Matematyka dyskretna. Andrzej Łachwa, UJ, /14
|
|
- Roman Pietrzyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Matematyka dyskretna Andrzej Łachwa, UJ, /14
2 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy - dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy chłopców. Kiedy każdej dziewczynie można przyporządkować jednego kandydata na męża? Okazuje się, że warunkiem koniecznym i wystarczającym na to, by istniało takie skojarzenie par, jest to, by każda podgrupa dziewcząt, licząca k osób, znała co najmniej k chłopców. Jedną z wersji tego twierdzenia jest wersja dla grafów dwudzielnych, gdzie mężczyzn i kobiety interpretuje się jako zbiory wierzchołków grafu dwudzielnego, a krawędzie łączą "mężczyznę" z "kobietą", jeśli się znają. Por. wykład 13.
3 Algorytm znajdowania męża Niech A i B będą zbiorami dziewcząt i chłopców, A B. Niech B i to zbiór chłopców, których zna dziewczyna a i. Dopóki jest to możliwe dobieramy kolejnym dziewczynom a 1, a 2, a 3 a j chłopców b 1, b 2, b 3 b j, przy czym b 1 B 1 b 2 B 2 \{b 1 }, b 3 B 3 \{b 1, b 2 } itd. Jeżeli uda się to zrobić dla wszystkich dziewczyn, to algorytm znajdowania mężów zakończy się.
4 Jeżeli jednak dla pewnej dziewczyny a j zbiór znanych jej chłopców B j \{b 1, b 2 b j-1 } jest już pusty, to trzeba zerwać przynajmniej jedne zaręczyny. W tym celu dziewczyna a j urządza przyjęcie, na które zaprasza wszystkich znanych jej chłopców (B j ). Chłopcy ci przychodzą ze swoimi narzeczonymi, ale te na wszelki wypadek zabierają ze sobą swoich znajomych chłopców, a ci swoje narzeczone itd, aż do momentu gdy na przyjęcie zostanie zaproszony chłopiec, który nie jest jeszcze zaręczony. Musi się taki znaleźć, bo każda grupa r dziewcząt zna w sumie co najmniej r chłopców, czyli dziewczyny zaproszone na przyjęcie znają w sumie co najmniej tyle samo chłopców, a ponadto dziewczyna a j nie jest zaręczona.
5 Ów niezaręczony chłopiec będzie tańczył z dziewczyną, która go zaprosiła, jej narzeczony z dziewczyną która go zaprosiła, itd. aż na parkiecie znajdzie się chłopiec tańczący z gospodynią przyjęcia. Pary na parkiecie to będą nowe pary narzeczonych, a te, które nie tańczą pozostaną niezmienione. Po przyjęciu wszystkie dziewczyny a 1, a 2, a 3 a j mają narzeczonych i możemy kontynuować dobieranie narzeczonych dla kolejnych dziewczyn. Jeśli znów dla pewnej dziewczyny a j zbiór znanych jej chłopców B j \{b 1, b 2 b j-1 }, czyli jeszcze nie zaręczonych, okaże się pusty, to dziewczyna a j urządzi przyjęcie, na którym, w czasie tańca, zostaną zmienione pary zaręczonych osób tak, by gospodyni przyjęcia zaręczyła się. Itd.
6 Przykład Niech A={a, b, c, d, e}, B={A, B, C, D, E, F, G, H} oraz a zna A i B b zna A, B, D c zna A, B, C d zna A i C e zna D, E, F, G, H Łączymy (a, A), (b, B), (c, C) i dla d brakuje narzeczonego. Na przyjęcie d zaprasza chłopców A, C, ci swoje narzeczone a, c, te swoich znajomych A, B, C. Chłopiec B zaprasza narzeczoną b, a ona swoich znajomych A, B, D, z których tylko ostatni nie był jeszcze zaproszony (a ponadto nie ma narzeczonej). Pary na parkiecie: (D, b), (B, c), (C, d). Nie tańczą (A, a). Na koniec dobieramy narzeczonego dla e, np. G.
7 Zbiory z powtórzeniami Skończony zbiór z powtórzeniami X=<x 1, x 1, x 2, x 2, x 3, x 3, x n, x n, > k 1 k 2 k 3 k n to rodzina elementów, w której x 1 powtarza się k 1 razy, x 2 powtarza się k 2 razy, itd. aż do x n które powtarza się k n razy. Zbiór taki zapisujemy również w postaci X = <k 1 *x 1, k 2 *x 2, k 3 *x 3, k n *x n >, a liczby k 1, k 2, k n nazywamy krotnościami. Inny sposób zapisania takiego zbioru to: X = <{x 1, x 2, x 3, x n }, {(x 1, k 1 ), (x 2, k 2 ), (x n, k n )} >. Moc zbioru z powtórzeniami to suma krotności jego elementów.
8 Podzbiór skończonego zbioru z powtórzeniami X = <k 1 *x 1, k 2 *x 2, k n *x n > może być wyznaczony przez wektor (m 1, m 2, m n ), gdzie 0 m 1 k 1, 0 m 2 k 2, 0 m n k n. Liczba podzbiorów skończonego zbioru z powtórzeniami o krotnościach k 1, k 2, k n jest równa (k 1 +1)( k 2 +1) (k n +1). Suma dwóch zbiorów z powtórzeniami jest tworzona przez określenie krotności każdego elementu w sumie jako maksimum krotności tego elementu w składnikach sumy. Odpowiednio dla iloczynu będzie to minimum krotności, a dla różnicy ograniczona (od dołu przez 0) różnica krotności. Przykład: <a, a, b, c> <a, b, b> = <a, a, b, b, c>
9 W przypadku zbiorów z powtórzeniami można również mówić o krotnościowej sumie zbiorów, w której krotność elementu to suma algebraiczna krotności tego elementu w składnikach. Przykład: <a, a, b, c> < a, b, b> = <a, a, a, b, b, b, c> Zadanie Dwoje urzędników dostało 10 notesów, 16 zeszytów i 14 pisaków. Na ile sposobów mogą podzielić się tymi przedmiotami tak, by nie został żaden przedmiot i aby każdy coś dostał? Rozwiązanie Każdy podział odpowiada podzbiorowi zbioru z powtórzeniami. Jeden urzędnik dostaje ten podzbiór, a drugi pozostałe przedmioty. Sposobów podziału jest zatem tyle, co podzbiorów zbioru z powtórzeniami (zbioru notesów, zeszytów i pisaków): (10+1)(16+1)(14+1)=2805.
10 Podwójna silnia Definicje: 1!! = 1, (2n 1)!! = (2n 1) (2n 3)!! 2!! = 2, (2n)!! = (2n) (2n 2)!! Przykłady 5!! = !! = Lemat (n 1)!! (2n)!! = n!
11 Multimiany Przypomnijmy, że współczynnik multimianowy, dla, oraz całkowitych takich, że, to liczba sposobów umieszczenia n obiektów w r pudełkach z odpowiednio k 1 obiektami w pierwszym pudełku, k 2 w drugim, itd. oraz kr w r-tym. Na przykład mamy 8-cyfrowe liczby, w których występują tylko cyfry 4, 5, 6 i 7. Cyfra 4 występuje tylko na jednej pozycji, natomiast 3-krotnie powtarza się cyfra 5 i 2-krotnie powtarzają się cyfry 6 i 7. Naszymi obiektami będą pozycje 8-cyfrowej liczby. Obiekty te umieścimy w czterech pudełkach oznaczonych 4, 5, 6 i 7. W pudełku 4 znajdzie się jedna pozycja, w pudełku 5 mają znaleźć się 3 pozycje, w pudełku 6 dwie
12 pozycje i w pudełku 7 dwie pozycje. Jest więc to podział 8 obiektów na cztery pudełka. Podziałów będzie ( ) = 8! 1! 3! 2! 2! = = Konkurencyjnym dla multimianu pojęciem jest permutacja z powtórzeniami. Definicja Ciąg składający się z n elementów, wśród których pewne elementy powtarzają się n 1, n 2, n r razy, nazywamy n-elementową permutacją z potwórzeniami.
13 Przykład Ile można utworzyć 5-elementowych słów z liter a, b, gdzie a powtarza się 3 razy i b powtarza się 2 razy? bbaaa, abbaa, aabba, aaabb, babaa, ababa, aabab, baaba, abaab, baaab ( 5 2 3) = 5! 2! 3! =10
14 Kombinacje z powtórzeniami Definicja Kombinacją z powtórzeniami z n elementów po k elementów nazywamy każdy k-elementowy zbiór z powtórzeniami o elementach ze zbioru n- elementowego. Twierdzenie Liczba kombinacji z powtórzeniami z n elementów po k jest równa ( n+k 1 k ). Przykład Ile jest dwucyfrowych zbiorów z powtórzeniami?
15 = ( ) = ( 11 2 ) = = 55
16 Przykład Mamy cztery rodzaje owoców: jabłka, gruszki, brzoskwinie i kiwi. Ile różnych paczek po 5 owoców każdej możemy utworzyć? Są to 5-elementowe zbiory z powtórzeniami o elementach ze zbioru 4- elementowego (bez powtórzeń): ( ) = ( 8 5) = 8 7 = 56.
17 Pytania na egzamin licencjacki z zakresu matematyki dyskretnej Omów metody obliczania sum skończonych Liczby Fibonacciego a "złoty podział"; wniosek Keplera Twierdzenie Halla i algorytm łączenia w pary Trójkąt Stirlinga (dla podziałów) i liczby Bella Zasada szufladkowa Dirichleta
18 Terminy egzaminów z matematyki dyskretnej do egzaminu mają prawo przystąpić studenci którzy otrzymali zaliczenie 16 czerwca 2016 (zobacz informację na stronie Zakładu PiGK) wyniki do 23 czerwca terminy konsultacji proszę sprawdzać na stronie Zakładu PiGK egzamin poprawkowy we wrześniu (tylko dla studentów!!!) informację o terminie proszę sprawdzić na stronie Zakładu PiGK
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 15/15 TWIERDZENIE HALLA Twierdzenie o kojarzeniu małżeństw rozważa dwie grupy dziewcząt i chłopców, oraz podgrupy dziewczyn i podgrupy
Wykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Kolorowanie
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 15/15 Twierdzenie Dla grafu prostego następujące warunki są równoważne: 1) jest drzewem, 2) nie zawiera cykli i ma krawędzi, 3)
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 7/10 Generowanie podzbiorów Weźmy n-elementowy zbiór X={x 1, x 2 x n }. Każdemu podzbiorowi YX przyporządkujemy ciąg binarny b 0 b
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 6/10 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Matematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 1A/14 Literatura obowiązkowa [1] K.A.Ross, Ch.R.B.Wright: Matematyka Dyskretna. Wydawnictwo Naukowe PWN, Warszawa 1996 [2] R.L.Graham,
Matematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 9A/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
Matematyka dyskretna. Andrzej Łachwa, UJ, A/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 9A/14 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl 9/14 Zasada Dirichleta 1 ZASADA SZUFLADKOWA DIRICHLETA (1ZSD) Jeśli n obiektów jest rozmieszczonych w m szufladach i n > m > 0, to
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
KOMBINATORYKA OBIEKTY KOMBINATORYCZNE MATEMATYKA DYSKRETNA (2014/2015)
MATEMATYKA DYSKRETNA (2014/2015) dr hab. inż. Małgorzata Sterna malgorzata.sterna@cs.put.poznan.pl www.cs.put.poznan.pl/msterna/ KOMBINATORYKA OBIEKTY KOMBINATORYCZNE TEORIA ZLICZANIA Teoria zliczania
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Kolorowanie wierzchołków
Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie
Matematyka dyskretna. Andrzej Łachwa, UJ, A/15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
KOMBINATORYKA. Problem przydziału prac
KOMBINATORYKA Dział matematyki zajmujący się badaniem różnych możliwych zestawień i ugrupowań, jakie można tworzyć z dowolnego zbioru skończonego. Zbiory skończone, najczęściej wraz z pewną relacją obiekty
Twierdzenie Halla o małżeństwach
Twierdzenie Halla o małżeństwach Tomasz Tkocz Streszczenie. Notatki te, przygotowane do referatu wygłoszonego na kółku w II LO w Rybniku, pokazują jak można rozwiązywać życiowe problemy oraz te bardziej
Wykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart
Matematyka dyskretna. Andrzej Łachwa, UJ, A/10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 8A/10 Zbiory przeliczalne Przyjmujemy, że Zn = {0, 1, 2, 3, n-1} dla n>0 oraz Zn = przy n=0. Zbiór skończony to zbiór bijektywny z
Matematyka dyskretna zestaw II ( )
Matematyka dyskretna zestaw II (17-18.10.2016) Uwaga: Część z zadań z tego zestawu opiera się na zasadzie szufladkowej Dirichleta. Zadanie 1. Na ile sposobów można umieścić w 7 szufladach 3 koszule tak,
Rachunek prawdopodobieństwa
Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry
Matematyka dyskretna. Andrzej Łachwa, UJ, a/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 8a/14 Zbiory przeliczalne Przyjmujemy, że = {0, 1, 2, 3, n-1} dla n>0 oraz = przy n=0. Zbiór skończony to zbiór bijektywny z pewnym
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 12B/14 Permutacje bez punktów stałych Nieporządek na zbiorze X to permutacja taka, że dla dowolnego, czyli permutacja "bez punktów
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 3/10 indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe
Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 4/14 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013
Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Zadanie 1. Dla n naturalnego mamy zdanie: Jeżeli n jest liczbą pierwszą, to n jest równa 2 lub jest liczbą nieparzystą. Możemy je zapisać
WITAMY SERDECZNIE NA MIĘDZYSZKOLNYCH WARSZTATACH MATEMATYCZNYCH 12
Dobry matematyk potrafi dostrzegać fakty, matematyk wybitny analogie między faktami, zaś matematyk genialny analogie między analogiami. Stefan Banach WITAMY SERDECZNIE NA MIĘDZYSZKOLNYCH WARSZTATACH MATEMATYCZNYCH
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 11/14 Współczynniki multimianowe (wielomianowe) Współczynniki dwumianowe pojawiały się przy rozwinięciu dwumianu. Odpowiadały one
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1
Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1 Przygotowując wykład korzystam głównie z książki Jakubowski, Sztencel Wstęp do teorii prawdopodobieństwa. Jakubowski, Sztencel:
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 3/15 Indukcja matematyczna Poprawność indukcji matematycznej wynika z dobrego uporządkowania liczb naturalnych, czyli z następującej
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A
Ciągi Podzbiory Symbol Newtona Zasada szufladkowa Dirichleta Zasada włączania i wyłączania. Ilość najkrótszych dróg. Kombinatoryka. Magdalena Lemańska
Kombinatoryka Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Aspekty kombinatoryki Victor Bryant
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. L. Kowalski, Statystyka, 2005
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 1. Literatura: Marek Cieciura, Janusz Zacharski, Metody probabilistyczne w ujęciu praktycznym, L. Kowalski, Statystyka, 2005 R.Leitner, J.Zacharski, "Zarys matematyki
ELEMENTY KOMBINATORYKI
ELEMENTY KOMBINATORYKI Kombinatoryka to dział matematyki, który zajmuje się zliczaniem, na ile sposobów może zajść jakieś zjawisko. Powstała dzięki grom hazardowym a dopiero później rozwinęła się w gałąź
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 6/14 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Spotkanie olimpijskie nr lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa
Spotkanie olimpijskie nr 5 16 lutego 2013 Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka Jadwiga Słowik Reguła mnożenia Jeśli wybór polega na podjęciu k decyzji, przy czym pierwszą decyzję możemy
Matematyka dyskretna. Andrzej Łachwa, UJ, A/15
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 4A/15 Liczby Fibonacciego Spośród ciągów zdefiniowanych rekurencyjnie, jednym z najsłynniejszych jest ciąg Fibonacciego (z roku 1202)
Kombinatoryka. Reguła dodawania. Reguła dodawania
Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich
Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie
Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy
51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.
Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo
Funkcja. x X! y Y : x, y f. f : X Y f x = y f : x y. Funkcja o dziedzinie X i przeciwdziedzinie Y to dowolna relacja f XxY taka, że: Notacje:
Funkcja Funkcja o dziedzinie X i przeciwdziedzinie Y to dowolna relacja f XxY taka, że: Notacje: x X! y Y : x, y f f : X Y f x = y f : x y Przykłady f: N N, f(n) = 2n f: N R, f(n) = n/2 f: N {13}, f(n)
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA DYSKRETNA Nazwa w języku angielskim DISCRETE MATHEMATICS Kierunek studiów (jeśli dotyczy): Matematyka
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 8/15 Zbiory przeliczalne Przyjmujemy, że = {0, 1, 2, 3, n 1} dla n>0 oraz = przy n=0. Zbiór skończony to zbiór bijektywny z pewnym
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 101-170 101. Oblicz postać zwartą symbolu { n 4}. 102. Udowodnij, że n k =1 ( 1) k ( n k) =1 103. Ile może być 4-cyfrowych
Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )
Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo
O geometrii semialgebraicznej
Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 10/15 WARIACJE Liczba wariacji, czyli różnych ciągów k-elementowych o wyrazach ze zbioru n-elementowego, wynosi n k. Ciąg k-elementowy,
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest
Matematyka dyskretna
Matematyka dyskretna Zbiór zadań kolekcjonowanych w ciągu semestralnego kursu Matematyka dyskretna prof. dr hab. M. Morayne dla studentów informatyki magisterskiej WPPT PWr wiosna-lato 2005 UWAGA: Zadania
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 6/15 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
7. CIĄGI. WYKŁAD 5. Przykłady :
WYKŁAD 5 1 7. CIĄGI. CIĄGIEM NIESKOŃCZONYM nazywamy funkcję określoną na zbiorze liczb naturalnych, dodatnich, a wyrazami ciągu są wartości tej funkcji. CIĄGIEM SKOŃCZONYM nazywamy funkcję określoną na
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów
Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA
PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: MATEMATYKA DYSKRETNA Discrete mathematics Forma studiów: Stacjonarne Poziom kwalifikacji: Kod przedmiotu: A_06 Rok: I obowiązkowy w ramach treści
ĆWICZENIA nr 1 - KOMBINATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak
ĆWCZENA nr 1 - KOMBNATORYKA - czyli sztuka liczenia autor: mgr inż. Agnieszka Herczak. Reguła mnożenia Jeżeli pewien wybór zależy od skończenie wielu decyzji, przy czym podejmując pierwszą mamy k 1 możliwości
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 2/14 Funkcji podłogi z logarytmu można użyć do wyliczenia liczby cyfr liczby naturalnej k (k>0): w układzie dziesiętnym log 10 (k)
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub
RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę
FUNKCJE. (odwzorowania) Funkcje 1
FUNKCJE (odwzorowania) Funkcje 1 W matematyce funkcja ze zbioru X w zbiór Y nazywa się odwzorowanie (przyporządkowanie), które każdemu elementowi zbioru X przypisuje jeden, i tylko jeden element zbioru
Podstawy metod probabilistycznych. dr Adam Kiersztyn
Podstawy metod probabilistycznych dr Adam Kiersztyn Przestrzeń zdarzeń elementarnych i zdarzenia losowe. Zjawiskiem lub doświadczeniem losowym nazywamy taki proces, którego przebiegu i ostatecznego wyniku
Matematyka od zaraz zatrudnię
Uniwersytet Jagielloński Gdzie jest matematyka? Soczewka, 26-28 listopada 2010 Kolorowanie grafów Dobre kolorowanie wierzchołków grafu, to nadanie im kolorów w taki sposób, że każde dwa wierzchołki połaczone
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 4 część I 2 Kombinatoryka Wariacje z powtórzeniami Permutacje Wariacje bez powtórzeń Kombinacje Łączenie
Ilustracja S1 S2. S3 ściana zewnętrzna
Grafy płaskie G=(V,E) nazywamy grafem płaskim, gdy V jest skończonym podzbiorem punktów płaszczyzny euklidesowej, a E to zbiór krzywych Jordana (łamanych) o końcach w V i takich, że: 1) rożne krzywe mają
Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich
Matematyka dyskretna Oznaczenia
Matematyka dyskretna Oznaczenia Andrzej Szepietowski W tym rozdziale przedstawimy podstawowe oznacznia. oznacza kwantyfikator ogólny dla każdego. oznacza kwantyfikator szczegó lowy istnieje. 1 Sumy i iloczyny
Typy zadań kombinatorycznych:
Typy zadań kombinatorycznych: I. Ustawianie wszystkich elementów zbioru w pewnej kolejności Przestawieniem nazywamy ustawienie elementów danego zbioru w pewnej kolejności. Liczba przestawień określa na
Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz
Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny
Wstęp do rachunku prawdopodobieństwa
wykład : Wstęp do rachunku prawdopodobieństwa STTYSTYK OPISOW Wanda Olech Katedra Genetyki i Ochrony Zwierząt Statystyka zajmuje się Zjawiskami losowymi - które bada przez doświadczenie U podstaw współczesnej
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'
Wprowadzenie do kombinatoryki
Wprowadzenie do kombinatoryki http://www.matemaks.pl/kombinatoryka.html Kombinatoryka jest działem matematyki, który pomaga odpowiedzieć na pytania typu: "ile jest możliwych wyników w rzucie monetą?",
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 6a: Model danych oparty na zbiorach http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Model danych oparty na zbiorach
0.1 Pierścienie wielomianów
0.1 Pierścienie wielomianów Zadanie 1. Znaleźć w pierścieniu Z 5 [X] drugi wielomian określający tę samą funkcję, co wielomian X 2 X + 1. (Odp. np. X 5 + X 2 2X + 1). Zadanie 2. Znaleźć sumę i iloczyn
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Matematyka Dyskretna Nazwa w języku angielskim : Discrete Mathematics Kierunek studiów : Informatyka Specjalność
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma
Kombinatoryka i rachunek prawdopodobieństwa
Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 4/10 rekurencja Wzór (przepis) na liczenie silni: n! to iloczyn kolejnych liczb naturalnych od 1 do n oraz 0!=1. Oto wartości silni
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY
PLAN WYNIKOWY PROSTO DO MATURY KLASA 1 ZAKRES PODSTAWOWY Copyright by Nowa Era Sp. z o.o. Warszawa 019 Liczba godzin TEMAT ZAJĘĆ EDUKACYJNYCH Język matematyki 1 Wzory skróconego mnożenia 3 Liczby pierwsze,
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2014 andrzej.lachwa@uj.edu.pl 8/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Spis treści. Przedmowa. Wprowadzenie 0.1 Czym jest matematyka dyskretna?... XIII 0.2 Podstawowa literatura... XIV
Spis treści Przedmowa XI Wprowadzenie XIII 0.1 Czym jest matematyka dyskretna?............... XIII 0.2 Podstawowa literatura...................... XIV 1 Rekurencja 1 1.1 Wieże Hanoi...........................
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
Problemy Decyzyjne dla Systemów Nieskończonych
Problemy Decyzyjne dla Systemów Nieskończonych Ćwiczenia 1 17 lutego 2012 Na tych ćwiczeniach zajmiemy się pojęciem well quasi-ordering (WQO) bardzo przydatnym do analizy nieskończonych ciągów. Definicja
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.
Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:
Ciała skończone. 1. Ciała: podstawy
Ciała skończone 1. Ciała: podstawy Definicja 1. Każdy zbiór liczb, w którym są wykonalne wszystkie cztery działania z wyjątkiem dzielenia przez 0 i który zawiera więcej niż jedną liczbę, nazywamy ciałem
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.