B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
|
|
- Marta Wilczyńska
- 9 lat temu
- Przeglądów:
Transkrypt
1 Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj. zbiór wszystkich par obiektów, które mają takie same wartości na wszystkich atrybutach ze zbioru B A; B - rodzina wszystkich klas nierozróżnialności wyznaczonych przez relację IND(B), tzn. B = U/IND(B); {d} - rodzina wszystkich klas nierozróżnialności wyznaczonych przez relację IND({d}), tzn. {d} = U/IND({d}). Inaczej, rodzina wszystkich klas decyzyjnych; Zbiór {d} zależy od zbioru B wtedy i tylko wtedy, gdy B {d} (tutaj oznacza, że każdy zbiór pierwszej rodziny jest podzbiorem pewnego zbioru drugiej rodziny, czyli X B Y {d} X Y ); B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorithm 1: LEM1 Data: zbiór A wszystkich atrybutów warunkowych, rodzina {d} ; Result: pojedyncze globalne pokrycie B; begin B := ; C := A; if A {d} then foreach a A do D := C \ {a}; if D {d} then C := D; B := C; end Opis algorytmu. Algorytm LEM1 działa jedynie dla danych niesprzecznych, tzn. każde dwa 1
2 obiekty z U, należące do różnych klas muszą być rozróżnialne na atrybutach z A. Wtedy spełniony jest warunek A {d}. Algorytm w każdym kroku sprawdza, czy możliwe jest usunięcie jednego atrybutu z rozpatrywanego zbioru atrybutów (tj. D := C \ {a}). Jeżeli tak (tj. D {d} ), to atrybut jest usuwany ze zbioru atrybutów. W efekcie otrzymywany jest najmniejszy podzbiór atrybutów warunkowych zachowujący rozróżnialność obiektów z różnych klas. Przykład 1. Dana jest tablica decyzyjna (U, A {d}) obiekt temperatura bol glowy oslabienie nudnosci grypa 1 b. wysoka tak tak nie tak 2 wysoka tak nie tak tak 3 normalna nie nie nie nie 4 normalna tak tak tak tak 5 wysoka nie tak nie tak 6 wysoka nie nie nie nie 7 normalna nie tak nie nie gdzie U = {1,..., 7}, A = {temperatura, bol glowy, oslabienie, nudnosci}, d = grypa. Ilustracja działania algorytmu: B := ; C := A; A = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}, d = {{1, 2, 4, 5}, {3, 6, 7}}, zatem A {d} ; D := C \ {temperatura} = {bol glowy, oslabienie, nudnosci}, stąd D = {{1}, {2}, {3, 6}, {4}, {5, 7}}, więc D {d} ; D := C \ {bol glowy} = {temperatura, oslabienie, nudnosci}, stąd D = {{1}, {2}, {3}, {4}, {5}, {6}, {7}}, więc D {d}, zatem C := D; D := C \ {oslabienie} = {temperatura, nudnosci}, stąd D = {{1}, {2}, {3, 7}, {4}, {5, 6}}, więc D {d} ; D := C \ {nudnosci} = {temperatura, oslabienie}, stąd D = {{1}, {2, 6}, {3}, {4, 7}, {5}}, więc D {d}, zatem globalne pokrycie wynosi B := {temperatura, oslabienie, nudnosci}; Na podstawie globalnego pokrycia konstruowane są reguły przy zastosowaniu techniki dropping conditions. Na początku konstruowana jest reguła w oparciu o obiekt 1, tj. (temperatura, b. wysoka) (oslabienie, tak) (nudnosci, nie) (grypa, tak). Reguła pokrywa tylko pierwszy obiekt (tj. 1 jako jedyny spełnia część warun- 2
3 kową reguły). Aby zwiększyć pokrycie reguły o kolejne obiekty z tej samej klasy decyzyjnej, rozpatrywane jest opuszczenie kolejnych warunków reguły. Warunek (temperatura, b. wysoka) nie może być opuszczony, gdyż otrzymana w ten sposób reguła (oslabienie, tak) (nudnosci, nie) (grypa, tak), oprócz obiektu 1, pokrywa obiekt z innej klasy decyzyjnej, tj. obiekt 7. Możliwy do usunięcia jest warunek (oslabienie, tak), a także (nudnosci, nie), chociaż nie zmienia to pokrycia reguły. Ostatecznie otrzymujemy regułę (temperatura, b. wysoka) (grypa, tak) pokrywającą obiekt 1. Dla pozostałych obiektów reguły generowane są w analogiczny sposób. Zbiór reguł wygenerowanych przez algorytm LEM1 składa się z następujących reguł (po dwukropku podane pokrycie reguły): (temperatura, b. wysoka) (grypa, tak) : 1, (nudnosci, tak) (grypa, tak) : 2, 4, (temperatura, wysoka) (oslabienie, tak) (grypa, tak) : 5, (oslabienie, nie) (nudnosci, nie) (grypa, nie) : 3, 6, (temperatura, normalna) (nudnosci, nie) (grypa, nie) : 3, 7. Algorytm LEM2 Oznaczenia i definicje: X niepusta dolna lub górna aproksymacja klasy decyzyjnej; t = (a, v) warunek, gdzie a atrybut warunkowy, v wartość przyjmowana przez a; [t] blok, tj. zbiór obiektów spełniających warunek t = (a, v); T - zbiór warunków t; [T ] = t T [t] - zbiór obiektów spełniających każdy z warunków t T ; Zbiór X zależy od zbioru T wtedy i tylko wtedy, gdy = [T ] X; T jest minimalnym kompleksem zbioru X wtedy i tylko wtedy, gdy X zależy od T i nie istnieje T T takie, że X zależy od T ; T - rodzina zbiorów T ; T jest lokalnym pokryciem zbioru X wtedy i tylko wtedy, gdy: 1. Każdy zbiór T T jest minimalnym kompleksem zbioru X; 2. T T [T ] = X; 3
4 3. T jest minimalny, tj. składa się z najmniejszej możliwej liczby zbiorów T. Algorithm 2: LEM2 Data: zbiór X; Result: pojedyncze lokalne pokrycie T zbioru X; begin G := X; T := ; while G do T := ; T G := {t : [t] G }; while T = or [T ] X do wybierz t T G takie, że [t] G jest maksymalne; jeżeli jest więcej niż jedno t spełniające warunek, to wybierz spośród nich pierwsze znalezione t takie, że [t] jest minimalne; T := T {t}; G := [t] G; T G = {t : [t] G } \ T ; end foreach t T do if [T \ {t}] X then T := T \ {t}; T := T {T }; G := X \ T T [T ]; foreach T T do if T T \{T }[T ] = X then T := T \ {T }; Opis algorytmu. Algorytm LEM2 na wejściu otrzymuje aproksymację rozpatrywanej klasy decyzyjnej. Jeżeli jest to dolna aproksymacja, to są generowane reguły pewne, jeżeli górna, to możliwe (Zamiast aproksymacji można rozpatrywać obszar brzegowy, wtedy generowane są reguły przybliżone). Algorytm przy generowaniu każdej reguły bierze pod uwagę tylko te warunki, które są spełnione przynajmniej przez jeden obiekt z rozpatrywanego zbioru (tj. T G := {t : [t] G }). W każdym kroku generowania reguły (zbiór T reprezentuje regułę) wybierany jest taki warunek, który jest spełniany przez największą liczbę obiektów (tj. [t] G jest maksymalne). Jeżeli jest więcej takich warunków spełniających podane kryterium, to spośród nich wybierany jest ten, który jest spełniony przez najmniejszą liczbę wszystkich obiektów z U (tj. [t] jest minimalne). W tym przypadku jest to równoważne temu, że taki warunek jest spełniony przez najmniejszą liczbę obiektów spoza zbioru G. Reguła jest tworzona (tj. T := T {t}), dopóki nie jest dodany ani jeden warunek do reguły (tj. T = ) lub te warunki które już są dodane do reguły są spełniane nie tylko przez obiekty z rozpatrywanej aproksymacji (tj. [T ] X). 4
5 Po wygenerowaniu każdej reguły, następuje jej przycinanie poprzez usunięcie zbędnych warunków (tj. if [T \{t}] X then T := T \{t}). Przy generowaniu kolejnej reguły, rozpatrywane są tylko te obiekty z danej aproksymacji, które nie spełniają wygenerowanych do tej pory reguł (tj. G := X \ T T [T ]), czyli nie spełniają reguł znajdujących się w zbiorze T. Po wygenerowaniu wszystkich reguł, tzn. w sytuacji gdy nie ma już obiektów z rozpatrywanej aproksymacji niespełniających którejkolwiek z reguł (tj. G nie jest spełnione), następuje przycinanie zbioru reguł poprzez usuwanie zbędnych reguł (tj. if T T \{T }[T ] = X then T := T \ {T }). Przykład 2. Dana jest tablica decyzyjna z Przykładu 1. Załóżmy, że rozpatrywana jest dolna aproksymacja klasy decyzyjnej {1, 2, 4, 5}, zatem X = {1, 2, 4, 5} (w tym przypadku obie aproksymacje pokrywają się). G := X; T := ; pętla while G (krok 1): T := ; T G := {(temperatura, b. wysoka), (temperatura, wysoka), (temperatura, normalna), (bol glowy, tak), (bol glowy, nie), (oslabienie, tak), (oslabienie, nie), (nudnosci, tak), (nudnosci, nie)}; pętla while T = or [T ] X (krok 1): Dla warunków (bol glowy, tak) i (oslabienie, tak) wyrażenie [t] G przyjmuje maksymalną wartość, tj. 3. Wybierany jest warunek (bol glowy, tak), gdyż (bol glowy, tak) = 3 < (oslabienie, tak) = 5. T := {(bol glowy, tak)}; G := {1, 2, 4}; T G = {(temperatura, b. wysoka), (temperatura, wysoka), (temperatura, normalna, (bol glowy, nie), (oslabienie, tak), (oslabienie, nie), (nudnosci, tak), (nudnosci, nie)}. Otrzymujemy T : and [T ] X, więc wychodzimy z pętli wewnętrznej. T := {{(bol glowy, tak)}}; G := {1, 2, 4, 5} \ {1, 2, 4} = {5}. pętla while G (krok 2): T := ; T G := {(temperatura, wysoka), (bol glowy, nie), (oslabienie, tak), (nudnosci, nie)}; pętla while T = or [T ] X (krok 1): Wybierany jest warunek (temperatura, wysoka), otrzymujemy T := {(temperatura, wysoka)}; G := {5}; T G = {(bol glowy, nie), (oslabienie, tak), (nudnosci, nie)}. Ponieważ [T ] = {2, 5, 6} X, więc pętla while T = or [T ] X (krok 2): Wybierany jest warunek (bol glowy, nie), otrzymujemy T := {(temperatura, wysoka), (bol glowy, nie)}; G := {5}; T G = {(oslabienie, tak), (nudnosci, nie)} Ponieważ [T ] = {5, 6} X, więc 5
6 pętla while T = or [T ] X (krok 3): Wybierany jest warunek (oslabienie, tak), otrzymujemy T := {(temperatura, wysoka), (bol glowy, nie), (oslabienie, tak)}; G := {5}; T G = {(nudnosci, nie)} Ponieważ [T ] = {5} X, więc wychodzimy z pętli wewnętrznej. Przycinając regułę reprezentowaną przez zbiór T (pętla foreach t T ) otrzymujemy T = {(temperatura, wysoka), (oslabienie, tak)}; T := {{(bol glowy, tak)}, {(temperatura, wysoka), (oslabienie, tak)}}; G := {5} \ {5} =, więc wychodzimy z pętli zewnętrznej. Na podstawie otrzymanego lokalnego pokrycia konstruowane są reguły: (bol glowy, tak) (grypa, tak), (temperatura, wysoka) (oslabienie, tak) (grypa, tak). Zbiór reguł wygenerowanych przez algorytm LEM2 składa się z następujących reguł (po dwukropku podane pokrycie reguły): (bol glowy, tak) (grypa, tak) : 1, 2, 4, (temperatura, wysoka) (oslabienie, tak) (grypa, tak) : 5, (temperatura, normalna) (bol glowy, nie) (grypa, nie) : 3, 7, (bol glowy, nie) (oslabienie, nie) (grypa, nie) : 3, 6. 6
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska
SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska DRZEWO REGRESYJNE Sposób konstrukcji i przycinania
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej System informacyjny System informacyjny SI zdefiniowany
Sztuczna inteligencja
POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 10: Zbiory przybliżone
WSPOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY PRZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH
WSOMAGANIE DECYZJI - MIŁOSZ KADZIŃSKI LAB IV ZBIORY RZYBLIŻONE I ODKRYWANIE REGUŁ DECYZYJNYCH 1. Definicje Zbiory, które nie są zbiorami definiowalnymi, są nazywane zbiorami przybliżonymi. Zbiory definiowalne
Systemy ekspertowe. Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych. Część trzecia
Część trzecia Autor Roman Simiński Eksploracja danych z wykorzystaniem tablic decyzyjnych i zbiorów przybliżonych Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót
Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.
Eksploracja danych KLASYFIKACJA I REGRESJA cz. 2 Wojciech Waloszek wowal@eti.pg.gda.pl Teresa Zawadzka tegra@eti.pg.gda.pl Katedra Inżynierii Oprogramowania Wydział Elektroniki, Telekomunikacji i Informatyki
Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych. Wykład 3
Odkrywanie wiedzy z danych przy użyciu zbiorów przybliżonych Wykład 3 W internecie Teoria zbiorów przybliżonych zaproponowany w 1982 r. przez prof. Zdzisława Pawlaka formalizm matematyczny, stanowiący
Sortowanie topologiczne skierowanych grafów acyklicznych
Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)
Wstęp do Techniki Cyfrowej... Teoria automatów
Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia
Systemy ekspertowe : Tablice decyzyjne
Instytut Informatyki Uniwersytetu Śląskiego 16 marzec 2010 Tablica decyzyjna Klasy nierozróżnialności i klasy decyzyjne Rdzeń Redukt Macierz nierozróżnialności Rdzeń i redukt w macierzy nierozróżnialności
Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori.
Analiza danych Reguły decyzyjne, algorytm AQ i CN2. Reguły asocjacyjne, algorytm Apriori. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ REGUŁY DECYZYJNE Metoda reprezentacji wiedzy (modelowania
Minimalizacja automatów niezupełnych.
Minimalizacja automatów niezupełnych. Automatem zredukowanym nazywamy automat, który jest zdolny do wykonywania tej samej pracy, którą może wykonać dany automat, przy czym ma on mniejszą liczbę stanów.
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z wyznaczania reduktów zbioru Liczba osób realizuj cych projekt: 1-2 osoby 1. Wczytanie danych w formatach arf,
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko
Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Katedra Systemów Multimedialnych 2009 Plan wykładu Historia zbiorów przybliżonych System informacyjny i decyzyjny Reguły decyzyjne Tożsamość
1 Wprowadzenie do algorytmiki
Teoretyczne podstawy informatyki - ćwiczenia: Prowadzący: dr inż. Dariusz W Brzeziński 1 Wprowadzenie do algorytmiki 1.1 Algorytm 1. Skończony, uporządkowany ciąg precyzyjnie i zrozumiale opisanych czynności
WYKŁAD 6. Reguły decyzyjne
Wrocław University of Technology WYKŁAD 6 Reguły decyzyjne autor: Maciej Zięba Politechnika Wrocławska Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł
Strategie ewolucyjne (ang. evolu4on strategies)
Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje
Algorytmy i struktury danych
Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Mariusz Różycki University of Cambridge Zajęcia będą mieć formę wykładową. Slajdy można znaleźć na stronie kursu: http://lw.mi.edu.pl/informatyka/algorytmy.
Matematyka dyskretna - wykład - część Podstawowe algorytmy kombinatoryczne
A. Permutacja losowa Matematyka dyskretna - wykład - część 2 9. Podstawowe algorytmy kombinatoryczne Załóżmy, że mamy tablice p złożoną z n liczb (ponumerowanych od 0 do n 1). Aby wygenerować losową permutację
Wydział Zarządzania AGH. Katedra Informatyki Stosowanej. Pętle. Programowanie komputerowe
Wydział Zarządzania AGH Katedra Informatyki Stosowanej Pętle 1 Program wykładu Pojęcie pętli Pętla FOR Pętla DO LOOP Pętle zagnieżdżone 2 Pojęcie pętli Suma lub iloczyn dowolnych n liczb wprowadzanych
Teoretyczne podstawy zbiorów przybliżonych
Teoretyczne podstawy zbiorów przybliżonych Agnieszka Nowak 17 kwietnia 2009 1 Podstawy teorii zbiorów przybliżonych 1.1 Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława Pawlaka w
Metody indukcji reguł
Metody indukcji reguł Indukcja reguł Grupa metod charakteryzująca się wydobywaniem reguł ostrych na podstawie analizy przypadków. Dane doświadczalne składają się z dwóch części: 1) wejściowych X, gdzie
Programowanie w Turbo Pascal
Skróty: ALT + F9 Kompilacja CTRL + F9 Uruchomienie Struktura programu: Programowanie w Turbo Pascal Program nazwa; - nagłówek programu - blok deklaracji (tu znajduje się VAR lub CONST) - blok instrukcji
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami
Wstęp do Informatyki zadania ze złożoności obliczeniowej z rozwiązaniami Przykład 1. Napisz program, który dla podanej liczby n wypisze jej rozkład na czynniki pierwsze. Oblicz asymptotyczną złożoność
Język C część 2. Podejmowanie decyzji w programie. if else. switch
Język C część 2 Podejmowanie decyzji w programie if else Instrukcja warunkowa umożliwia wykonanie pewnej instrukcji w zależności od wartości wyrażenia. Wszystkie wartości różne od 0, są w języku C traktowane
Metody eksploracji danych. Reguły asocjacyjne
Metody eksploracji danych Reguły asocjacyjne Analiza podobieństw i koszyka sklepowego Analiza podobieństw jest badaniem atrybutów lub cech, które są powiązane ze sobą. Metody analizy podobieństw, znane
Data Mining Wykład 3. Algorytmy odkrywania binarnych reguł asocjacyjnych. Plan wykładu
Data Mining Wykład 3 Algorytmy odkrywania binarnych reguł asocjacyjnych Plan wykładu Algorytm Apriori Funkcja apriori_gen(ck) Generacja zbiorów kandydujących Generacja reguł Efektywności działania Własności
Odkrywanie wiedzy w danych
Inżynieria Wiedzy i Systemy Ekspertowe Odkrywanie wiedzy w danych dr inż. Michał Bereta Politechnika Krakowska http://torus.uck.pk.edu.pl/~beretam/ beretam@torus.uck.pk.edu.pl 1 Data Mining W pewnym teleturnieju
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY
Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z grupowania danych - Rough k-medoids Liczba osób realizuj cych projekt: 1 osoba 1. Wczytanie danych w formatach
Pętle instrukcje powtórzeo
Pętle instrukcje powtórzeo Pętle - zbiór instrukcji, które należy wykonad wielokrotnie. Program dyktuje: - ile razy pętla ta wykona zawarty w niej blok instrukcji - jakie mają byd warunki zakooczenia jej
Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.
mgr inż. Magdalena Deckert Poznań, r. Metody przyrostowego uczenia się ze strumieni danych.
mgr inż. Magdalena Deckert Poznań, 30.11.2010r. Metody przyrostowego uczenia się ze strumieni danych. Plan prezentacji Wstęp Concept drift i typy zmian Algorytmy przyrostowego uczenia się ze strumieni
Uwagi dotyczące notacji kodu! Moduły. Struktura modułu. Procedury. Opcje modułu (niektóre)
Uwagi dotyczące notacji kodu! Wyrazy drukiem prostym -- słowami języka VBA. Wyrazy drukiem pochyłym -- inne fragmenty kodu. Wyrazy w [nawiasach kwadratowych] opcjonalne fragmenty kodu (mogą być, ale nie
Systemy ekspertowe. Wnioskowanie w systemach regułowych. Część piąta. Autor Roman Simiński.
Część piąta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Instrukcje sterujące. wer. 11 z drobnymi modyfikacjami! Wojciech Myszka :53:
Instrukcje sterujące wer. 11 z drobnymi modyfikacjami! Wojciech Myszka 2017-07-05 10:53:09 +0200 Ala ma kota Część I Prosty przykład Problem 1. Zadanie polega na tym, żeby opracować algorytm który dla
Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:
Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych
Wnioskowanie Boolowskie i teoria zbiorów przybli»onych 4 Zbiory przybli»one Wprowadzenie do teorii zbiorów przybli»onych Zªo»ono± problemu szukania reduktów 5 Wnioskowanie Boolowskie w obliczaniu reduktów
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2017-10-13 Spis treści 1 Optymalne sortowanie 5 ciu elementów 1 2 Sortowanie metodą Shella 2 3 Przesunięcie cykliczne tablicy 3 4 Scalanie w miejscu dla ciągów
Matematyka dyskretna
Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych
6. Zagadnienie parkowania ciężarówki.
6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
II. FUNKCJE WIELU ZMIENNYCH
II. FUNKCJE WIELU ZMIENNYCH 1. Zbiory w przestrzeni R n Ustalmy dowolne n N. Definicja 1.1. Zbiór wszystkich uporzadkowanych układów (x 1,..., x n ) n liczb rzeczywistych, nazywamy przestrzenią n-wymiarową
Technologie baz danych
Plan wykładu Technologie baz danych Wykład 2: Relacyjny model danych - zależności funkcyjne. SQL - podstawy Definicja zależności funkcyjnych Reguły dotyczące zależności funkcyjnych Domknięcie zbioru atrybutów
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy. Dla dowolnego zbioru B Y określamy jego przeciwobraz:
Rozważmy funkcję f : X Y. Dla dowolnego zbioru A X określamy jego obraz: f(a) = {f(x); x A} = {y Y : x A f(x) = y}. Dla dowolnego zbioru B Y określamy jego przeciwobraz: f 1 (B) = {x X; f(x) B}. 1 Zadanie.
METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski
METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,
Ćwiczenie: JavaScript Cookies (3x45 minut)
Ćwiczenie: JavaScript Cookies (3x45 minut) Cookies niewielkie porcje danych tekstowych, które mogą być przesyłane między serwerem a przeglądarką. Przeglądarka przechowuje te dane przez określony czas.
Systemy Wspomagania Decyzji
Reguły Asocjacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności March 18, 2014 1 Wprowadzenie 2 Definicja 3 Szukanie reguł asocjacyjnych 4 Przykłady użycia 5 Podsumowanie Problem Lista
Opis: Instrukcja warunkowa Składnia: IF [NOT] warunek [AND [NOT] warunek] [OR [NOT] warunek].
ABAP/4 Instrukcja IF Opis: Instrukcja warunkowa Składnia: IF [NOT] warunek [AND [NOT] warunek] [OR [NOT] warunek]. [ELSEIF warunek. ] [ELSE. ] ENDIF. gdzie: warunek dowolne wyrażenie logiczne o wartości
Programowanie w VB Proste algorytmy sortowania
Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich
ECDL Podstawy programowania Sylabus - wersja 1.0
ECDL Podstawy programowania Sylabus - wersja 1.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu Podstawy programowania. Sylabus opisuje, poprzez efekty uczenia się, zakres wiedzy
Zapis algorytmów: schematy blokowe i pseudokod 1
Zapis algorytmów: schematy blokowe i pseudokod 1 Przed przystąpieniem do napisania kodu programu należy ten program najpierw zaprojektować. Projekt tworzącego go algorytmu może być zapisany w formie schematu
PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe
Dlaczego nie wystarczają liczby wymierne
Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości
1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje. Definicja 1 Funkcję postaci f. nazwiemy n-argumentową funkcją boolowską.
1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje Definicja 1 Funkcję postaci f n :{ 0, 1} { 0, 1} nazwiemy n-argumentową funkcją boolowską. Definicja 2 1 2 Term g = x 1 x x ( ϕ ) ( ϕ
Programowanie w języku C++ Grażyna Koba
Programowanie w języku C++ Grażyna Koba Kilka definicji: Program komputerowy to ciąg instrukcji języka programowania, realizujący dany algorytm. Język programowania to zbiór określonych instrukcji i zasad
Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna
Język JAVA podstawy Wykład 3, część 3 1 Język JAVA podstawy Plan wykładu: 1. Konstrukcja kodu programów w Javie 2. Identyfikatory, zmienne 3. Typy danych 4. Operatory, instrukcje sterujące instrukcja warunkowe,
1 Określenie pierścienia
1 Określenie pierścienia Definicja 1. Niech P będzie zbiorem, w którym określone są działania +, (dodawanie i mnożenie). Mówimy, że struktura (P, +, ) jest pierścieniem, jeżeli spełnione są następujące
Elementy modelowania matematycznego
Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle.
Instrukcje pętli przykłady. Odgadywanie hasła. 1) Program pyta o hasło i podaje adres, gdy hasło poprawne lub komunikat o błędnym haśle. Sub Hasla1() Dim wzor_hasla As String Dim haslo As String Dim adres
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 10. WNIOSKOWANIE W LOGICE ROZMYTEJ Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska WNIOSKOWANIE W LOGICE DWUWARTOŚCIOWEJ W logice
Data Mining Wykład 5. Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny. Indeks Gini. Indeks Gini - Przykład
Data Mining Wykład 5 Indukcja drzew decyzyjnych - Indeks Gini & Zysk informacyjny Indeks Gini Popularnym kryterium podziału, stosowanym w wielu produktach komercyjnych, jest indeks Gini Algorytm SPRINT
Programowanie nieliniowe
Rozdział 5 Programowanie nieliniowe Programowanie liniowe ma zastosowanie w wielu sytuacjach decyzyjnych, jednak często zdarza się, że zależności zachodzących między zmiennymi nie można wyrazić za pomocą
Podstawy Programowania C++
Wykład 3 - podstawowe konstrukcje Instytut Automatyki i Robotyki Warszawa, 2014 Wstęp Plan wykładu Struktura programu, instrukcja przypisania, podstawowe typy danych, zapis i odczyt danych, wyrażenia:
Reguły asocjacyjne. Żródło: LaroseD.T., Discovering Knowledge in Data. An Introduction to Data Minig, John Wiley& Sons, Hoboken, New Jersey, 2005.
Reguły asocjacyjne Żródło: LaroseD.T., Discovering Knowledge in Data. An Introduction to Data Minig, John Wiley& Sons, Hoboken, New Jersey, 2005. Stragan warzywny -transakcje zakupów Transakcja Produkty
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Liczby losowe i pętla while w języku Python
Liczby losowe i pętla while w języku Python Mateusz Miotk 17 stycznia 2017 Instytut Informatyki UG 1 Generowanie liczb losowych Na ogół programy są spójne i prowadzą do przewidywanych wyników. Czasem jednak
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
ALGORYTMY. 1. Podstawowe definicje Schemat blokowy
ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności
Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi
M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)
Podstawowe algorytmy i ich implementacje w C. Wykład 9
Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny
Wstęp do programowania
Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
Algorytmy i struktury danych
Algorytmy i struktury danych 4. Łódź 2018 Suma szeregu harmonicznego - Wpisz kod programu w oknie edycyjnym - Zapisz kod w pliku harmonic.py - Uruchom skrypt (In[1]: run harmonic.py) - Ten program wykorzystuje
Wstęp do programowania
Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2014 1 / 38 Przypomnienie Programowanie imperatywne Program
Systemy uczące się wykład 2
Systemy uczące się wykład 2 dr Przemysław Juszczuk Katedra Inżynierii Wiedzy, Uniwersytet Ekonomiczny 19 X 2018 Podstawowe definicje Fakt; Przesłanka; Konkluzja; Reguła; Wnioskowanie. Typy wnioskowania
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej Metody usuwania niespójności z T 1. Pomoc eksperta:
Materiały do laboratorium MS ACCESS BASIC
Materiały do laboratorium MS ACCESS BASIC Opracowała: Katarzyna Harężlak Access Basic jest językiem programowania wykorzystywanym w celu powiązania obiektów aplikacji w jeden spójny system. PROCEDURY I
Wykład 2. Poprawność algorytmów
Wykład 2 Poprawność algorytmów 1 Przegląd Ø Poprawność algorytmów Ø Podstawy matematyczne: Przyrost funkcji i notacje asymptotyczne Sumowanie szeregów Indukcja matematyczna 2 Poprawność algorytmów Ø Algorytm
7. Zagadnienie parkowania ciężarówki.
7. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można
Wybrane zadania przygotowujące do egzaminu z ISO- cz. 2. dr Piotr Wąsiewicz
Wybrane zadania przygotowujące do egzaminu z ISO- cz. 2 dr Piotr Wąsiewicz. Ze zbioru treningowego podanego w tabeli poniżej wykreować metodą zstępującej konstrukcji drzewo decyzyjne(jak najmniej rozbudowane-
Wykład z modelowania matematycznego. Zagadnienie transportowe.
Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
Wstęp do programowania
Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2013 1 / 34 Przypomnienie Programowanie imperatywne Program
R o g e r A c c e s s C o n t r o l S y s t e m 5
R o g e r A c c e s s C o n t r o l S y s t e m 5 Nota aplikacyjna nr 003 Wersja dokumentu: Rev. B Uprawnienia Uwaga: Niniejszy dokument dotyczy RACS v5.2 (VISO 1.2.2 lub nowszy) Wprowadzenie W systemie
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.
PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do
Teoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
Cel normalizacji. Tadeusz Pankowski
Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline Programowanie imperatywne 1 Programowanie imperatywne Intuicje Programowanie imperatywne Paradygmat programowania imperatywnego: program
Pętle. Dodał Administrator niedziela, 14 marzec :27
Pętlami nazywamy konstrukcje języka, które pozwalają na wielokrotne wykonywanie powtarzających się instrukcji. Przykładowo, jeśli trzeba 10 razy wyświetlić na ekranie pewien napis, to można wykorzystać
Normalizacja. Pojęcie klucza. Cel normalizacji
Plan Normalizacja Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski 1. Cel normalizacji. 2. Klucze schematów relacyjnych atrybuty kluczowe i niekluczowe. 3. 2PN druga postać normalna. 4. 3PN trzecia
Hierarchiczna analiza skupień
Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym