Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Podobne dokumenty
Teoria automatów i języków formalnych. Określenie relacji

Topologia I Wykład 4.

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji

DEFINICJA. Definicja 1 Niech A i B będą zbiorami. Relacja R pomiędzy A i B jest podzbiorem iloczynu kartezjańskiego tych zbiorów, R A B.

Podstawy logiki i teorii mnogości Informatyka, I rok. Semestr letni 2013/14. Tomasz Połacik

Kolorowanie wierzchołków grafu

1 Działania na zbiorach

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

domykanie relacji, relacja równoważności, rozkłady zbiorów

Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:

Kolorowanie wierzchołków

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

10. Kolorowanie wierzchołków grafu

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

BOGDAN ZARĘBSKI ZASTOSOWANIE ZASADY ABSTRAKCJI DO KONSTRUKCJI LICZB CAŁKOWITYCH

Zasada indukcji matematycznej

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. 1. Relacje

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna

Algebrą nazywamy strukturę A = (A, {F i : i I }), gdzie A jest zbiorem zwanym uniwersum algebry, zaś F i : A F i

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki

Podstawowe własności grafów. Wykład 3. Własności grafów

Relacje. opracował Maciej Grzesiak. 17 października 2011

Zbiory, relacje i funkcje

Lista zadań - Relacje

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Wstęp do Techniki Cyfrowej... Teoria automatów

Wykłady z Matematyki Dyskretnej

Ilustracja S1 S2. S3 ściana zewnętrzna

Matematyka dyskretna. Andrzej Łachwa, UJ, A/14

Suma dwóch grafów. Zespolenie dwóch grafów

Wykłady z Matematyki Dyskretnej

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

Algorytmiczna teoria grafów

Relacje. Relacje / strona 1 z 18

6d. Grafy dwudzielne i kolorowania

Teoria ciała stałego Cz. I

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Digraf. 13 maja 2017

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Graf. Definicja marca / 1

Problem kodowania w automatach

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

Zadania z ćwiczeń #18 (pon. 7 maja) Matematyka Dyskretna

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Relacje i relacje równoważności. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

FUNKCJA KWADRATOWA. Zad 1 Przedstaw funkcję kwadratową w postaci ogólnej. Postać ogólna funkcji kwadratowej to: y = ax + bx + c;(

FUNKCJE. (odwzorowania) Funkcje 1

Problemy optymalizacyjne - zastosowania

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

0. ELEMENTY LOGIKI. ALGEBRA BOOLE A

Teoria liczb. Magdalena Lemańska. Magdalena Lemańska,

RELACJE I ODWZOROWANIA

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.

Matematyka dyskretna

Metody Programowania

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

Problemy z ograniczeniami

Podstawy logiki i teorii zbiorów Ćwiczenia

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

RACHUNEK ZBIORÓW 5 RELACJE

TEORIA GRAFÓW I SIECI

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 1

Teoretyczne podstawy informatyki

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

Sortowanie topologiczne skierowanych grafów acyklicznych

2. FUNKCJE. jeden i tylko jeden element y ze zbioru, to takie przyporządkowanie nazwiemy FUNKCJĄ, lub

Systemy baz danych. Notatki z wykładu

Chcąc wyróżnić jedno z działań, piszemy np. (, ) i mówimy, że działanie wprowadza w STRUKTURĘ ALGEBRAICZNĄ lub, że (, ) jest SYSTEMEM ALGEBRAICZNYM.

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Wojciech Guzicki. Konferencja SEM(Kolory matematyki) Sielpia, 26 października 2018 r.

Kształcenie w zakresie podstawowym. Klasa 2

IVa. Relacje - abstrakcyjne własności

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

Analiza matematyczna 1

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Matematyka dyskretna

Matematyka dyskretna. Andrzej Łachwa, UJ, /10

Transkrypt:

Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. ZP 1

Elementy rachunku podziałów Podziałem na zbiorze S jest system zbiorów P= {B i }, którego podzbiory są rozłączne, czyli a ponadto B i B j =φ, φ jeśli tylko i j S = i B i Dla S= {1,2,3,4,5,6}, P= {{1,2}, {3,5}, {4,6} }jest podziałem na S. ZP Π= (1,2; 3,5;4,6) Podstawowe pojęcia: Podzbiory nazywamy blokami Relacja, iloczyn podziałów, podział ilorazowy 2

Elementy rachunku podziałów Powiemy, że podział P a jest nie większyod P b (co oznaczamy: P a P b ), jeśli każdy blok z P a jest zawarty w pewnym bloku z P b. Π a = ( 1,2,4;3,5,6) Π b = (1,4; 2,6;3,5) Π c = (1,2; 4;6;3,5) Π c Π a ak Π a =(1,2,4;3,5,6) Π c = (1,2; 4;6;3,5) ZP Π(0) podział najmniejszy Π(1) podział największy Π c Π b NE! Π b = (1,4; 2,6;3,5) Π c = (1,2; 4;6;3,5) 3

Elementy rachunku podziałów loczynem podziałów Π a Π b nazywamy największy (względem relacji ) podział, który jest nie większy od Π a oraz Π b. Π a =(1,2,4;3,5,6) Π b = (1,4; 2,6;3,5) Π a Π b = ( 1,4; 2 ; 6; 3,5 ) ZP 4

Elementy rachunku podziałów Podział ilorazowy Niech P a ip b są podziałami na Soraz P a P b. Podział P a P b jest podziałem ilorazowym P a ip b, jeżeli jego elementy są blokami P b, a bloki są blokami P a. Na przykład: P a =1,6,7; 2,3,8;4,5 P b =1; 2,8; 3; 4,5; 6,7 P a Pb = (1)(6,7); (3)(2,8); (4,5) ZP 5

Elementy teorii grafów Grafem prostymnazywamy parę G= (V, E), gdzie Vjest niepustym skończonym zbiorem wierzchołków, a Ejest skończonym zbiorem krawędzi nieuporządkowanych par różnych elementów ze zbioru V. v1 Przykład: v6 v2 V = {v1, v2, v3, v4, v5, v6} E = {(v1,v6), (v2,v3), (v2,v4), (v2,v5), (v2,v6), (v3,v4), (v3,v6), (v5,v6)} v5 v4 v3 Pary wierzchołków reprezentują krawędzie ZP 6

Klika Dowolny podzbiór wierzchołków, w którym każde dwa wierzchołki są połączone krawędzią nazywamy kliką. Klikę, która nie jest zawarta w żadnej istotnie innej klice, nazywamy maksymalną. Najliczniejszą klikę w danym grafie nazywamy największa kliką. Przykłady klik: V = {v2, v3, v4} v6 v1 v2 V = { v2, v3, v6} V = {v2, v5, v6} v5 v3 v4 ZP 7

Zbiór niezależny(antyklika) Zbiorem niezależnym nazywamy dowolny zbiór wierzchołków, które nie są sąsiednie w danym grafie. Analogicznie określamy pojęcie maksymalnego zbioru niezależnego. ZP 8

Zbiór niezależny(antyklika) Zbiorem niezależnym nazywamy dowolny zbiór wierzchołków, które nie są sąsiednie w danym grafie. Analogicznie określamy pojęcie maksymalnego zbioru niezależnego. Przykłady zbiorów niezależnych V = {v1, v4, v5} v6 v1 v2 V = {v1, v3, v5} V = {v4, v6} v5 v3 V = {v1, v2} v4 ZP 9

nie jest zadaniem łatwym. Obliczanie klik ZP Problem obliczania maksymalnych klik można sprowadzić do problemu obliczania maksymalnych klas zgodności definiowanych dla danej relacji zgodności.

loczyn kartezjański loczynem kartezjańskim zbiorów A ib, oznaczanym A B nazywamy zbiór wszystkich par uporządkowanych (a, b), takich że pierwszy element pary należy do zbioru A (a A), natomiast drugi do B (b B). {( a, b) : a Ab B} A B =, Przykładzik NiechA={p,q}orazB={r,s,t},wtedy A B={(p,r),(p,s),(p,t),(q,r),(q,s),(q,t)} ZP 11

Pojęcie relacji Relacjąnazywamy dowolny podzbiór iloczynu kartezjańskiego zbiorów A, B. ypowewłasnościrelacjinazbiorzea (czylia A): zwrotność a A: ara symetria a, b A: arb bra przechodniość a, b, c A : arb, brc arc ZP 12

Najważniejsze relacje Relacja zgodności Relacja równoważności Relację, która jest zwrotna, symetryczna, ale nie jest przechodnia nazywamy relacją zgodności Relację, która jest zwrotna, symetryczna, i przechodnia nazywamy relacją równoważności ZP 13

Własności relacji zgodności pokrywają się z intuicyjnym rozumieniem zgodności: a) Każdy element jest zgodny z samym sobą, b) Jeśli element v 1 jest zgodny z v 2, to również v 2 jest zgodny z v 1. c) Jeśli v 1 jest zgodny z v 2 oraz v 2 jest zgodny z v 3, to z tego nie wynika, że v 1 jest zgodny z v. 3 ZP Janek Marek Marek Piotr Janek Piotr 14

Maksymalne klasy zgodności Zbiór par określających relację zgodności nazywa się zbiorem par zgodnych. Pary zgodne umożliwiają wyznaczenie maksymalnych zbiorów zgodnych. Zbiór V = {v 1,...,v p } nazywamy maksymalnym zbiorem zgodności (maksymalną klasą zgodności), jeżeli każda para v i, v j wzięta z tego zbioru jest zgodna oraz nie istnieje żaden inny zbiór elementów zgodnych V, zawierający V. ZP 15

Algorytm obliczania klik metodą Maksymalnych Klas Zgodności (MKZ) Zapisać pary SPRZECZNE w postaci koniunkcji dwuskładnikowych sum (v i, v j ),(v k, v l ),(v p, v q ), (v i + v j )(v k + v l )(v p + v q ) Koniunkcję dwuskładnikowych sum przekształcić do minimalnego wyrażenia boolowskiego typu suma iloczynów v i v j v k + v p v q v r v s + ZP Wtedy MKZ są uzupełnieniami zbiorów reprezentowanych przez składniki iloczynowe tego wyrażenia 16

Przykład obliczania klik (Maksymalnych Klas Zgodności) v1 Pary zgodne: Pary sprzeczne: v6 v2 (v1, v6) (v1, v2) (v2, v3) (v2, v4) (v2, v5) (v2, v6) (v3, v4) (v1, v3) (v1, v4) (v1, v5) (v3, v5) (v4, v5) v5 v4 v3 (v3, v6) (v5, v6) (v4, v6) ZP 17

Pary sprzeczne Przykład E = {(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v3, v5), (v4, v5), (v4, v6)} Obliczamy wyrażenie boolowskie typu koniunkcja sum : (v1 + v2)(v1 + v3)(v1+ v4)(v1 + v5)(v3 + v5)(v4 + v5) (v4 +v6) = porządkujemy czynniki (v1 + v2)(v1 + v3)(v1+ v4)(v1 + v5) (v4 + v5) (v4 +v6)(v3 + v5) = (v1 + v2v3v4v5)(v4 + v5v6)(v3 + v5) = stosujemy zasadę: (a + b)(a + c) = a +bc ZP 18

Pary sprzeczne Przykład E = {(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v3, v5), (v4, v5), (v4, v6)} Obliczamy wyrażenie boolowskie typu koniunkcja sum : (v1 + v2)(v1 + v3)(v1+ v4)(v1 + v5)(v3 + v5)(v4 + v5) (v4 +v6) = (v1 + v2)(v1 + v3)(v1+ v4)(v1 + v5) (v4 + v5) (v4 +v6)(v3 + v5) = (v1 + v2v3v4v5)(v4 + v5v6)(v3 + v5) = wymnażamy i redukujemy zbędne składniki (v1v4 + v1v5v6 + v2v3v4v5 + v2v3v4v5v6) (v3 + v5) = (v1v4 + v1v5v6 + v2v3v4v5) (v3 + v5) = wymnażamy i redukujemy zbędne składniki ZP v1v3v4 + v1v3v5v6 + v2v3v4v5 + v1v4v5 + v1v5v6 + v2v3v4v5 = v1v3v4 + v1v4v5 + v1v5v6 + v2v3v4v5 19

Przykład v1v3v4 + v1v4v5 + v1v5v6 + v2v3v4v5 {v1,..., v6} {v1, v3, v4} {v1,...,v6} {v1,...,v6} {v1, v4, v5 } {v1, v5, v6} = {v2, v5, v6 } = {v2, v3, v6} i to są wszystkie maksymalne kliki w tym grafie = {v2, v3, v4} {v1,...,v6} {v2, v3, v4, v5 } = {v1, v6} v6 v1 v2 v5 v3 ZP v4 20

Algorytm obliczania Maksymalnych Zbiorów Niezależnych (MZN) Zapisać pary ZGODNE w postaci koniunkcji dwuskładnikowych sum (v i, v j ), (v k, v l ), (v p, v q ), (v i + v j )(v k + v l )(v p + v q ) Koniunkcję dwuskładnikowych sum przekształcić do minimalnego wyrażenia boolowskiego typu suma iloczynów v i v j v k + v p v q v r v s + ZP Wtedy MZN są uzupełnieniami zbiorów reprezentowanych przez składniki iloczynowe tego wyrażenia 21

Przykład E = {(v1, v6), (v2, v3), (v2, v4), (v2, v5), (v2, v6), (v3, v4), (v3, v6), (v5, v6)} Obliczamy wyrażenie boolowskie typu koniunkcja sum : v6 v5 v1 v4 v2 v3 (v1 + v6)(v2 + v3)(v2+ v4)(v2 + v5)(v2 + v6)(v3 + v4) (v3 +v6) (v5 +v6) = (v2 + v3)(v2+ v4)(v2 + v5)(v2 + v6)(v6 + v1) (v6 +v3) (v6 +v5) (v3 + v4) = (v2 + v3v4v5v6)(v6 + v1v3v5)(v3 + v4) = (v2v6 + v1v2v3v5 + v3v4v5v6 + v1v3v4v5v6) (v3 + v4) = ZP 22

Przykład = (v2v6 + v1v2v3v5 + v3v4v5v6 + v1v3v4v5v6) (v3 + v4) = v2v3v6 + v1v2v3v5 + v3v4v5v6 + v2v4v6 + v1v2v3v4v5 + v3v4v5v6 = v2v3v6 + v1v2v3v5 + v3v4v5v6 + v2v4v6 = v2v3v6 + v2v4v6 + v1v2v3v5 + v3v4v5v6 v1 Maksymalne Zbiory Niezależne: {v1, v4, v5} v6 v2 ZP {v1, v3, v5} {v4, v6} {v1, v2} i to są wszystkie MZN w tym grafie v5 v4 23 v3

Kolorowanie grafu Kolorowaniem grafu nazywamy przyporządkowanie kolorów do wierzchołków grafu w taki sposób, aby żadna para wierzchołków sąsiednich nie miała takiego samego koloru. ZP 24

Podstawowy problem Jak obliczać najmniejszą liczbę kolorów zapewniających prawidłowe pokolorowanie grafu? Jest to tzw. liczba chromatyczna grafu. ZP 25

Algorytm kolorowania grafu Obliczyć wszystkie Maksymalne Zbiory Niezależne Uzyskujemy Rodzinę Maksymalnych Zbiorów Niezależnych (RMZN) Obliczyć pokrycie zbioru wierzchołków V minimalną liczbą Maksymalnych Zbiorów Niezależnych (tzw. minimalne pokrycie) Minimalne pokrycie reprezentuje minimalny zbiór kolorów W uzyskanym pokryciu usunąć elementy powtarzające się Komentarz: formalnie pokrycie.. UMZN = V MZN RMZN ZP 26

Przykład Należy obliczyć optymalne kolorowanie grafu z poprzedniego przykładu: v1 Maksymalne Zbiory Niezależne: v6 v2 {v1, v4, v5} v5 v3 {v1, v3, v5} {v4, v6} v4 {v1, v2} ZP 27

Algorytm kolorowania grafu Maksymalne Zbiory Niezależne: Minimalna podrodzina pokrywająca zbiór V = {v1, v2,, v6}: v1 {v1, v4, v5} {v1, v3, v5} {v1, v3, v5} {v4, v6} v6 v2 {v4, v6} {v1, v2} {v1, v2} v5 v3 Wybrane zbiory wyczerpują wszystkie elementy V Elementy powtarzające się v4 usuwamy: Uzyskane zbiory rozłączne reprezentują kolorowanie: {v1, v3, v5} {v4, v6} ZP {v2} 28

Komentarz Następne plansze prezentują inny przykład obliczania MKZ, który należy potraktować jako pracę samodzielną. W razie jakichkolwiek trudności Wiele ciekawych przykładów znaleźć można w książce: prowadzący wykład nie stroni od udzielania konsultacji w tym zakresie. ZP 29

nny przykład obliczania MKZ (Raczej do dyskusji na ćwiczeniach) Pary zgodne Pary sprzeczne E: 1,2 1,3 1,5 2,3 2,4 2,5 3,5 3,6 4,6 1,4 1,6 2,6 3,4 4,5 5,6 v6 v5 v1 v4 v2 v3 ZP 30

Pary sprzeczne: nny przykład obliczania MKZ (v1, v4), (v1, v6), (v2, v6), (v3, v4), (v4, v5), (v5, v6) Obliczamy wyrażenie boolowskie typu koniunkcja sum : (v1 + v4) (v1 + v6 ) (v2 + v6) (v3 + v4) (v4 + v5) (v5 + v6) = Porządkujemy: (v4 + v1) (v4 + v3 ) (v4 + v5) (v6 + v1) (v6 + v2) (v6 + v5) = Przekształcamy wyrażenie do postaci suma iloczynów : = (v4 + v1v3v5) (v6 + v1v2v5) = v4v6 + v1v2v4v5 + v1v3v5v6 + v1v2v3v5 ZP 31

nny przykład obliczania MKZ Klasy zgodne uzyskamy odejmując od zbioru {v1,...,v6}, zbiory tych vi, które występują w jednym składniku wyrażenia typu suma iloczynów : {v1,..., v6} {v4, v6} = {v1, v2, v3, v5 } {v1,...,v6} {v1, v2, v4, v5 } = {v3, v6} {v1,...,v6} {v1, v3, v5, v6} = {v2, v4} {v1,...,v6} {v1, v2, v3, v5 } = {v4, v6} v6 v1 v2 Dla przypomnienia Pary zgodne:(v1,v2),(v1,v3),(v1,v5),(v2,v3), (v2,v4),(v2,v5),(v3,v5),(v3,v6),(v4,v6) v5 i graf v4 v3 ZP 32