MES w zagadnieniach sprężysto-plastycznych Jerzy Pamin e-mail: JPamin@L5.pk.edu.pl Podziękowania: P. Mika, A. Winnicki, A. Wosatko ADINA R&D, Inc.http://www.adina.com ANSYS, Inc. http://www.ansys.com TNO DIANA http://www.tnodiana.com FEAP http://www.ce.berkeley.edu/feap
Tematyka zajęć Nieliniowość fizyczna Teoria plastycznego płynięcia Zastosowania - deformacje plastyczne Uwagi końcowe Literatura [1] R. de Borst and L.J. Sluys. Computational Methods in Nonlinear Solid Mechanics. Lecture notes, Delft University of Technology, 1999. [2] G. Rakowski, Z. Kacprzyk. Metoda elementow skończonych w mechanice kostrukcji. Oficyna Wyd. PW, Warszawa, 2005. [3] M. Jirásek and Z.P. Bažant. Inelastic Analysis of Structures. J. Wiley & Sons, Chichester, 2002.
Analiza przyrostowo-iteracyjna Nieliniowy problem: f ext przykładane w przyrostach t t + t σ t+ t = σ t + σ Równowaga w chwili t + t: n e A e T gdzie: e=1 n e A e T e=1 B T σ t+ t dv = fext t+ t V e B T σ dv = fext t+ t V e f t int = n e e=1 Ae T V e B T σ t dv Linearyzacja lewej strony w chwili czasu t: Układ równań dla przyrostu: σ = σ( ɛ( u)) K u g = f t+ t ext f t int f t int
Nieliniowość fizyczna K u g = f t+ t ext Linearyzacja lewej strony w chwili czasu t: σ = ( ) σ t ( ɛ t ɛ u) u D = σ ɛ, L = ɛ u Dyskretyzacja: u = N u e f t int σ = σ( ɛ( u)) Liniowe związki geometryczne macierz dyskretnych związków kinematycznych B = LN niezależna od przemieszczeń Styczna macierz sztywności n e K = A e T B T D B dv A e V e e=1
Uplastycznienie materiału siła A B C P σ y - A σ y B σ y - - C + + + przemieszczenie σ y σ y σ y zakres sprężysty pełne uplastycznienie zakres sprężysty pełne uplastycznienie
Teoria płynięcia plastycznego [1,3] Nośność materiału nie jest nieskończona, przy deformacji powstają odkształcenia trwałe Pojęcia teorii plastyczności Funkcja plastyczności f (σ) = 0 - określa granicę zachowania sprężystego Prawo płynięcia plastycznego ɛ p = λm - określa prędkość odkształceń plastycznych λ - mnożnik plastyczny m - kierunek płynięcia plastycznego (zazwyczaj stowarzyszony z funkcją płynięcia m T = n T = f σ ) Wzmocnienie plastyczne f (σ α, κ) 0 kinematyczne (κ = 0) lub izotropowe (α = 0) Warunki obciążenie-odciążenie: f 0, λ 0, λf = 0 (odciążenie jest sprężyste)
Teoria płynięcia plastycznego Deformacja materiału zależy od historii obciążenia, zatem związki konstytutywne są zapisywane w prędkościach. Płynięcie plastyczne gdy f = 0 i ḟ = 0 (warunek zgodności plastycznej) Dekompozycja addytywna ɛ = ɛ e + ɛ p Odwzorowanie bijekcyjne σ = D e ɛ e Wykorzystując prawo płynięcia σ = D e ( ɛ λm) Zgodność procesu plastycznego ḟ = f f σ σ + κ κ Moduł wzmocnienia f κ κ h = 1 λ Podstawiając σ do równ. zgodności n T σ h λ = 0 oblicza się mnożnik plastyczny λ = nt D e ɛ h+n T D e m Macierzowe równanie konstytutywne [ ] σ = D e De mn T D e ɛ h+n T D e m Operator styczny D ep = D e De mn T D e h+n T D e m Całkowanie po czasie niezbędne na poziomie punktu
Teoria Hubera-Misesa-Hencky ego Najczęściej stosowana jest teoria Hubera-Misesa-Hencky ego (H-M-H), oparta na skalarnej mierze energii odkształcenia postaciowego. Dla małych odkształceń zakłada się addytywność ich przyrostów: ɛ = ɛ e + ɛ p Funkcja płynięcia np. ze wzmocnieniem izotropowym f (σ, κ) = 3J σ 2 σ(κ) = 0 κ - miara odkształcenia plastycznego ( κ = 1 σ σt ɛ p = λ) Prawo płynięcia plastycznego ɛ p = λ f σ Prawo wzmocnienia izotropowego np. liniowe σ(κ) = σ y + hκ h - moduł wzmocnienia
Wykresy siła-przemieszczenie Idealna plastyczność Plastyczność ze wzmocnieniem
Teoria plastycznego płynięcia Funkcje plastyczności dla metali: Coulomba-Tresci-Guesta i Hubera-Misesa-Hencky ego Funkcje plastyczności niezależne od ciśnienia
Teoria plastycznego płynięcia Funkcje plastyczności dla gruntów: Mohra-Coulomba i Burzyńskiego-Druckera-Pragera Funkcje plastyczności zależne od ciśnienia
Powierzchnie plastyczności dla betonu Płaski stan naprężenia Eksperyment Kupfera Funkcja plastyczności Rankine a: f (σ, κ) = σ 1 σ(κ) = 0 Miara odkształcenia zarysowania κ = ɛ p 1
Algorytm komputerowej plastyczności Algorytm powrotnego odwzorowania algorytm Eulera wstecz (bezwarunkowo stabilny) 1. Obliczyć sprężysty predyktor σ tr = σ t + D e ɛ 2. Sprawdzić, czy f (σ tr, κ t ) > 0? Jeśli nie, to stan sprężysty σ = σ tr Jeśli tak, to stan plastyczny, obliczyć plastyczny korektor σ = σ tr λd e m(σ) f (σ, κ) = 0 (układ 7 równań nieliniowych na σ, λ) Obliczyć κ = κ t + κ( λ) σ t f = 0 σ σ tr Iteracyjne poprawki są konieczne, chyba, że powrót odbywa się po promieniu i wzmocnienie jest liniowe.
Brazylijski test rozłupywania Sprężystość, płaski stan odkształcenia Deformacje, naprężenie pionowe σ yy i niezmiennik naprężenia J σ 2
Brazylijski test rozłupywania Sprężystość, zależność naprężeń od siatki Naprężenia σ yy dla rzadkiej i gęstej siatki Naprężenia pod siłą zmierzają do nieskończoności (zależność rozwiązania od gęstości siatki) - rozwiązanie sprzeczne z fizyką
Brazylijski test rozłupywania Idealna plastyczność H-M-H Końcowa deformacja i naprężenie σ yy
Brazylijski test rozłupywania Idealna plastyczność H-M-H Końcowe odkształcenie ɛ yy i niezmiennik J ɛ 2
Brazylijski test rozłupywania Idealna plastyczność H-M-H 800 800 600 600 Force 400 Force 400 200 200 This is correct! 0 0 0.2 0.4 0.6 0.8 1 Displacement 0 0 0.2 0.4 0.6 0.8 1 Displacement Dla elementu czterowęzłowego wykres siła-przemieszczenie wykazuje wzmocnienie na skutek blokady objętościowej, bo plastyczność H-M-H zawiera więz nieściśliwości plastycznej, którego nie potrafi odtworzyć poprawnie model MES Element ośmiowęzłowy nie wykazuje blokady
Brazylijski test rozłupywania Sprężystość, płaski stan odkształcenia, elementy 8-węzłowe Deformacje, naprężenie pionowe σ yy i niezmiennik naprężenia J σ 2
Brazylijski test rozłupywania Idealna plastyczność H-M-H Końcowa deformacja i naprężenie σ yy
Brazylijski test rozłupywania Idealna plastyczność H-M-H Końcowe odkształcenie ɛ yy i niezmiennik J ɛ 2
Plastyczność Burzyńskiego-Druckera-Pragera Funkcja plastyczności ze wzmocnieniem izotropowym f (σ, κ) = q + α p βc p (κ) = 0 q = 3J 2 - dewiatorowa miara napr. p = 1 3 I 1 - ciśnienie hydrostatyczne α = 6 sin ϕ 3 sin ϕ, β = 6 cos ϕ 3 sin ϕ ϕ - kąt tarcia wewnętrznego c p (κ) - kohezja Potencjał plastyczny f p = q + α p α = 6 sin ψ 3 sin ψ ψ - kąt dylatacji Niestowarzyszone prawo płynięcia ɛ p = λm, m = f p σ Miara odkształceń plastycznych κ = η λ, η = (1 + 2 9 α 2 ) 1 2 Moduł wzmocnienia kohezji h(κ) = ηβ cp κ HMH BDP Dla sin ϕ = sin ψ = 0 otrzymuje się funkcję Hubera- Misesa-Hencky ego. q c p ϕ p
Symulacja niestateczności zbocza Gradientowa plastyczność Burzyńskiego-Druckera-Pragera Ewolucja miary odkształceń plastycznych
Uwagi końcowe 1. Konsystentna linearyzacja równań zapewnia kwadratową zbieżność procedury Newtona-Raphsona. 2. W projektowaniu akceptuje się zazwyczaj połączenie liniowo sprężystych obliczeń statycznych celem wyznaczenia naprężeń (sił przekrojowych) z analizą stanów granicznych uwzględniających uplastycznienie lub zarysowanie. 3. W obliczeniach nieliniowych szacuje się mnożnik obciążenia, przy którym następuje uszkodzenie/zniszczenie/utrata stateczności konstrukcji - ma on interpretację globalnego współczynnika bezpieczeństwa, więc obliczenia powinno się prowadzić dla średnich wartości obciążeń i wytrzymałości.