MATURA z WSiP Mtemtyk Poziom podstwowy Zsdy ocenini zdń Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o., Wrszw
Krtotek testu Numer zdni 6 7 8 9 6 7 8 9 Uczeń: Sprwdzn umiejętność (z numerem stndrdu) stosuje podny wzór lub przepis postępowni, wykonuje rutynowe procedury () mtemtycznymi () mtemtycznymi () któr jsno wynik z jego treści () stosuje definicję lub twierdzenie w typowym kontekście () mtemtycznymi () mtemtycznymi () mtemtycznymi () któr jsno wynik z jego treści () mtemtycznymi () mtemtycznymi () mtemtycznymi () mtemtycznymi () mtemtycznymi () któr jsno wynik z jego treści () mtemtycznymi () mtemtycznymi () mtemtycznymi () któr jsno wynik z jego treści () buduje model mtemtyczny dnej sytucji przy uwzględnieniu ogrniczeń i zstrzeżeń () Uczeń: Sprwdzn czynność oblicz wrtość bezwzględną liczby niewymiernej oblicz różnicę liczby niewymiernej i liczby do niej przeciwnej oblicz procent, o jki zmniejszono pole trpezu po zminie wymirów oblicz wrtość wyrżeni, w którym występują potęgi oblicz wrtość wyrżeni, w którym występują logrytmy Mksymln liczb punktów oblicz miejsce zerowe funkcji liniowej oblicz współczynnik prostej równoległej do dnej prostej podje zbiór wrtości funkcji wyzncz wzór funkcji kwdrtowej, mjąc zbiór wrtości i rozwiąznie nierówności podje liczbę miejsc zerowych funkcji kwdrtowej podje liczbę pierwistków wielominu podje stopień wielominu będącego iloczynem wielominów oblicz stosunek długości odcinków, n które wysokość trójkąt dzieli jego bok oblicz wrtości funkcji trygonometrycznych w trójkącie prostokątnym i wrtość wyrżeni oblicz pole trpezu wyciętego z trójkąt oblicz długość boku rombu, znjąc jego pole i mirę kąt między bokmi oblicz długość średnicy okręgu i długość boku trójkąt wpisnego w okrąg oblicz różnicę ciągu rytmetycznego, mjąc dny pierwszy wyrz orz sumę kilku początkowych wyrzów oblicz pierwszy wyrz ciągu geometrycznego, mjąc związki między innymi wyrzmi tego ciągu oblicz, ile jest czterocyfrowych liczb, uwzględnijąc zdne wrunki Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o.
6 7 8 9 mtemtycznymi () mtemtycznymi () któr jsno wynik z jego treści () mtemtycznymi () mtemtycznymi () prowdzi rozumownie skłdjące się z niewielkiej liczby kroków () mtemtycznymi () prowdzi rozumownie skłdjące się z niewielkiej liczby kroków () któr jsno wynik z jego treści () dobier model mtemtyczny do podnej sytucji (np. prktycznej) () któr jsno wynik z jego treści () dobier model mtemtyczny do podnej sytucji (np. prktycznej) () któr jsno wynik z jego treści () oblicz prwdopodobieństwo zdrzeni ze związku między prwdopodobieństwmi zdrzeni i zdrzeni przeciwnego oblicz objętość wlc, znjąc jego przekrój oblicz objętość ostrosłup n podstwie jego sitki wyzncz liczbę ujemnych wyrzów ciągu rozwiązuje równnie trzeciego stopni uzsdni, że równnie kwdrtowe spełnijące podne wrunki m rozwiąznie oblicz sinus kąt, jki prost tworzy z osią x wykzuje związek między polmi trójkątów wyzncz równnie okręgu stycznego do dnej prostej oblicz prwdopodobieństwo zdrzeni oblicz sumę wyrzów ciągu dnego wzorem oblicz długość drogi, znjąc liczbę obrotów koł i jego wymiry oblicz objętość ostrosłup, znjąc kąt między ściną podstwą i pole powierzchni ściny bocznej Klucz odpowiedzi do zdń zmkniętych Numer zdni 6 7 8 9 Poprwn odpowiedź C D D B B A B C C A Numer zdni 6 7 8 9 Poprwn odpowiedź B C B C A C C D D C Numer zdni Poprwn odpowiedź D A A Z kżdą poprwną odpowiedź w zdnich zmkniętych uczeń otrzymuje punkt. Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o.
Schemt ocenini pozostłych zdń Numer zdni n < i n N + ( n )( n ) Rozwiąznie Zsdy punktowni Punktcj + < i n N + Uczeń otrzymuje punkt, gdy zpisze nierówność n < i obliczy pierwistki trójminu n : n =, n =. {,,,} n <, <, <, < Cztery wyrzy ciągu są ujemne. Uczeń otrzymuje punkty, gdy rozwiąże nierówność n < i pod liczbę ujemnych wyrzów ciągu ( n ) : m cztery wyrzy ujemne. Ciąg ( ) n I sposób rozwiązni ( ) x + x 8= x + x x + x+ = ( ) ( )( ) ( x )( x + x + x+ ) = ( x )( x + x+ ) = = 9 8= + x = =, x = = x = lub x =, lub x = II sposób rozwiązni x + x 8= ( ) Uczeń otrzymuje punkt, gdy przeksztłci dne równnie do postci, z której możn odczytć jeden z jego pierwistków, np. ( x )( x x ) lub + + = ( x )( x ) + =. Uczeń otrzymuje punkty, gdy rozwiąże dne równnie: x = lub x =, lub x =. x x+ + x 8= x + x x = x ( x+ ) ( x+ ) = x x+ = ( )( ) ( x )( x )( x ) + + = x = lub x =, lub x = Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o.
6 Złożenie: + b+ c= Tez: Dowód: + b+ c= = b c b= ( + c) = ( + c) c = + c + c c = c + c = c ( ) Jeśli wyróżnik trójminu jest liczbą nieujemną, to trójmin m co njmniej jedno miejsce zerowe. Uczeń otrzymuje punkt, gdy zpisze wyróżnik trójminu x + bx + c z wykorzystniem złożeni + b+ c=, np. b= ( + c) ( c). = + c Uczeń otrzymuje punkty, gdy wykże, że wyróżnik trójminu x + bx + c jest nieujemny przy złożeniu, że + b+ c=. I sposób rozwiązni tg α = Uczeń otrzymuje punkt, gdy zuwży, że tgα =. Uczeń otrzymuje punkty, gdy obliczy sin α = =. α sinα = = 7 II sposób rozwiązni Korzystmy z tożsmości trygonometrycznych. sinα = cosα sin α + cos α = < α < 9 cosα = sinα sin α + ( sinα) = < α < 9 sinα = Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o.
Złożenie: C L α A K B Uczeń otrzymuje punkt, gdy wyrzi długości odcinków KB i LB wykorzystując długości odcinków AB i CB. Uczeń otrzymuje punkty, gdy wykże, że pole trojkąt KBL jest czterokrotnie mniejsze od pol trojkąt ABC. 8 AB BK = orz BC BL = Tez: P KBL = P ABC Dowód: P ABC = AB BC sinα BK AB = = AB BL BC = = BC P KBL = BK BL sinα P KBL AB BC = sinα P KBL AB BC = sinα = P ABC y Uczeń otrzymuje punkt, gdy obliczy długość promieni okręgu r =. x Uczeń otrzymuje punkty, gdy zpisze równnie okręgu x + y+ = 8. ( ) ( ) 9 x+ y = 6 r = = = + Okrąg styczny m równnie: ( x ) ( y ) + + = 8. 6 Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o.
6 7 8 9 6 6 8 8 6 Zdrzenimi elementrnymi są x, y, gdzie wszystkie pry ( ) x X = {,,,,}, y Y = {,,,6,7,8,9}. Ω = 7 = {(, ) :,, 6 ( )} A= xy x Xy Y x y Uczeń otrzymuje punkt, gdy wyznczy liczbę wszystkich zdrzeń elementrnych: Ω = 7 = lub liczbę zdrzeń elementrnych sprzyjjących zdrzeniu A: A =. Uczeń otrzymuje punkty, gdy obliczy prwdopodobieństwo zdrzeni A: P( A ) =. Uwg: Jeżeli uczeń otrzym P( A ) >, otrzymuje punktów. A = A P( A) = = Ω =, =, = 7,... = 9 + 9 + +... + = 6 = 6 =, =, 6 =,..., = + +... + = 6 = 6 + +... + = 6 + 6 = 8 Uczeń otrzymuje punkt, gdy przedstwi rozwiąznie, w którym postęp jest niewielki, le konieczny n drodze do pełnego rozwiązni, czyli obliczy sumę 6 początkowych wyrzów ciągu ( n ) o numerch przystych: + +... + = 6 = 6. Uczeń otrzymuje punkty, gdy przedstwi rozwiąznie, w którym jest istotny postęp, czyli zuwży, że wrtości wyrżeni n dl n nieprzystych są kolejnymi wyrzmi ciągu rytmetycznego ( b n ) i zpisze, że pierwszy wyrz tego ciągu równ się, różnic r jest równ. Uczeń otrzymuje punkty, gdy przedstwi rozwiąznie, w którym pokonł zsdnicze trudności, czyli obliczy S n sumę 6 początkowych wyrzów ciągu b : S = 6. ( ) n n Uczeń otrzymuje punkty, gdy przedstwi pełne rozwiąznie, czyli obliczy sumę początkowych wyrzów ciągu ( ) n : S = 6 + 6 = 8. Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o. 7
Uczeń otrzymuje punkt, gdy przedstwi rozwiąznie, w którym postęp jest niewielki, le konieczny n drodze do pełnego rozwiązni, czyli wprowdzi oznczeni, np. obwód przedniego koł l= π r, obwód tylnego koł L= π R. l= π r I sposób rozwiązni 8 π r = 6 πr 8r = 6R r = R π r+,6 = πr L= π R π,6 R+ = πr, R = π, s = 6 π = 6, = π Uczeń otrzymuje punkty, gdy przedstwi rozwiąznie, w którym jest istotny postęp, czyli zpisze zleżność pomiędzy długościmi promieni obydwóch kół, np. r = R, lub zpisze zleżność między obwodmi obydwóch kół, np. L = l +,6. Uczeń otrzymuje punkty, gdy przedstwi rozwiąznie, w którym pokonł zsdnicze trudności, czyli obliczy promień jednego z kół ciągnik, np., R =, lub obliczy obwód jednego π z kół ciągnik, np. l =,8. II sposób rozwiązni L = l +,6 8l = 6L 8l = 6 (l +,6) l =,8 s = 8,8 = Uczeń otrzymuje punkty, gdy przedstwi pełne rozwiąznie, czyli obliczy drogę, którą przejechł ciągnik: s = m =, km. 8 Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o.
A D P ABS = P BCS = 6 cosα = = h= h H S B h α P BCS = h = = = 6 = i h = H = i twierdzeni Pitgors ( ) V= PH p = = C Uczeń otrzymuje punkt, gdy przedstwi rozwiąznie, w którym postęp jest niewielki, le konieczny n drodze do pełnego rozwiązni, czyli zpisze zleżność między i h: cosα = =. h Uczeń otrzymuje punkty, gdy przedstwi rozwiąznie, w którym jest istotny postęp, czyli zpisze zleżność: h= lub = h. Uczeń otrzymuje punkty, gdy przedstwi rozwiąznie, w którym pokonł zsdnicze trudności, czyli obliczy długość krwędzi podstwy i wysokość ściny bocznej ostrosłup: = i h =. Uczeń otrzymuje punkty, gdy przedstwi pełne rozwiąznie z usterkmi, które jednk nie przekreślją poprwności rozwiązni (np. błędy rchunkowe). Uczeń otrzymuje punktów, gdy przedstwi pełne rozwiąznie, czyli obliczy objętość ostrosłup: V =. Copyright by Wydwnictw Szkolne i Pedgogiczne sp. z o.o. 9