzłami rozwiązanie przybliżane jest na podstawie wyników otrzymanych dla poszczególnych węzłów. Rozwój MES/FEM przebiegał równolegle z rozwojem komputerów i wynikał głównie z potrzeby analizy coraz bardziej złożonych konstrukcji. Pierwszą pracę na temat metody opublikował w 1943 francuski matematyk Courant (nowa metoda podziału na odcinki/elementy ). Na początku prace dotyczyły tylko prostych przypadków jednowymiarowych: obliczenia prowadzone były dla ciał o stałych własnościach materiałowych, dających się opisać za pomocą równań liniowych, np. w latach pięćdziesiątych w firmie Boeing analizowano za jej pomocą właściwości skrzydeł typu delta. W latach sześćdziesiątych pojawia się nazwa ëlement skończonyï dopracowano do dopracowania matematycznej strony metody, po raz pierwszy zastosowano także FEM w obliczeniach niekonstrukcyjnych. Do lat osiemdziesiątych najbardziej zaawansowane modele zajmowały się w dalszym ciągu prostymi geometriami 1D i 2D, czasem o własnościach opisanych równaniami nieliniowymi. Dopiero wzrost mocy obliczeniowej komputerów pozwolił na modelowanie obiektów 3D o dowolnych geometriach i wprowadzenie metody do aplikacji CAE. 2 Analiza Skończenie Elementowa 2.1 Element Skończony Element skończony jest prostą figurą geometryczną (płaską lub przestrzenną), dla której określone zostały wyróżnione punkty zwane węzłami, oraz pewne funkcje interpolacyjne służące do opisu rozkładu analizowanej wielkości w jego wnętrzu i na jego bokach. Funkcje te nazywa się funkcjami węzłowymi, bądź funkcjami kształtu. Węzły znajdują się w wierzchołkach elementu skończonego, ale mogą być również umieszczone na jego bokach i w jego wnętrzu. Jeżeli węzły znajdują się tylko w wierzchołkach, to element skończony jest nazywany elementem liniowym (ponieważ funkcje interpolacyjne są wtedy liniowe). W pozostałych przypadkach mamy do czynienia z elementami wyższych rzędów. Rząd elementu jest zawsze równy rzędowi funkcji interpolacyjnych (funkcji kształtu). Liczba funkcji kształtu w pojedynczym elemencie skończonym jest równa liczbie jego węzłów. Funkcje kształtu są zawsze tak zbudowane, aby w węzłach których dotyczą ich wartości wynosiły jeden, a pozostałych węzłach przyjmowały wartość zero.

2.1 Element Skończony 4 Rysunek 1: Przykłady elementow skończonych w przestrzeniach 1-, 2- i 3- wymiarowej. Rysunek 2: Przykład dyskretyzacji modelu ciągłego. a) model ciągły, b) model dyskretny idealny, c) model dyskretny numeryczny

2.2 Analiza Skończenie Elementowa 5 2.2 Analiza Skończenie Elementowa FEA (Finite Element Analysis) zajmuje się analizą konstrukcji za pomocą elementów skończonych. Typowym postępowaniem jest tutaj podział analizowanego systemu na podsystemy (elementy) i opis ich zachowań za pomocą zbioru parametrów. Następnie za pomocą macierzy dla każdego elementu określane są zależności tych parametrów; macierze te służą następnie do konstruowania równań opisujących całościowe zachowanie systemu. Widać tutaj ogólne przesłanie towarzyszące wprowadzeniu do obliczeń elementu skończonego: dzięki dyskretyzacji problemu możliwe jest uniknięcie skomplikowanego (często niemożliwego) rozwiązywania problemu od strony analitycznej. W jaki sposób omawiana metoda łączy się z FEM? Otóż każdy przypadek FEA można traktować jako przypadek szczególny FEM. Analiza skończenie elementowa jest dzisiaj szeroko stosowana w inżynierii, daje się także rozszerzyć na zagadnienia nieliniowe, jednak ze względu na mniejszą elastyczność i mniej rozwiniętą teorię ustępuje częściej stosowanej metodzie elementu skończonego. 3 Matematyczna teoria FEM Zajmujemy się przestrzenią liniową F ze zdefiniowanym iloczynem skalarnym <, >. Elementy przestrzeni F to funkcje, dla których zdefiniowane są działania dodawania i mnożenia. Wprowadźmy teraz liniową podprzestrzeń U przestrzeni F, z tym samym iloczynem skalarnym <, >, oraz liniowy operator różniczkowy A. Operator A określony jest na przestrzeni U, a jego wartości należą do F. Przy założeniu, że A jest operatorem symetrycznym i dodatnio określonym, możemy za jego pomocą wprowadzić nowy iloczyn skalarny w przestrzeni U: < u, v > A =< Au, v > dla funkcji u, v U (1) Zdefiniowany w ten sposób iloczyn skalarny nazywamy iloczynem energetycznym względem operatora A; przestrzeń U do której dołączymy ten iloczyn określamy jako przestrzeń energetyczną operatora A, a u A = < u, u > A norma energetyczną. Poszukujemy należącego do przestrzeni U rozwiązania równania różniczkowego Au = f gdzie f jest funkcją należącą do przestrzeni F. Rozwiązanie tego problemu za pomocą FEM polega na przybliżeniu rozwiązania u za pomocą wielomianowej funkcji sklejanej, wybranej z N-wymiarowej podprzestrzeni U N. Funkcję tą nazywamy elementem skończonym, przybliżającym dokładne rozwiązanie u. Spośród wszystkich elementów U N wybieramy tą, która spełnia warunek u u N A = min u u A Metoda elementu skończonego jest szczególnym przypadkiem metody Rayleigha- Ritza, z wprowadzonymi ograniczeniami dla postaci elementów U N.

4 Etapy rozwiązywania problemu 6 Algorytm wyznaczania elementu u N opiera się na poszukiwaniu liniowej kombinacji funkcji stanowiących bazę przestrzeni U N, dla której spełniony jest warunek minimalizowania błędu aproksymacji. 4 Etapy rozwiązywania problemu Proces szukania rozwiązania za pomocą FEM można podzielić ogólnie na trzy etapy: 1. zagadnienie różniczkowe jest przekształcane do postaci wariacyjnej lub całkowej 2. obszar dzielony jest na proste figury geometryczne (elementy skończone) 3. w każdym elemencie przybliżamy procesy za pomocą prostych funkcji bazowych Algorytm poszukiwania rozwiązania za pomocą FEM: 1. Na rozważany obszar należy nałożyć siatkę, dzieląc go na skończoną liczbę prostych geometrycznie elementów. 2. Zakłada się że poszczególne elementy połączone są ze sobą jedynie w skończonej liczbie punktów (węzły siatki). W węzłach określone zostaną wartości wielkości fizycznych, tworzące podstawowy układ niewiadomych. 3. Należy określić funkcje określające wartości wielkości fizycznych wewnątrz elementów (funkcje kształtu, funkcje węzłowe) w zależności od wartości w węzłach. 4. Stosując tak zwane funkcje wagowe przekształca się równania różniczkowe w równania algebraiczne 5. Równania poodaje się asemblacji. Korzystając z równań MES oblicza się wartości współczynników stojących przy niewiadomych oraz odpowiadające im wartości prawych stron (dla zadań niestacjonarnych uwzględnia się warunki początkowe). Liczba równań w tak otrzymanym układzie równa jest iloczynowi liczby węzłów w obiekcie i liczbie stopni swobody każdego węzła (liczbie niewiadomych w każdym węźle) 6. Do macierzy współczynników i wektorów prawych stron wprowadza są warunki brzegowe. 7. Otrzymany układ równań liniowych rozwiązuje się, w wyniku otrzymując poszukiwane wielkości fizyczne w węzlach. 8. Dalsze kroki zależą od typu rozwiązywanego zadania, np. oblicza się dodatkowe wielkości, lub (dla zadań niestacjonarnych) powtarza się asemblację i następne kroki aż do spełnienia zadanych warunków. Rozwiązanie uzyskane w ten sposób jest oczywiście rozwiązaniem przybliżonym. Dokładne oszacowanie błędu aproksymacji jest niemożliwe ze względu na nieznajomość prawdziwego rozwiązania, jednak opierając się na postaci rozwiązywanego problemu, kształtach elementów skończonych i własnościach przestrzeni aproksymacji można ograniczyć go z góry w celu określenia jakości metody.

4 Etapy rozwiązywania problemu 7 Rysunek 3: Przykład zastosowania Adaptacyjnej MES: siatka adaptacyjna konstruowana tak, aby przeprowadzać poprawę aproksymacji tylko tam, gdzie jest ona najbardziej potrzebna. Ilustracja przedstawia diapir - strukturę geologiczną, powstałą w wyniku migracji skał ku powierzchni Ziemi. Zazwyczaj starsze skały o mniejszej gęstości przebijają skały młodsze (najczęściej osadowe) o gęstości większej. Struktury diapirowe mają najczęściej postać kominów, grzybów, ścian itp. Źródło: http://wija.ija.csic.es/gt/sergioz/fem/01 diapir 2-phases.gif

5 Adaptacyjna metoda elementów skończonych 8 5 Adaptacyjna metoda elementów skończonych Biorąc pod uwagę sposób w jaki szacujemy błąd aproksymacji istnieje możliwość zwiększenia precyzji metody przez zmniejszanie rozmiarów elementów skończonych i podnoszenie stopnia aproksymacji. Oczywiście wiąże się to z większym zapotrzebowaniem na moc obliczeniową rozwiązaniem jest oparcie się na znajomości zjawiska i wprowadzenie tych zmian lokalnie, w miejscach w których szczególnie zależy nam na zminimalizowaniu błędu (zobacz rys. 3). 6 Zagadnienia wielkiej skali jednak Dla uzyskania wysokiej dokładności obliczeń często konstruuje się modele o bardzo dużej liczbie stopni swobody, nierzadko przekraczającej milion. W celu rozwiązaniu tak dużych problemów stosuje się zaawansowane algorytmy o jak najmniejszej złożoności obliczeniowej oraz równoległe systemy komputerowe (klastry, gridy). 7 Etapy realizacji symulacji Pierwszym krokiem jest wybór bądź stworzenie modelu matematycznego zjawiska. Model taki jest następnie przekształcany w model numeryczny równania różniczkowe przekształcane są do postaci całkowej lub wariacyjnej, wybierane są techniki szacowania błędu. Następnym krokiem jest wybór algorytmów które posłużą do rozwiązywania układów równań, całkowania numerycznego, dyskretyzacji czasowej itp. Mając model numeryczny i algorytmy można przejść do implementacji wyboru struktur danych, sposobu realizacji, analizy architektury systemu komputerowego. Problem zostaje wymodelowany geometrycznie, zaprojektowana i nałożona zostaje siatka (istotny jest tutaj wybór kształtu elementu skończonego). Utworzony układ równań liniowych zostaje rozwiązany, a wyniki prezentowane są (najczęściej) w formie graficznej. 8 Struktura aplikacji Współczesne aplikacje komputerowego wspomagania projektowania CAE (ang. Computer Aided Engineering) wykorzystujące metodę elementów skończonych składają się z trzech wzajemnie współpracujących elementów: preprocesor służy m.in. do importu lub przygotowania geometrii, doboru rodzaju elementów skończonych, dyskretyzacji kontinuum, a także przyłożenia warunków brzegowych procesor (solver) - moduł przeznaczony do budowy oraz rozwiązania układu równań, na podstawie którego uzyskuje się poszukiwane wartości danych wielkości fizycznych postprocesor (moduł służący do prezentacji oraz wspomagania interpretacji uzyskanych wyników

9 Obszary zastosowań MES 9 9 Obszary zastosowań MES MES znalazła zastosowanie w rozmaitych dziedzinach nauki i inżynierii do aproksymacji podstawowych równań różniczkowych fizyki matematycznej: mechanika ciała odkształcalnego równania teorii sprężystości i plastyczności mechanika płynów równania Naviera - Stokesa akustyka równania falowe elektromagnetyzm równania Maxwella fizyka atomowa równania Schrödingera medycyna modelowanie implantów, pól fizycznych wewnątrz ciała człowieka, tkanek, przepływu krwi 10 Podsumowanie Modelowanie z wykorzystaniem MES pozwala rozwiązać problemy dla których wyznaczenie analitycznego rozwiązania jest często niemożliwe, jednak nie zastąpi całkowicie innych metod modelowania (np. fizycznego). W zasadzie powinno się używać - jeśli tylko to możliwe - kilku metod analizy jednocześnie w celu poprawnej analizy zagadnienia. Przy rozwiązywaniu problemu metodą elementów skończonych należy pamiętać że samo osiatkowanie modelu nie jest jedynym ważnym elementem modelowania (choć niewątpliwie bardzo istotnym z punktu widzenia chociażby dokładności wyników). Otrzymanie pierwszych wyników jest przeważnie łatwe, ale otrzymanie wyników dokładnych wiąże się z rozwiązaniem analitycznym problemu, o czym często się zapomina. Specjaliści radzą aby przed rozpoczęciem rozwiązywania danego problemu MES dobrze zrozumieć rzeczywisty proces. Ze względu na to, że MES jest matematyczną implementacją problemu fizycznego, należy znać założenia i ograniczenia modeli teoretycznych. Kompetentny użytkownik musi wiedzieć jak zachowują się poszczególne elementy a otrzymane wyniki powinny być sprawdzone aby mieć pewność że problem został opisany prawidłowo.

References 1. Z. Fortuna, B. Macukow, J. Wąsowski: Metody numeryczne, Wyd. Naukowo- Techniczne., Warszawa 1993. 2. A. Budzyński. Krótki wstęp do zastosowania Metody Elementów Skończonych do numerycznych obliczeń inżynierskich [online]. Dostępny w Internecie: www.knse.pl/publikacje/65.pdf 3. R. Cacko. Metoda elementów skończonych (MES), wykład z Modelowania Procesów Materiałowych [online]. Dostępny w Internecie: www.wip.pw.edu.pl/zop/mopma/wyklad3.pdf 4. K. Banaś. Metoda Elementów Skończonych [online]. Seminarium BIT CM UJ, 17 maja 2006. Dostępny w internecie: http://www.bit.cm-uj.krakow.pl/mes.pdf