Wykład 1. Wstęp. Rys historyczny. Rodzaje danych. Prezentacja danych. Zastosowania statystyki. Parametry opisowe

Podobne dokumenty
Wstęp do probabilistyki i statystyki. Wykład 1. Wstęp

Wstęp do probabilistyki i statystyki

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

Metody probabilistyczne

Rachunek prawdopodobieństwa- wykład 2

Zmienna losowa. Rozkład skokowy

Podstawy nauk przyrodniczych Matematyka

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Statystyka matematyczna

Statystyka matematyczna i ekonometria

Statystyka Astronomiczna

Wstęp do probabilistyki i statystyki Wykład 3. Prawdopodobieństwo i algebra zdarzeń

Statystyka matematyczna

Rachunek prawdopodobieństwa

(C. Gauss, P. Laplace, Bernoulli, R. Fisher, J. Spława-Neyman) Wikipedia 2008

Statystyka matematyczna

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Prawdopodobieństwo i statystyka Wykład I: Nieco historii

Rozkład materiału nauczania

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Zdarzenia losowe i prawdopodobieństwo

Wstęp. Kurs w skrócie

Rachunek prawdopodobieństwa i statystyka

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Statystyka w pracy badawczej nauczyciela

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

RACHUNEK PRAWDOPODOBIEŃSTWA - POJĘCIA WSTĘPNE MATERIAŁY POMOCNICZE - TEORIA

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

CZEŚĆ PIERWSZA. Wymagania na poszczególne oceny,,matematyka wokół nas Klasa III I. POTĘGI

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

STATYSTYKA OPISOWA Przykłady problemów statystycznych: - badanie opinii publicznej na temat preferencji wyborczych;

STATYSTYKA I DOŚWIADCZALNICTWO

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

Próba własności i parametry

RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

W2 Podstawy rachunku prawdopodobieństwa (przypomnienie)

Rachunek Prawdopodobieństwa MAP1181 Wydział Matematyki, Matematyka Stosowana Projekt - Paradoks kawalera de Mere Opracowanie: Paulina Rygiel

Rachunek Prawdopodobieństwa Anna Janicka

POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.

Wykład 2. Zdarzenia niezależne i prawdopodobieństwo całkowite

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

STATYSTYKA MATEMATYCZNA

Metody probabilistyczne

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Metody Statystyczne. Metody Statystyczne.

Wykład: 20 godz., ćwiczenia: 20 godz. Zasady zaliczenia: zaliczenie ćwiczeń na ocenę, zaliczenie wykładu - egzamin (pisemne).

Statystyka matematyczna dla leśników

Statystyka. Wykład 2. Magdalena Alama-Bućko. 27 lutego Magdalena Alama-Bućko Statystyka 27 lutego / 39

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

zdarzenie losowe - zdarzenie którego przebiegu czy wyniku nie da się przewidzieć na pewno.

Sposoby prezentacji problemów w statystyce

Prawdopodobieństwo i statystyka Wykład I: Przestrzeń probabilistyczna

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

I WYKŁAD STATYSTYKA. 5/03/2014 B8 sala 0.10B Godz. 15:15

Rachunku prawdopodobieństwa: rys historyczny, aksjomatyka, prawdopodobieństwo warunkowe,

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

Rachunek Prawdopodobieństwa Anna Janicka

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład Przedmiot statystyki

Statystyka i analiza danych pomiarowych Podstawowe pojęcia statystyki cz. 2. Tadeusz M. Molenda Instytut Fizyki, Uniwersytet Szczeciński

Biostatystyka, # 2 /Weterynaria I/

Statystyka z elementami rachunku prawdopodobieństwa

Z poprzedniego wykładu

Matematyczne Podstawy Kognitywistyki

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

STATYSTYKA OPISOWA. Przykłady problemów: - badanie opinii publicznej na temat preferencji wyborczych;

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

STATYSTYKA - PRZYKŁADOWE ZADANIA EGZAMINACYJNE

Rozkłady statystyk z próby

2. Lesław Gajek, Marek Kałuszka, Wnioskowanie statystyczne. Modele i metody. Dla studentów.

Matematyka z el. statystyki, # 2 /Geodezja i kartografia II/

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

Rachunek prawdopodobieństwa i statystyka matematyczna. Leszek Adamczyk Wykłady dla kierunku Fizyka Medyczna w semestrze letnim 2016/2017

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Rozkłady prawdopodobieństwa zmiennych losowych

TERMODYNAMIKA I FIZYKA STATYSTYCZNA

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 3

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

Zadania o numerze 4 z zestawów licencjat 2014.

Literatura. Podgórski J., Statystyka dla studiów licencjackich, PWE, Warszawa 2010.

Analiza danych. TEMATYKA PRZEDMIOTU

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

Doświadczenie i zdarzenie losowe

Podstawowe pojęcia. Własności próby. Cechy statystyczne dzielimy na

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

Katalog wymagań na poszczególne stopnie szkolne klasa 3

KURS PRAWDOPODOBIEŃSTWO

= A. A - liczba elementów zbioru A. Lucjan Kowalski

Statystyka matematyczna

Zagadnienia: wprowadzenie podstawowe pojęcia. Doświadczalnictwo. Anna Rajfura

Przedmiot statystyki. Graficzne przedstawienie danych.

Rachunek prawdopodobieństwa dla informatyków

Transkrypt:

Wstęp do probabilistyki i statystyki Wykład 1. Wstęp dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak Wstęp do probabilistyki i statystyki. wykład 1 1 Literatura: D.C. Montgomery, G.C. Runger, Applied Statistics and robability for Engineers, J. Wiley and Sons, Inc. A. lucińska, E. luciński, robabilistyka, rachunek prawdopodobieństwa, statystyka matematyczna, procesy stochastyczne, WNT, 2000 J. Jakubowski, R. Sztencel, Wstęp do teorii prawdopodobieństwa, SCRIT, 2000 R. Leitner, W. Żakowski, Matematyka-kurs przygotowawczy na wyższe uczelnie techniczne Wstęp do probabilistyki i statystyki. wykład 1 2 lan: Rys historyczny Rodzaje danych rezentacja danych Zastosowania statystyki arametry opisowe Wstęp do probabilistyki i statystyki. wykład 1 3 1

Czy zajmuje się probabilistyka i statystyka? Teoria prawdopodobieństwa (także rachunek prawdopodobieństwa lub probabilistyka) dział matematyki zajmujący się zdarzeniami losowymi. Zdarzenie losowe to wynik doświadczenia losowego. Doświadczenie losowe może być powtarzane dowolnie wiele razy w warunkach identycznych lub bardzo zbliżonych a jego wynik nie daje się przewidzieć jednoznacznie. Ll oznacza ile razy zaszło dane zdarzenie gdy doświadczenie powtarzano n razy rawidłowość statystyczna przy coraz większej liczbie doświadczeń losowych częstość zdarzenia dąży do pewnej stałej liczby Wstęp do probabilistyki i statystyki. wykład 1 4 Czy zajmuje się probabilistyka i statystyka? Rachunek prawdopodobieństwa zajmuje się badaniem abstrakcyjnych pojęć matematycznych stworzonych do opisu zjawisk, które nie są deterministyczne: 1. zmiennych losowych w przypadku pojedynczych zdarzeń oraz 2. procesów stochastycznych w przypadku zdarzeń powtarzających się (w czasie). Jako matematyczny fundament statystyki, teoria prawdopodobieństwa odgrywa istotną rolę w sytuacjach, w których konieczna jest analiza dużych zbiorów danych. Jednym z największych osiągnięć fizyki dwudziestego wieku było odkrycie probabilistycznej natury zjawisk fizycznych w skali mikroskopowej, co zaowocowało powstaniem mechaniki kwantowej. Statystyka zajmuje się metodami zbierania informacji (liczbowych) oraz ich analizą i interpretacją. Wstęp do probabilistyki i statystyki. wykład 1 5 Rys historyczny Matematyczna teoria prawdopodobieństwa sięga swoimi korzeniami do analizy gier losowych podjętej w siedemnastym wieku przez ierre de Fermata oraz Blaise ascala. Z tego powodu, początkowo teoria prawdopodobieństwa zajmowała się niemal wyłącznie zjawiskami dyskretnymi i używała metod kombinatorycznych. Zmienne ciągłe zostały wprowadzone do teorii prawdopodobieństwa znacznie później. Za początek stworzenia współczesnej teorii prawdopodobieństwa powszechnie uważa się jej aksjomatyzację, której w 1933 dokonał Andriej Kołmogorow. Wstęp do probabilistyki i statystyki. wykład 1 6 2

Rys historyczny Blaise ascal (1601-1662) XVII w., aryż, Francja Unieśmiertelnił kawalera de Méré oraz jego paradoks hazardowy prawdopodobieństwa wyrzucenia szóstek na jednej i dwóch kościach. Trójkąt ascala wykorzystywany przy potędze sumy Wstęp do probabilistyki i statystyki. wykład 1 7 Rys historyczny oczątek XVII w., Touluse, Francja ierre de Fermat (1601-1665) Badał właściwości liczb pierwszych, teorię liczb, równolegle opracował metodę współrzędnych w geometrii. Razem z ascalem stworzył podstawy pod współczesny rachunek prawdopodobieństwa. Wstęp do probabilistyki i statystyki. wykład 1 8 Rys historyczny XVIII-XIX w., aryż, Francja rzyjaciel Lagrange'a, uczeń Laplace'a na sławnej École olytechnique. Siméon-Denis oisson (1781-1840) oza zagadnieniami mechaniczno -fizycznymi zajmował się teorią prawdopodobieństwa. roces stochastyczny (podobnie jak pr. Markowa), rozkład oissona - dystrybuanta! Wstęp do probabilistyki i statystyki. wykład 1 9 3

Rys historyczny Carl Frederich Gauss (1777-1855) XVIII-XIX w., Getynga, Niemcy rofesor Universytetu w Getyndze Genialny matematyk, który już w dzieciństwie wyprzedzał umiejętnościami rówieśników (w szkole podstawowej jako jedyny rozwiązał zadanie nauczyciela - zsumowanie liczb 1 do 40 zauważając że jest to (40+1)*20) Rozkład normalny, zwany krzywą Gaussa Wstęp do probabilistyki i statystyki. wykład 1 10 aradoks kawalera de Méré De Méré, zapalony gracz w kości, dokonał obserwacji, że częściej wypada jedna szóstka przy 4 rzutach jedną kostką niż dwie szóstki przy 24 rzutach dwiema kostkami. Wg. (błędnej) logiki gracza: Na jednej kostce: 4 * 1/6 = 4/6 Na dwóch kostkach: 24 * 1/6 * 1/6 = 24/36 = 4/6 Zdarzenia wydają się mieć takie samo prawdopodobieństwo, dlaczego zatem hazardzista obserwował inny wynik? Wstęp do probabilistyki i statystyki. wykład 1 11 Rozwiązanie paradoksu de Méré rawidłowo obliczone prawdopodobieństwo owych zdarzeń: a) wyrzucenie co najmniej jednej szóstki przy 4 rzutach jedną kostką = 1 prawdopod. nie wyrzucenia żadnej szóstki przy 4 rzutach jedną kostką = 4 5 671 1 = 0,5177 6 1296 b) wyrzucenie co najmniej raz dwóch szóstek przy 24 rzutach dwiema kostkami = 1- prawdopod. niewyrzucenia dwóch szóstek przy 24 rzutach 2 kostkami = 24 35 1 36 0,4914 Wstęp do probabilistyki i statystyki. wykład 1 12 4

STATYSTYKA OISOWA ANALIZA DANYCH (DESCRITIVE STATISTICS) Organizacja danych odsumowanie danych rezentacja danych DEDUKCYJNA MODELOWANIE STOCHASTYCZNE ( STATISTICAL INFERENCE) odaje metody formułowania wniosków dotyczące obiektu badań (populacji generalnej) w oparciu o mniej liczny zbiór (próbę) GRAFICZNA NUMERYCZNA Wstęp do probabilistyki i statystyki. wykład 1 13 Typy danych ILOŚCIOWE (QUANTITATIVE, NUMERICAL) JAKOŚCIOWE (QUALITATIVE, CATEGORIAL) rzykłady: Zbiór ludzi Wiek Wzrost Wysokość zarobków Obliczenia pewnych parametrów, jak np. średnia arytmetryczna, mediana, ekstrema, mają sens rzykłady: łeć Stan cywilny Można przypisać różnym cechom arbitralne wartości liczbowe. Obliczenia parametrów nie mają sensu, można jedynie podawać np. udział procentowy Wstęp do probabilistyki i statystyki. wykład 1 14 Graficzna prezentacja danych x Ilość wystąpień Częstość względna 1 3 3/23 = 0,1304 2 5 5/23 = 0,2174 3 10 10/23 = 0,4348 Dane jakościowe można prezentować na wiele sposobów żeby zobrazować np. częstość występowania danej cechy 4 4 4/23 = 0,1739 5 1 1/23 = 0,0435 Razem: 23 1,0000 Wstęp do probabilistyki i statystyki. wykład 1 15 5

Graficzna prezentacja danych 1 0,13043478 Wykres kołowy 1 2 3 4 5 2 0,2173913 3 0,43 4 0,17391 5 0,04347826 17% 4% 13% 22% 44% Wstęp do probabilistyki i statystyki. wykład 1 16 Graficzna prezentacja danych 1 0,13043478 2 0,2173913 3 0,43 4 0,17391 5 0,04347826 0,45 0,4 0,35 0,3 Wykres kolumnowy 0,25 0,2 Serie1 0,15 0,1 0,05 0 1 2 3 4 5 Wstęp do probabilistyki i statystyki. wykład 1 17 Dane ilościowe Wyniki 34 pomiarów (np. wielkość ziaren w [nm], temperatura w kolejnych dniach o godz. 11:00 w [deg. C], czas rozmów telefonicznych w [min], itp. 3,6 13,2 12 12,8 13,5 15,2 4,8 12,3 9,1 16,6 15,3 11,7 6,2 9,4 6,2 6,2 15,3 8 8,2 6,2 6,3 12,1 8,4 14,5 16,6 19,3 15,3 19,2 6,5 10,4 11,2 7,2 6,2 2,3 Tak podane wartości są mało czytelne! Wstęp do probabilistyki i statystyki. wykład 1 18 6

Histogram Sporządzenie wykresu (histogramu): 1. Uporządkować zbiór wg. rosnących (lub malejących) wartości program Excel ma taką opcję. 2. Wyniki próby (o liczebności n) stanowią zbiór n-liczb (niekoniecznie różniących się od siebie). Celem ich ilustracji dzieli się je na klasy, tworząc tzn. szereg rozdzielczy. 3. Szerokość poszczególnych klas nie musi być taka sama, choć zwykle stosuje się klasy o tej samej szerokości 4. Ilość klas nie może być zbyt mała ani też zbyt liczna. Najbardziej optymalną liczbę klas 'k' określa reguła Sturge'a. Wstęp do probabilistyki i statystyki. wykład 1 19 Histogram 3 klasy 16 14 Częstość bezwględna 12 10 8 6 4 2 0 0 2 8 14 20 x Wstęp do probabilistyki i statystyki. wykład 1 20 Histogram 12 klas 8 7 6 Częstość bezwzględna 5 4 3 2 1 0 0 2 3,5 5 6,5 8 9,5 11 12,5 14 15,5 17 18,5 20 x Wstęp do probabilistyki i statystyki. wykład 1 21 7

Histogram 35 klas 8 7 6 Częstość bezwzględna 5 4 3 2 1 0 0 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 1010,51111,51212,51313,51414,51515,51616,51717,51818,51919,5 x Wstęp do probabilistyki i statystyki. wykład 1 22 Reguła Sturge'a k=1+3,3log 10 n Dla naszego przykładu: n= 34 k=5.59 6 Liczebność próbki, n Liczba klas, k < 50 5 7 50 200 7 9 200 500 9 10 500 1000 10-11 1000 5000 11 13 5000 50000 13 17 50000 < 17 20 Wstęp do probabilistyki i statystyki. wykład 1 23 Histogram optymalny 6 klas (optymalnie) 0,3 0,25 0,2 Częstość względna 0,15 0,1 0,05 0 0 2 5 8 11 14 17 20 x Wstęp do probabilistyki i statystyki. wykład 1 24 8

Hazard Zdecydowana większość gier losowych opiera się na prawdopodobieństwie zdarzenia......najprostszy, jak rzut monetą,......złożony, jak rozdanie pokera......oraz może być pod tym kątem analizowana. rawdopodobieństwo trafienia oczka Ilość unikatowych rozdań w pokerze...całkowicie losowy jak ruletka... Wstęp do probabilistyki i statystyki. wykład 1 25 Definicja klasyczna prawdopodobieństwa Każdemu zdarzeniu losowemu A przypisujemy liczbę (A), zwaną prawdopodobieństwem tego zdarzenia, taką że 0 (A) 1.» (Kolmogorov, 1933) rawdopodobieństwem zdarzenia A nazywamy stosunek liczby n a zdarzeń sprzyjających zdarzeniu A do liczby wszystkich zdarzeń N n a ( A ) = N ( Ω ) = 1 rzy czym A jest podzbiorem tzw. zdarzenia pewnego Ω. A Ω Wstęp do probabilistyki i statystyki. wykład 1 26 Definicja klasyczna prawdopodobieństwa rawdopodobieństwo sumy wzajemnie wykluczających się zdarzeń losowych A i B jest równe sumie prawdopodobieństw tych zdarzeń» (Kolmogorov, 1933) czyli: ( A B) = ( A) + ( B),gdzie A B = A B Wstęp do probabilistyki i statystyki. wykład 1 27 9

rzykład zdarzenia losowego Rzucamy monetą dwa razy. Możliwe wyniki to: (o, o) wyrzucenie dwóch orłów (o, r) wyrzucenie orła, a potem reszki (r, o) wyrzucenie reszki, a potem orła (r, r) wyrzucenie dwóch reszek Zatem zbiór: E={(o, o); (o, r) ; (r, o); (r, r)} jest zbiorem zdarzeń elementarnych. Jeżeli zbiór zdarzeń elementarnych ma E ma n-elementów to zdarzeń losowych jest 2 n Wstęp do probabilistyki i statystyki. wykład 1 28 rzykład zdarzenia losowego W tej sytuacji możliwych jest 2 4 zdarzeń losowych. Niektóre zdarzenia losowe, np.: A = {(o,o); (o,r); (r,o)} wyrzucenie co najmniej 1 orła B = {(o,o); (o,r);} - orzeł w pierwszym rzucie G = {(o,o);} - wyrzucenie dwóch orłów H = {(o,r); (r,o)} wyrzucenie dokładnie jednej reszki Wstęp do probabilistyki i statystyki. wykład 1 29 Relacje zdarzeń Suma zdarzeń zachodzi co najmniej jedno ze zdarzeń A,B A B A B Iloczyn zdarzeń zachodzi zdarzenie A oraz zdarzenie B A B A A BB A B Wstęp do probabilistyki i statystyki. wykład 1 30 10

Relacje zdarzeń Zdarzenie przeciwne nie zachodzi zdarzenie A A' Zdarzenie A pociąga zdarzenie B (operator: zbiór A zawiera się w zbiorze B) A B Zdarzenia A i B wykluczające się A B = Wstęp do probabilistyki i statystyki. wykład 1 31 Rzut kostką Rzut kostką: wynik od 1 do 6 oczek. rawdopodobieństwo wyrzucenia czterech oczek: 1/6 (teoria) Wstęp do probabilistyki i statystyki. wykład 1 32 Rzut kością 3 rzuty: 4, 5, 4 10 rzutów: 4, 4, 5, 3, 2, 6, 1, 2, 2, 4 1000 rzutów: 4,5,4,3,1,5,1,2,1,3,2,2,6,6,5,4,... (wyrzucenie 4: 2/3 >> 1/6) (wyrzucenie 4: 3/10 > 1/6) (wyrzucenie 4: ~1/6) Częstość zdarzenia zmierza do wartości prawdopodobieństwa dopiero przy wielokrotnym powtórzeniu. Wstęp do probabilistyki i statystyki. wykład 1 33 11

Ogólna (aksjomatyczna) definicja prawdopodobieństwa. Zakładamy, że zdarzenia losowe A i B są podzbiorami tego samego zbioru zdarzeń elementarnych E. Def. Jeśli każdemu zdarzeniu losowemu A przyporządkowano liczbę rzeczywistą (A) zwaną prawdopodobieństwem zdarzenia A, w taki sposób, aby spełnione były następujące warunki: I 0 (A) 1 II prawdopodobieństwo zdarzenia pewnego jest równe 1 (E)=1 III prawdopodobieństwo sumy dwóch wykluczających się zdarzeń jest równe sumie prawdopodobieństw tych zdarzeń ( A B) = ( A) + ( B),gdzie A B = to określoną w ten sposób funkcję nazywamy prawdopodobieństwem Wstęp do probabilistyki i statystyki. wykład 1 34 rawdopodobieństwo warunkowe Ogólna definicja: ( ) ( A B ) A B = ( B ) (rzy czym (B) > 0 (tj. zdarzenie B musi być jakkolwiek prawdopodobne) Efektywnie, każde prawdopodobieństwo jest warunkowe: np. dla danych zdarzeń A i B: A B = A B B ( A) = ( A Ω) ( A B) = 0 ( ) ( A) A B = ( B) A ( A B) = 1 Wstęp do probabilistyki i statystyki. wykład 1 35 Kostka przykład 1 Rzucamy trzema kostkami 6-cio-ściennymi. Wiemy, że na każdej kostce wypadła inna liczba oczek. Jakie jest prawdopodobieństwo że na jednej kostce wypadło 5 pod warunkiem że na każdej kostce wypadła inna liczba? ( A B) ( A B) ( B) = 5 4 3 = Ω 6 5 4 = Ω ( A B) 5 4 3Ω = ( B) 6 5 4 Ω Wstęp do probabilistyki i statystyki. wykład 1 36 12

Telekomunikacja Obciążenie sieci telekomunikacyjnej w ciągu dnia: przesyłanie danych w Internecie ilość wykonanych połączeń telefonicznych (Źródło: http://rrdtool.cs.pu.edu.tw/gallery/index.en.html) Wstęp do probabilistyki i statystyki. wykład 1 37 Epidemiologia Statystyka umożliwia analizę i modelowanie rozwoju chorób oraz pomaga zapobiegać epidemiom. Statystyka medyczna, np. średnia liczba zachorowań w regionie Statystyka społeczna, np. gęstość zaludnienia Statystyka gospodarcza, np. KB, wydatki na opiekę zdrowotną Liczba zachorowań na świńską grypę w roku 2009 w USA (Źródło: http://commons.wikimedia.org) Wstęp do probabilistyki i statystyki. wykład 1 38 Meteorologia Modele pogodowe umożliwiające przewidywanie pogody oraz wykrywanie potencjalnych kataklizmów, np. huraganów (Źródło:stormdebris.net/Math_Forecasting.html) Wstęp do probabilistyki i statystyki. wykład 1 39 13