WIELOMIANY SUPER TRUDNE

Podobne dokumenty
WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

KURS MATURA ROZSZERZONA część 1

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI FUNKCJE KWADRATOWE PARAMETRY

WIELOMIANY. Poziom podstawowy

1. Wielomiany Podstawowe definicje i twierdzenia

Indukcja matematyczna

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

ZADANIE 1. ZADANIE 2 Wyznacz wzór funkcji f (x) = 2x 2 + bx + c w postaci kanonicznej wiedzac, że jej miejsca zerowe sa niami równania x 3 = ZADANIE 3

Równania kwadratowe. Zad. 4: (profil matematyczno-fizyczny) Dla jakich wartości parametru m równanie mx 2 + 2x + m 2 = 0 ma dwa pierwiastki mniejsze

Tematyka do egzaminu ustnego z matematyki. 3 semestr LO dla dorosłych

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

1. Równania i nierówności liniowe

MATURA Przygotowanie do matury z matematyki

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Suma dziewięciu poczatkowych wyrazów ciagu arytmetycznego wynosi 18, a suma siedmiu poczatkowych

WIELOMIANY I FUNKCJE WYMIERNE

Uwagi do materiału mogącego stanowić pomoc dla nauczycieli w przygotowaniu uczniów do egzaminu maturalnego z matematyki z zakresu rozszerzonego.

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

ZDAJ MATMĘ NA MAKSA POZIOM ROZSZERZONY 2018/ Oblicz wartość wyrażenia: a b 1 a2 b 2. 2 log )

Wielomiany. dr Tadeusz Werbiński. Teoria

Próbny egzamin maturalny z matematyki Poziom rozszerzony

f (x)=mx 2 +(2m 2)x+m+1 ma co najmniej jedno

Wymagania edukacyjne z matematyki klasa II technikum

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

Egzamin ustny z matematyki semestr II Zakres wymaganych wiadomości i umiejętności

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Funkcja kwadratowa Zadania na plusy Maria Małycha. Funkcja kwadratowa. Zadanie 7

ZBIÓR ZADAŃ Z MATEMATYKI - MATURA (POZIOM ROZSZERZONY)

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 5 Zadania funkcje cz.1

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.

LICZBY POWTÓRKA I (0, 2) 10 II (2, 5) 5 III 25 IV Liczba (0, 4) 5 jest równa liczbom A) I i III B) II i IV C) II i III D) I i II E) III i IV

(x 1), 3 log 8. b) Oblicz, ile boków ma wielokat wypukły, w którym liczba przekatnych jest pięć razy większa od liczby boków.

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

PRÓBNY EGZAMIN MATURALNY

Wielomiany. Kurs matematyki w oratorium autorami materiałów są: dr Barbara Wolnik i Witold Bołt. 17 marca 2006

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

KLASA II LO Poziom rozszerzony (wrzesień styczeń)

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

Rozkład materiału a wymagania podstawy programowej dla I klasy czteroletniego liceum i pięcioletniego technikum. Zakres rozszerzony

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

K P K P R K P R D K P R D W

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

Funkcja liniowa -zadania. Funkcja liniowa jest to funkcja postaci y = ax + b dla x R gdzie a, b R oraz

Wykresy i własności funkcji

PRÓBNY EGZAMIN MATURALNY

x+h=10 zatem h=10-x gdzie x>0 i h>0

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

PRÓBNY EGZAMIN MATURALNY

ZBIÓR ZADAŃ. Matematyczne ABC maturzysty na poziomie podstawowym

Wymagania edukacyjne z matematyki w klasie III A LP

Egzamin wstępny z Matematyki 1 lipca 2011 r.

KLUCZ PUNKTOWANIA ODPOWIEDZI

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

PRÓBNY EGZAMIN MATURALNY

Przykładowe rozwiązania

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

POZIOM ROZSZERZONY 4 CZERWCA (x 3) 2. Sposób I. x 6.

Zadanie 01 Zaznacz w układzie współrzędnych zbiory : A = { (x, y) ; x R i y R i x + y 1 } oraz. B m = { (x, y) ; x R i y R i 4x 2 + 4y 2 4x 4m+1 }

ROZKŁAD MATERIAŁU DLA KLASY I LICEUM I TECHNIKUM (ZAKRES PODSTAWOWY I ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ

Internetowe Kółko Matematyczne 2003/2004

PRÓBNY EGZAMIN MATURALNY

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

PRÓBNY EGZAMIN MATURALNY

Zad. 1 Liczba jest równa A B C D. Zad. 2 Liczba log16 jest równa A 3log2 + log8 B log4 + 2log3 C 3log4 log4 D log20 log4

Zestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY II TECHNIKUM 5 - LETNIEGO

Tematy: zadania tematyczne

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Przykładowe zestawy pytań maturalnych z matematyki na egzamin ustny.

Wielomiany. XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Uzasadnienie tezy. AB + CD = BC + AD 2

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

Zadania do samodzielnego rozwiązania zestaw 11

ZAKRES PODSTAWOWY CZĘŚĆ I. Liczby rzeczywiste

PRÓBNY EGZAMIN MATURALNY

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

2. Wyrażenia algebraiczne

III. Funkcje rzeczywiste

Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Transkrypt:

IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac, że W(x) ma pierwiastek całkowity. ZADANIE 2 (5 PKT) Liczba 2 jest miejscem zerowym wielomianu W(x). Wyznacz resztę z dzielenia tego wielomianu przez wielomian P(x) = x 2 3x + 2 jeśli wiadomo, że w wyniku dzielenia wielomianu W(x) przez dwumian (x 1) otrzymujemy resztę 5. ZADANIE 3 (5 PKT) Reszta z dzielenia wielomianu W(x) przez dwumian x 1 jest równa 1, zaś reszta z dzielenia tego wielomianu przez x 2 jest równa 4. Wyznacz resztę z dzielenia wielomianu W(x) przez wielomian x 2 3x + 2. ZADANIE 4 (5 PKT) Przedstaw wielomian W(x) = x 4 2x 3 3x 2 + 4x 1 w postaci iloczynu dwóch wielomianów stopnia drugiego o współczynnikach całkowitych i takich, że współczynniki przy drugich potęgach sa równe jeden. ZADANIE 5 (5 PKT) Dana jest funkcja f (x) = x 3 3x dla x (1, + ). Zbadaj na podstawie definicji monotoniczność tej funkcji w przedziale (1, + ). ZADANIE 6 (5 PKT) Wyznacz zbiór wartości funkcji f (x) = (x 2 2x 2) 2 + 4(x 2 2x 2) 1. ZADANIE 7 (5 PKT) Oblicz najmniejsza wartość wielomianu W(x) = (x 1)(x 3)(x 5)(x 7). ZADANIE 8 (5 PKT) Rozłóż na czynniki drugiego stopnia wielomian x 4 + 1. ZADANIE 9 (5 PKT) Wielomian W(x) = (2x 3 + 3x 6) 2004, po wykonaniu potęgowania i dokonaniu redukcji wyrazów podobnych, zapisano w postaci W(x) = a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0. Oblicz sumę a n + a n 1 +... + a 2 + a 1 + a 0. 1

ZADANIE 10 (5 PKT) Uzasadnij, że dla każdej liczby naturalnej x wartość wielomianu W(x) = x 5 5x 3 + 4x jest liczba podzielna przez 120. ZADANIE 11 (5 PKT) Wykaż, że jeżeli wielomian W(x) = x 6 + ax 4 + bx 2 + c jest podzielny przez trójmian x 2 + x + 1, to jest również podzielny przez trójmian x 2 x + 1. ZADANIE 12 (5 PKT) Wyznacz resztę z dzielenia wielomianu W(x) = (x 2 3x + 1) 2005 przez wielomian P(x) = x 2 4x + 3. ZADANIE 13 (5 PKT) Wielomian W(x) = (x 4 9x 2 + 7) 2005, po wykonaniu potęgowania i dokonaniu redukcji wyrazów podobnych, zapisano w postaci W(x) = a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0. Oblicz sumę a n + a n 1 +... + a 2 + a 1 + a 0. ZADANIE 14 (5 PKT) Liczba -7 jest miejscem zerowym W(x). Wyznacz resztę z dzielenia tego wielomianu przez wielomian P(x) = x 2 + 5x 14, jeśli wiadomo, że w wyniku dzielenia wielomianu W(x) przez dwumian (x 2) otrzymujemy resztę 18. ZADANIE 15 (5 PKT) Wykaż, że wielomian W(x) = (x 2) 2m + (x 1) m 1 jest podzielny przez wielomian P(x) = x 2 3x + 2 dla każdego m N +. ZADANIE 16 (5 PKT) Dany jest wielomian W(x) = x 4 + 2mx 3 + 4x 2 z parametrem m. a) Wiedzac, że wykres tego wielomianu jest symetryczny względem prostej x = 1, wyznacz m. b) Dla wyznaczonej wartości parametru m uzasadnij, że nierówność W(x) 0 jest spełniona przez każda liczbę rzeczywista x R. ZADANIE 17 (5 PKT) W wyniku jakiego przekształcenia (lub przekształceń) wykresu funkcji f (x) = x 4 + 3x można otrzymać wykres funkcji g, jeżeli a) g(x) = (x 5) 4 + 3(x 5) 5; b) g(x) = x 4 + 3x + 1 ; c) g(x) = x 4 + 3 x? 2

ZADANIE 18 (5 PKT) Wykres funkcji f (x) = x 3 + 3x + 1 przekształcono w symetrii względem prostej x = 2 i otrzymano wykres funkcji g(x). Wyznacz wzór funkcji g(x). ZADANIE 19 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac, że W(x) ma pierwiastek całkowity. ZADANIE 20 (5 PKT) Liczby x = 1 i x = 2 sa pierwiastkami wielomianu ax 4 + 2x 3 3ax 2 + 2ax 6x + 4. Wiedzac, że wielomian ten jest kwadratem wielomianu stopnia 2, oblicz a. ZADANIE 21 (5 PKT) Wielomian x 3 9x + 4 = 0 ma 3 pierwiastki rzeczywiste. a) Oblicz sumę odwrotności tych pierwiastków. b) Ustal, ile jest pierwiastków dodatnich. c) Oblicz odwrotność sumy kwadratów pierwiastków. d) Oblicz sumę kwadratów odwrotności tych pierwiastków. ZADANIE 22 (5 PKT) Znajdź wielomian o współczynnikach całkowitych, którego pierwiastkiem jest liczba 3 + 2 1. ZADANIE 23 (5 PKT) Wielomian W(x) = (m 4)x 3 (m + 6)x 2 (m 1)x + m + 3 jest podzielny przez dwumian x + 1. Dla jakich wartości parametru m wielomian W(x) ma dokładnie dwa pierwiastki? ZADANIE 24 (5 PKT) Dla jakich wartości parametru m wielomian W(x) = 2x 4 2x 3 6x 2 + 10x + m ma pierwiastek trzykrotny? ZADANIE 25 (5 PKT) Wiedzac, że suma kwadratów pierwiastków równania jest równa 30, wyznacz m. mx 3 + 6mx 2 + (8m 5)x 10 = 0 ZADANIE 26 (5 PKT) Rozważmy równanie 9x 4 + 2 5x 2 1 = 0. a) Uzasadnij, że równanie to ma 4 pierwiastki. b) Oblicz sumę szóstych potęg wszystkich pierwiastków tego równania. 3

ZADANIE 27 (5 PKT) Dla jakich wartości parametru m równanie (x m) 2 [m(x m) 2 m 1] + 1 = 0 ma więcej pierwiastków dodatnich niż ujemnych? ZADANIE 28 (5 PKT) Wyznacz współczynniki c i d wielomianu W(x) = x 3 4x 2 + cx + d wiedzac, że liczba 1 jest dwukrotnym pierwiastkiem wielomianu W(x). ZADANIE 29 (5 PKT) Udowodnij, że jeżeli wielomian W(x) = x 3 + px + q ma trzy pierwiastki, to p jest liczba ujemna. ZADANIE 30 (5 PKT) Dla jakich wartości parametru m równanie x 5 + (1 2m)x 3 + (m 2 1)x = 0 ma a) pięć pierwiastków; b) dokładnie 3 pierwiastki; c) tylko jeden pierwiastek? ZADANIE 31 (5 PKT) Dla jakich wartości parametru p wielomian W(x) = x 3 3px + 9p 27 ma trzy różne pierwiastki rzeczywiste? ZADANIE 32 (5 PKT) Wyznacz wszystkie wartości parametru m, dla których równanie (x 2 + 3mx + 1)(x 2 + 2x + m) = 0 ma cztery różne pierwiastki, których suma sześcianów jest równa 4. ZADANIE 33 (5 PKT) Wykaż, że jeżeli wielomian W(x) = x 3 + ax + b ma pierwiastek dwukrotny, to 4a 3 + 27b 2 = 0. ZADANIE 34 (5 PKT) Wyznacz te wartości parametru m, dla których równanie mx 3 + (9m 3)x 2 + (2 m)x = 0 ma co najmniej jedno rozwiazanie dodatnie. ZADANIE 35 (5 PKT) Wyznacz wartości parametrów a i b dla których jedynymi rozwiazaniami równania sa liczby x = 1 i x = 1. x 4 + (a b)x 3 (ab + 1)x 2 (a b)x + ab = 0 4

ZADANIE 36 (5 PKT) Wykaż, że równanie 1 2x + 4x 2 8x 3 + 16x 4 = 0 nie ma rozwiazań rzeczywistych. ZADANIE 37 (5 PKT) Dla jakich wartości parametru m zbiór rozwiazań równania x 4 + mx 2 m = 0 jest dwuelementowy? ZADANIE 38 (5 PKT) Wyznacz wartość parametru m, dla którego równanie x 3 + (m 2)x 2 + (6 2m)x 12 = 0 ma trzy pierwiastki x 1, x 2, x 3 spełniajace warunki x 3 = x 1 oraz x 2 = x 1 1. ZADANIE 39 (5 PKT) Dla jakich wartości parametru k nierówność x 4 + kx 2 + 1 > 0 jest prawdziwa dla każdego x R? ZADANIE 40 (5 PKT) Wyznacz wszystkie wartości parametrów a, b, dla których nierówność jest spełniona przez każda liczbę rzeczywista. (x 2 x 2)(x 2 2ax + 3bx 6ab) 0 5