ZASTOSOWANIE ALTENATYWNYCH ROZPUSZCZALNIKÓW W PROCESACH LEKKIEJ SYNTEZY ORGANICZNEJ

Podobne dokumenty
NOWOCZESNE TECHNOLOGIE Z ZASTOSOWANIEM CIECZY JONOWYCH I KATALIZY PRZENIESIENIA MIĘDZYFAZOWEGO

TECHNOLOGIE Z ZASTOSOWANIEM CIECZY JONOWYCH ORAZ KATALIZY PRZENIESIENIA MIĘDZYFAZOWEGO

Zielone rozpuszczalniki ciecze jonowe

PL B1. POLITECHNIKA POZNAŃSKA, Poznań, PL BUP 24/09. JULIUSZ PERNAK, Poznań, PL OLGA SAMORZEWSKA, Koło, PL MARIUSZ KOT, Wolin, PL

POLITECHNIKA POZNAŃSKA,

PL B1. Symetryczne czwartorzędowe sole imidazoliowe, pochodne achiralnego alkoholu monoterpenowego oraz sposób ich wytwarzania

Synteza eteru allilowo-cykloheksylowego w reakcji alkilowania cykloheksanolu bromkiem allilu w warunkach PTC.

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Katedra Chemii Organicznej. Przemysłowe Syntezy Związków Organicznych Ćwiczenia Laboratoryjne 10 h (2 x5h) Dr hab.

Wykład 3. Zielona chemia (część 2)

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 05/12. JOANNA FEDER-KUBIS, Wrocław, PL ADAM SOKOŁOWSKI, Wrocław, PL

Wpływ czynników utleniających na przebieg modelowego procesu utleniania cykloheksanolu i cykloheksanonu

PL B1. Ciecze jonowe pochodne heksahydrotymolu oraz sposób wytwarzania cieczy jonowych pochodnych heksahydrotymolu

Odkrycie. Patentowanie. Opracowanie procesu chemicznego. Opracowanie procesu produkcyjnego. Aktywność Toksykologia ADME

1 ekwiwalent 2 ekwiwalenty 2 krople

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH: PROCESY ESTRYFIKACJI NA PRZYKŁADZIE OTRZYMYWANIA WYBRANYCH PLASTYFIKATORÓW

Kryteria oceniania z chemii kl VII

Technologia Chemiczna II st. od roku akad. 2015/2016

1 ekwiwalent 1,45 ekwiwalenta 0,6 ekwiwalenta

1 ekwiwalent 1 ekwiwalent

KWAS 1,2-DIBROMO-2-FENYLOPROPIONOWY

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

PL B1. Trzeciorzędowe słodkie sole imidazoliowe oraz sposób wytwarzania trzeciorzędowych słodkich soli imidazoliowych

Wpływ wybranych czynników na efektywność procesu

PL B1. Ciecze jonowe z kationem trimetylowinyloamoniowym i anionem organicznym oraz sposób ich otrzymywania. POLITECHNIKA POZNAŃSKA, Poznań, PL

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

PL B1. POLITECHNIKA POZNAŃSKA, Poznań, PL BUP 26/11. JULIUSZ PERNAK, Poznań, PL BEATA CZARNECKA, Poznań, PL ANNA PERNAK, Poznań, PL

Oranż β-naftolu; C 16 H 10 N 2 Na 2 O 4 S, M = 372,32 g/mol; proszek lub

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Chemia klasa VII Wymagania edukacyjne na poszczególne oceny Semestr II

PL B1. Bromki 1-alkilochininy, sposób ich otrzymywania oraz zastosowanie jako antyelektrostatyki. POLITECHNIKA POZNAŃSKA, Poznań, PL

VIII Podkarpacki Konkurs Chemiczny 2015/2016

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

chemia wykład 3 Przemiany fazowe

Węglowodory poziom podstawowy

1 ekwiwalent 6 ekwiwalentów 0,62 ekwiwalentu

Chemia Organiczna Syntezy

1 ekwiwalent 4 ekwiwalenty 5 ekwiwalentów

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Recykling surowcowy odpadowego PET (politereftalanu etylenu)

Sposób otrzymywania tetraalkiloamoniowych cieczy jonowych z anionem tripolifosforanowym i ich zastosowanie jako deterentów pokarmowych

Chemia. 3. Która z wymienionych substancji jest pierwiastkiem? A Powietrze. B Dwutlenek węgla. C Tlen. D Tlenek magnezu.

1 ekwiwalent 0,85 ekwiwalentu 1,5 ekwiwalentu

SZCZEGÓŁOWE KRYTERIA OCENIANIA Z CHEMII DLA KLASY II GIMNAZJUM Nauczyciel Katarzyna Kurczab

PL B1. ADAMED SPÓŁKA Z OGRANICZONĄ ODPOWIEDZIALNOŚCIĄ, Pieńków, PL BUP 20/06

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII... DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje wojewódzkie

1 ekwiwalent 1 ekwiwalent

Wojewódzki Konkurs Przedmiotowy z Chemii dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2010/2011

Lista materiałów dydaktycznych dostępnych w Multitece Chemia Nowej Ery dla klasy 7

CZYNNIKI WPŁYWAJĄCE NA SZYBKOŚĆ REAKCJI CHEMICZNYCH. ILOŚCIOWE ZBADANIE SZYBKOŚCI ROZPADU NADTLENKU WODORU.

Hydrofobowe, czwartorzędowe azotany (V) dimetyloamoniowe oraz sposób wytwarzania hydrofobowych, czwartorzędowych azotanów (V) dimetyloamoniowych

Ćwiczenie 3. Otrzymywanie i badanie właściwości chemicznych alkanów, alkenów, alkinów i arenów.

XXIV KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2016/2017

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2016/2017 eliminacje rejonowe

TECHNIKA KATALIZY PRZENIESIENIA ORGANICZNEJ

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów

Zestaw pytań egzaminu inŝynierskiego przeprowadzanego w Katedrze Fizykochemii i Technologii Polimerów dla kierunku CHEMIA

KONKURS CHEMICZNY DLA UCZNIÓW GIMNAZJÓW. Eliminacje rejonowe II stopień

Pochodne węglowodorów, w cząsteczkach których jeden atom H jest zastąpiony grupą hydroksylową (- OH ).

XXI Regionalny Konkurs Młody Chemik FINAŁ część I

Zadanie 2. (0 1) W tabeli podano rodzaje mieszanin oraz wybrane sposoby ich rozdzielania. Rodzaj mieszaniny Metoda rozdzielania mieszaniny

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Wykład 8B. Układy o ograniczonej mieszalności

Zadanie: 1 (1pkt) Zadanie: 2 (1 pkt)

Cel główny: Uczeń posiada umiejętność czytania tekstów kultury ze zrozumieniem

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek

Fotochromowe kopolimery metakrylanu butylu zawierające pochodne 4-amino-N-(4-metylopirymidyn-2-ilo)benzenosulfonamidu i sposób ich otrzymywania

Aminy. - Budowa i klasyfikacja amin - Nazewnictwo i izomeria amin - Otrzymywanie amin - Właściwości amin

ZWIĄZKI FOSFOROORGANICZNE

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

b) Podaj liczbę moli chloru cząsteczkowego, która całkowicie przereaguje z jednym molem glinu.

Wymagania edukacyjne na poszczególne roczne oceny klasyfikacyjne z przedmiotu chemia dla klasy 7 w r. szk. 2019/2020

Powtórzenie wiadomości z kl. I

KETAL ETYLENOWY ACETYLOOCTANU ETYLU

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie OLIMPIADA O DIAMENTOWY INDEKS AGH 2017/18 CHEMIA - ETAP I

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

Spis treści. Wstęp... 9

Inżynieria Środowiska

CHEMIA SRODKÓW BIOAKTYWNYCH I KOSMETYKÓW

Realizacja wymagań szczegółowych podstawy programowej w poszczególnych tematach podręcznika Chemia Nowej Ery dla klasy siódmej szkoły podstawowej

Realizacja wymagań szczegółowych podstawy programowej z chemii dla klasy siódmej szkoły podstawowej

Laboratorium. Podstawowe procesy jednostkowe w technologii chemicznej

Otrzymywanie halogenków alkilów

2. Podczas spalania 2 objętości pewnego gazu z 4 objętościami H 2 otrzymano 1 objętość N 2 i 4 objętości H 2O. Jaki gaz uległ spalaniu?

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

PL B1. UNIWERSYTET IM. ADAMA MICKIEWICZA W POZNANIU, Poznań, PL BUP 24/17

Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna

PL B1. Ciecze jonowe z kationem di(tallowoiloksyetylo)dimetyloamoniowym oraz sposób ich otrzymywania. POLITECHNIKA POZNAŃSKA, Poznań, PL

stożek tulejka płaskie stożkowe kuliste Nominalna długość powierzchni szlifowanej 14/ / /32 29.

Zadanie 1. [ 3 pkt.] Uzupełnij zdania, wpisując brakującą informację z odpowiednimi jednostkami.

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

Zadanie 1. (3 pkt) a) Dokończ poniższe równanie reakcji (stosunek molowy substratów wynosi 1:1).

Zakład Chemii Organicznej, Wydział Chemii UMCS Strona 1

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

WYZNACZANIE ROZMIARÓW

PL B1. Instytut Chemii Przemysłowej im.prof.ignacego Mościckiego,Warszawa,PL BUP 07/06

Biopaliwo do silników z zapłonem samoczynnym i sposób otrzymywania biopaliwa do silników z zapłonem samoczynnym. (74) Pełnomocnik:

Transkrypt:

PLITECHIKA ŚLĄSKA WYDZIAŁ CHEMICZY KATEDA TECHLGII CHEMICZEJ GAICZEJ I PETCHEMII ISTUKCJA D ĆWICZEŃ LABATYJYCH: ZASTSWAIE ALTEATYWYCH ZPUSZCZALIKÓW W PCESACH LEKKIEJ SYTEZY GAICZEJ Laboratorium z przedmiotu: Technologia lekkiej syntezy organicznej Kierunek: Chemia Stopień: II Semestr: I Miejsce ćwiczeń: Chemia I, p. 209 Prowadzący: Karolina Matuszek karolina.matuszek@polsl.pl p. 219 1 1

Spis treści Ciecze jonowe... 3 1. Wstęp... 3 2. Ciecze jonowe... 3 Instrukcja do ćwiczeń... 12 Ćwiczenie 1 trzymywanie cieczy jonowych... 12 Procedura otrzymywania tetrafluoroboranu 1-butylo-3-metyloimidazo-liowego [BMIM][B 4]... 13 Procedura otrzymywania tetrafluoroboranu 1-butylo-3-metyloimidazoliowego [BMIM][B 4]... 13 Procedura otrzymywania heksafluorofosforanu 1-heksylo-3metyloimidazoliowego [HMIM][P 6]... 14 Procedura otrzymywania octanu 1-metyloimidazoliowego [Hmim][Ac]... 14 2

Ciecze jonowe 1. Wstęp We współczesnej produkcji chemicznej szczególny nacisk kładzie się na zagadnienia związane z czystością technologii. Stale poszukiwane są nowoczesne metody produkcji, w trakcie których powstaje możliwie mało uciążliwych odpadów, a technologie są surowco- i energooszczędne. Wśród tych tendencji wyraźną rolę odgrywają dwa zagadnienia. Pierwsze związane jest z katalizą przeniesienia międzyfazowego (PTC), drugie natomiast z zastosowaniem cieczy jonowych (IL) jako środowiska wybranych procesów chemicznych. Zarówno procesy z udziałem katalizy PT jak i cieczy jonowych stosowane są na mniejszą skalę do produkcji związków z grupy fine chemicals. 2. Ciecze jonowe a przestrzeni ostatnich lat wzrosło zainteresowanie tzw. "zieloną chemią", chemią ekologiczną, przyjazną środowisku. Praktycznie oznacza to, że wykształciło się nowe podejście do zagadnienia syntezy, przeróbki i wykorzystania związków chemicznych, związane ze zmniejszeniem zagrożenia dla zdrowia człowieka i środowiska. Duże zagrożenie dla środowiska naturalnego stanowią rozpuszczalniki organiczne stosowane w syntezach realizowanych w skali przemysłowej. Są one często toksyczne oraz łatwopalne. Dostają się one do środowiska w wyniku parowania (dotyczy to lotnych rozpuszczalników określanych akronimem VC (Volatile rganic Compounds) oraz wycieków. Emisja tych związków jest znacząca, ponieważ ilości stosowanych rozpuszczalników znacznie przekraczają ilości reagentów. Wartość rocznego zużycia rozpuszczalników w przemyśle chemicznym, petrochemicznym i farmaceutycznym na świecie wynosi około 5 bilionów USD. Dla celów oceny uciążliwości procesu wyprowadzono współczynnik E-factor, który jest zdefiniowany jako stosunek ilości powstałych produktów ubocznych do produktu pożądanego w danym procesie. W tabeli 1 zestawiono emisje rozpuszczalników w różnych gałęziach przemysłu. Im większy jest ten współczynnik tym bardziej proces jest uciążliwy dla środowiska. Z tabeli 1 wynika, że modne ostatnio produkcje małotonażowe, w tym synteza lekka i przemysł farmaceutyczny emitują najwięcej zanieczyszczeń dla środowiska. 3

Tabela 1. Dystrybucja VC w przemyśle chemicznym. Produkcja Przemysł E-faktor (tony/rok) Petrochemiczny 10 6-10 8 0.1 Tworzyw sztucznych 10 4-10 6 1-5 Lekka synteza 10 2-10 4 5-50 armaceutyczny 10 1-10 3 25-100 Tak więc nowe opracowania syntez związków o praktycznym zastosowaniu zmierzają między innymi do zastąpienia związków z grupy VC, nieszkodliwymi dla człowieka i środowiska mediami. Związki z grupy cieczy jonowych, które między innymi zaliczane są do nowoczesnych rozpuszczalników w pełni spełniają te wymagania. Zainteresowanie cieczami jonowymi gwałtownie wzrosło w 2000 roku o czym świadczy stale rosnąca ilość publikacji i prac przeglądowych na temat syntezy i zastosowania tych związków. Ciecze jonowe (ionic liquids ILs) to sole zawierające organiczny i nieorganiczny lub organiczny anion, o temperaturach topnienia niższych niż 100 o C. W ostatnim czasie obserwuje się duże zainteresowanie wykorzystaniem cieczy jonowych jako alternatywnych, rozpuszczalników zarówno w procesach z udziałem katalizatora jak i bezkatalitycznych. Związki te bardzo dobrze rozpuszczają wiele substancji organicznych, nieorganicznych i metaloorganicznych, w tym również gazów. Charakteryzuje je wysoka stabilność termiczna oraz szeroki zakres temperatur, w których związki te są cieczami. Czynniki te powodują, że ciecze jonowe są interesującymi rozpuszczalnikami o coraz większym znaczeniu technologicznym. 2.1 Budowa cieczy jonowych ajprawdopodobniej pierwszą ciecz jonową- azotan etyloamoniowy [ETH3] + [3] opisał Walden w 1914, ale intensywne zainteresowanie tymi związkami rozpoczęło się dopiero od 1998r. azwa ciecze jonowe wyraźnie wskazuje, że podobnie jak wszystkie sole mają one budowę jonową. Szczególną cechą ich struktury, która odróżnia ciecze jonowe od klasycznych soli, jest wyłącznie organicznego pochodzenia. Do najpopularniejszych ów występujących w cieczach jonowych można zaliczyć: 4

+ 1,3-dialkiloimidazoliowy + 1-alkilopirydyniowy izochinolinowy + + + S + + 1,8-diazobicyklo[5,4,0]liowy tiazoliowy soli tetraalkiloamoniowej [ 4 ] + [P 4 ] + [S 3 ] + soli tetraalkiloamoniowej tetraalkilofosfoniowy sulfidoliowy Wśród grup oznaczonych na schemacie jako, największą rolę odgrywają prostołańcuchowe podstawniki alkilowe. Podstawniki o rozgałęzionym łańcuchu węglowym występują rzadziej. Charakter anionu wchodzącego w skład cieczy jonowej może być zarówno pochodzenia organicznego, jak i nieorganicznego. Przede wszystkim mogą to być proste aniony halogenkowe: Cl-, Br- oraz I-. Historycznie pierwszymi anionami były takie aniony, jak [AlCl4]-, [Al2Cl7]- oraz [Al3Cl10]-. Innymi powszechnie spotykanymi anionami nieorganicznymi są aniony zawierające fluor, a wśród nich tetrafluoroboranowy [B4] - oraz heksafluorofosforanowy [P6] -. Do innych anionów można zaliczyć: C S - anion trifluorometanosulfonowy - S S C C anion di-(trifluorometanosulfono)imidowy C C anion - trifluorooctanowy C H 3 S - - S CH 3 - S CH 3 anion anion anion metanosulfonowy n-oktylosiarczanowy metylosiarczanowy 5

2.2 Synteza cieczy jonowych Synteza 1,3-dialkiloimidazoliowej cieczy jonowej przebiega wg następujących etapów: H imidazol 1. aet 2. X 1-alkiloimidazol 'X halogenek [X] - + ' 1,3-dialkiloimidazoliowy +[MX n ] + [M] + [Y] - kwas Lewisa + ciecz jonowa 1,3-dialkiloimidazoliowa [Y] - + [M] + [X] - (s) ' + ciecz jonowa 1,3-dialkiloimidazoliowa [MX n+1 ] - ' Ciecze jonowe otrzymywane są trzema znanymi metodami: Synteza soli z substratów posiadających tylko wiązania kowalencyjne. W wyniku reakcji powstaje wiązanie kowalencyjne: + C 3 S 3 CH 3 + W tym przypadku najprościej jest zastosować aminę trzeciorzędową i odpowiedni czynnik czwartorzędujący. Jest to reakcja substytucji nukleofilowej przebiegająca według mechanizmu S2, z niewielkim egzotermicznym efektem cieplnym. Po raz pierwszy została opisana przez Menschutkina i do dziś znana jako reakcja Menschutkina. Kolejna metoda polega na wymianie anionu soli o charakterze nieorganicznym, posiadającej wiązania jonowe. Wymianę tą, można prowadzić zarówno przy użyciu kwasu Broensteda jak i soli metali: 3 Cl - + 1 2 3 + 2 Cl - 1 + 3 + - MB 4 B 4 + 2 1 MCl + HB 4 3 + - B 4 + HCl 2 1 6

statnia metoda polega na bezpośredniej kombinacji najczęściej dwóch ciał stałych, np. czwartorzędowego chlorku amoniowego z AlCl3 (kwasem Lewisa): 3 + 3 + Cl - xalcl + - 3 Al x Cl 3x+1 2 2 1 1 eakcję tą należy prowadzić ostrożnie, pod stałą kontrolą, gdyż proces ten jest silnie egztermiczny. 2.3 Właściwości cieczy jonowych W ostatnich latach duże zainteresowanie wzbudzają sole będące cieczami w temperaturze pokojowej, głównie ze względu na różnorodność ich zastosowań m.in. jako zielone rozpuszczalniki w syntezach chemicznych, biochemicznych i biologicznych. Substancje te charakteryzują takie właściwości jak: zdolność do rozpuszczania wielu związków, zarówno organicznych jak i soli oraz metali, zdolność do mieszania się z wodą (ciecze hydrofilowe), lub brak zdolności mieszalności z wodą (hydrofobowe). wysoka stabilność termiczna do 400 C, szeroki zakres temperatur, w których te związki są cieczami, są nielotne (niska prawie zerowa prężność par), wysoka pojemność cieplna, zdolność do przewodzenia prądu elektrycznego. Czynniki te powodują, że związki te są interesującymi rozpuszczalnikami o coraz większym znaczeniu technologicznym. Ciecze jonowe są związkami polarnymi. Posiadają zdolność rozpuszczania alkoholi, octanu etylu, chloroformu, acetonu, DM, DMS, soli nieorganicznych, niektórych polimerów i minerałów, natomiast nie mieszają się z heksanem i olejami. Są ciecze jonowe, które nie mieszają się z wodą (hydrofobowe), ale są także takie, które słabo lub dobrze się w niej rozpuszczają (hydrofilowe). ozpuszczalność ta zależy od rodzaju anionu i długości podstawników alkilowych w ie cieczy jonowej, np. tetrafluoroboran 1-etylo-3metyloimidazoliowy [emim]b4 jest rozpuszczalny w wodzie w przeciwieństwie do tetrafluoroboranu 1-metylo-3- oktyloimidazoliowego [omim]b4. Przeważnie ciecze jonowe są cięższe od wody. a gęstość tych substancji także wpływa długość podstawnika alkilowego w ie cieczy jonowej: 7

Wpływ wielkości anionu na gęstość cieczy jonowych [BMIM][X] Gęstość Anion [X] Temp. [K] [g/cm 3 ] [AlCl 4] - [Al 2Cl 7] - [P 6] - [C 3C 2] - [C 3 7C 2] - [C 3S 3] - [C 4 9S 3] - [(C 3S 2) 2] - 1,238 1,334 1,363 1,209 1,333 1,290 1,427 1,429 Wpływ budowy u na gęstość cieczy jonowych [Q][(C3S2)2] Kation [Q] + [EMIM] + [EMMIM] + [EEIM] + [BMIM] + [BEIM] + [n-heet 3] + [n-cet 3] + [n-cbu 3] + Temp. [K] Gęstość [g/cm 3 ] 1,518 1,495 1,452 1,429 1,404 1,270 1,250 1,120 ajwiększą w szeregu homologicznym ma pierwszy związek o najmniejszej masie molowej, a każda następna grupa metylenowa powoduję zmniejszenie gęstości. W ten sposób można otrzymać ciecze jonowe o gęstości zbliżonej do wody a nawet lżejsze. W większości przypadków wydłużenie łańcucha powoduje znaczy wzrost masy molowej a w konsekwencji powstaje sól krystaliczna o temperaturze topnienia powyżej 50ºC. Ciecze jonowe posiadają lepkość zbliżoną do olejów, która rośnie podobnie jak gęstość ze wzrostem długości podstawnika w ie. Cieczami newtonowskimi są homologi zawierające do 8 atomów węgla w alkilu, natomiast sole posiadające ich powyżej 12 w cząsteczce są cieczami nienewtonowskimi. Wpływ wielkości anionu na lepkość Wpływ budowy u na lepkość cieczy jonowych [BMIM][X]. cieczy jonowych [Q][Tf2] Lepkość Anion [X] Temp. [K] [cp] Kation [Q] + Lepkość Temp. [K] [cp] [AlCl 4] - 27 [EMIM] + 31 [Al 2Cl 7] - [P 6] - [C 3C 2] - [C 3 7C 2] - [C 3S 3] - [C 4 9S 3] - [(C 3S 2) 2] - 19 207 73 182 90 373 52 [EMMIM] + [EEIM] + [BMIM] + [BEIM] + [n-heet 3] + [n-cet 3] + [n-cbu 3] + 88 35 52 48 167 202 574 Jedną z najważniejszych właściwości cieczy jonowych jest niska prężność par, wynikająca z ich budowy jonowej. Między innymi dzięki tej cesze zostały uznane za rozpuszczalniki 8

przyjazne dla środowiska. Ponadto są ciekłe w szerokim zakresie temperatur, stabilne chemicznie i elektrochemicznie, są cięższe od wody, mają zdolność do rozpuszczania związków organicznych jak i nieorganicznych. kazało się także, że wiele katalizatorów (szczególnie kompleksów metali przejściowych) jest rozpuszczalnych w cieczach jonowych, a dodatkowo ciecz powoduje całkowitą ich immobilizację i możliwość recyklu. Wszystkie ciecze jonowe charakteryzują się szerokim zakresem temperatury, w jakiej występują w stanie ciekłym. Przyjmuje się, że zakres ten jest większy niż 300 C. przedziale: Żaden z powszechnie stosowanych rozpuszczalników nie jest cieczą w tak dużym ozpuszczalnik Temp. Topnienia [ C] 9 Temp. wrzenia [ C] Zakres fazy ciekłej [ C] Aceton -95 56 151 Amoniak -78-34 44 Benzen 5 80 75 Chloroform -63 62 125 Ciecz jonowa -96 >200 >300 Dimetyloformamid -60 153 213 Heksan -95 69 164 Metanol -98 65 163 itrobenzen 6 211 205 ctan etylu -84 77 161 Woda 0 100 100 2.4 Zastosowanie cieczy jonowych Prowadzone na całym świecie badania potwierdziły, że ciecze jonowe mogą być wykorzystywane jako medium reakcji wielu syntez: utleniania, hydroformylowania, uwodornienia, sprzęgania, dimeryzacji, reakcji riedl a-crafts a, reakcji Diels a-alder a, polimeryzacji, alkilowania, allilowania, reakcji Hecka, reakcji katalizowanych enzymami i wielu innych. eakcje prowadzone w cieczach jonowych cechuje odmienna kinetyka i termodynamika od procesów prowadzonych w klasycznych rozpuszczalnikach organicznych, co często prowadzi do poprawy parametrów procesu. Ciecze jonowe szeroko wykorzystuje się nie tylko jako alternatywne rozpuszczalniki nowej generacji stosowane w syntezie organicznej, biotechnologii oraz nanotechnologi. ównie ważne zastosowanie znajdują one w inżynierii chemicznej: - jako ekstrahenty związków organicznych lub metali ciężkich (np. rtęci) ze ścieków, - do separacji gazów,

- jako dodatki do destylacji azeotropowej, w celu uniknięcia tworzenia się mieszanin azeotropowych np. z wodą. Stosuje się je również jako smary, surfaktanty, wypełnienia w kolumnach chromatograficznych oraz jako media grzewcze (duża pojemność cieplna). W elektrochemii cieszą się dużym zainteresowaniem ze względu na szerokie okno elektrochemiczne. Ponieważ posiadają wysoką stabilność termiczną i elektochemiczną, stosuje się je jako elektrolity w bateriach konwencjonalnych, słonecznych i ogniwach paliwowych.. Chemia Biotechnologia Kataliza enzymatyczna Synteza protein Inżynieria chemiczna Heck Coupling Cykloaddycja Diels-Alder Alkilowanie riedel-crafts Acylowanie riedel-crafts Inne Ciekłe kryształy Czujniki gazu anotechnologia Ciecze jonowe Energia gniwa paliwowe Kondensatory Akumulatory Ekstrakcja Separacja Destylacja ekstrakcyjna Powłoki Elektrochemia Smary Surfaktanty Wypełnienia w kolumnach chromatograficznych Wysoka pojemność cieplna Możliwość zastosowania cieczy jonowych dostrzegł przemysł. Już w 1998 roku IP (Philips Petroleum) uruchomił pierwszą pilotową instalację do procesu dimeryzacji butenów do izooktenu w środowisku cieczy jonowej (katalizator niklowy rozpuszczony w tetrachloroglinianie). Jest to proces Difasol (stopień konwersji 70-80%, przy selektywności 90-95%), który jest nową wersją procesu Dimersol. Planowana skala produkcji to 20-90 tyś ton izooktenu na rok. Tak więc, dzięki zastosowaniu cieczy jonowej, temperatura reakcji może być obniżona do temperatury pokojowej. Dodatkowo można łatwo rozdzielić fazy z mieszaniny poreakcyjnej, a zastosowane kompleksy metali przejściowych, łatwo rozpuszczają się w cieczy jonowej. W 2003 roku firma BAS zastosowała po raz pierwszy ciecze jonowe w przemyśle, w procesie otrzymywania związków fosfoniowych (proces Basil). W procesie tym powstający HCl 10

jest wyłapywany przez 1-metyloimidazol w wyniku czego tworzy się ciecz jonowa chlorek 1- metyloimidazoliowy: Dzięki zastosowaniu 1-metyloimidazolu została z tradycyjnego procesu wyeliminowana trietyloamina. Przede wszystkim jednak taki układ poreakcyjny ulega dobremu rozdziałowi. Unika się wtedy problemów związanych z trudnym wydzielaniem produktu z mieszaniny poreakcyjnej, dzięki czemu poprawia się wydajność procesu. Proces ten może być zastosowany również do innych reakcji np. estryfikacji, acylowania, sililowania, i eliminacji, gdzie konieczne jest wiązanie wydzielającego się podczas reakcji kwasu. becnie proces BASIL prowadzi się w małym reaktorze wtryskowym (6900000 kg/m 3 h) (zdjęcie obok) co w porównaniu z reakcją prowadzoną w dotychczas stosowanym reaktorze zbiornikowym pozwoliło na 100 krotne zwiększenie zdolności produkcyjnej. 11

Instrukcja do ćwiczeń Ćwiczenie 1 trzymywanie cieczy jonowych Cieczami jonowymi nazywamy sole zbudowane z organicznego u i najczęściej nieorganicznego anionu, mające temperaturę topnienia niższą od temperatury wrzenia wody, czyli poniżej 100 C. Ćwiczenie ma na celu otrzymanie dwóch najczęściej stosowanych cieczy jonowych: - Tetrafluoroboranu 1-butylo-3-metyloimidazoliowego [BMIM][B4] H 3 C + B - CH 3 - Heksafluorofosforanu 1-butylo-3-metyloimidazoliowego [BMIM][P6] H 3 C + P - CH 3 Ciecze jonowe można uzyskać w wyniku: - reakcji wymiany sól-kwas: 4 + Cl + HY 4 + Y + H - reakcji wymiany sól-sól (metateza) 4 + X + MY 4 + Y + MX gdzie: X = Cl, Br, I; M = głównie Ag, a, H4 - bezpośredniej rekombinacji: 4 + Cl + AlCl3 4 + AlCl4 12

Procedura otrzymywania tetrafluoroboranu 1-butylo-3-metyloimidazo-liowego [BMIM][B4] Do kolby o pojemności 100 ml, zaopatrzonej w mieszadło magnetyczne, należy dodać 10 g chlorku 1-butylo-3-metyloimidazoliowego oraz 10 ml wody destylowanej. Po rozpuszczeniu chlorku w wodzie do mieszaniny należy dodać roztwór ab4 (obliczoną ilość) w 15 ml wody destylowanej. Po kilku minutach wydzieliła się ciecz jonowa, która jest rozpuszczalna w wodzie ale nie rozpuszczalna w wodnym roztworze ab4 i acl. Zawartość kolby mieszać jeszcze przez 1 godzinę. Po zakończeniu reakcji należy oddzielić ciecz jonową, fazę wodną należy dodatkowo ekstrahować 4x po 5 ml chlorkiem metylenu. Ekstrakt organiczny połączyć z cieczą jonową i odparowano przy pomocy wyparki próżniowej. Powstałą ciecz jonową należy zważyć i obliczyć wydajność. Procedura otrzymywania tetrafluoroboranu 1-butylo-3-metyloimidazoliowego [BMIM][B4] Do kolby o pojemności 100 ml, zaopatrzonej w mieszadło magnetyczne, należy dodać 10 g chlorku 1-butylo-3-metyloimidazoliowego oraz 10 ml wody destylowanej. Po rozpuszczeniu chlorku w wodzie do mieszaniny należy dodać roztwór H4B4 (obliczoną ilość) w 15 ml wody destylowanej. Po kilku minutach wydzieliła się ciecz jonowa, która jest rozpuszczalna w wodzie ale nie rozpuszczalna w wodnym roztworze H 4B 4 i acl. Zawartość kolby mieszać jeszcze przez 1 godzinę. Po zakończeniu reakcji należy oddzielić ciecz jonową, fazę wodną należy dodatkowo ekstrahować 4x po 5 ml chlorkiem metylenu. Ekstrakt organiczny połączyć z cieczą jonową i odparowano przy pomocy wyparki próżniowej. Powstałą ciecz jonową należy zważyć i obliczyć wydajność. 13

Procedura otrzymywania heksafluorofosforanu 1-heksylo-3metyloimidazoliowego [HMIM][P6] Do kolby trójszyjnej o pojemności 100 ml, zaopatrzonej w łaźnię chłodzącą i mieszadło magnetyczne, należy dodać 10 g chlorku 1-heksylo-3-metyloimidazoliowego oraz 20 ml wody destylowanej i zamknąć w atmosferze azotu. Po rozpuszczeniu chlorku w wodzie do mieszaniny powoli wkraplać obliczoną ilość (1.1 nadmiar molowy) 60% roztworu HP6 (d = 1.65 g/cm 3 ). Mieszaninę podczas wkraplania należy intensywnie mieszać gdyż reakcja jest silnie egzotermiczna, w kolbie mogą pojawić się białe opary. Podczas wkraplanie można od razu zaobserwować powstawanie cieczy jonowej, która jest nierozpuszczalna w wodzie. Po zakończeniu wkraplania zawartość kolby mieszać przez 1 godzinę. Po zakończeniu reakcji należy oddzielić ciecz jonową i przemywać ją wodą destylowaną aż do odczynu obojętnego. Tak otrzymaną ciecz ogrzewano na wyparce rotacyjnej (70 o C, 5 mbar) w celu usunięcia resztek wody. astępnie ciecz jonową należy zważyć i obliczyć wydajność. Procedura otrzymywania octanu 1-metyloimidazoliowego [Hmim][Ac] Protyczna ciecz jonowa azwa η [cp] Tg [ C] tm [ C] bp [ C] pka aq octan 1-metyloimidazoliowy [Hmim]Ac 5.6-98 -23 220 2.1 W okrągłodennej kolbie dwuszyjnej o pojemności 50 ml, zaopatrzonej w mieszadło magnetyczne, chłodnicę, gumową septę oraz balonik z gazem inertnym (2), umieszczono aminę (40 mmoli) i 10 ml bezwodnego dichlorometanu. astępnie zawartość kolby zamknięto w atmosferze azotu i schłodzono w łaźni lodowej. Za pomocą igły i strzykawki wkraplano poprzez septę kwas (40 mmoli) przez 20 minut. astępnie mieszaninę ogrzewano w temperaturze 40 oc przez 2 godziny. Po zakończeniu reakcji zawartość kolby zatężono na wyparce rotacyjnej (3 mbar, 70 ºC ). trzymaną ciecz jonową zważono i obliczono wydajność. 14