Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych



Podobne dokumenty
TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN :2002(U) Zalecana norma: PN-91/H lub PN-EN AC1

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

ORGANIZACJA I ZARZĄDZANIE

Przykład 6.3. Uogólnione prawo Hooke a

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

Zginanie Proste Równomierne Belki

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Języki interpretowane Interpreted languages PRZEWODNIK PO PRZEDMIOCIE

INSTRUKCJA DO ĆWICZENIA NR 1

Wielokryteriowa optymalizacja liniowa (WPL)

ĆWICZENIE 5 BADANIE ZASILACZY UPS

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Ekoenergetyka Matematyka 1. Wykład 1.

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

5.7. Przykład liczbowy

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

UKŁADY TENSOMETRII REZYSTANCYJNEJ

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

STATYCZNA PRÓBA SKRĘCANIA

Dr inż. Janusz Dębiński

Badanie transformatora jednofazowego

PODSTAWY KONSTRUKCJI MASZYN

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

2. ELEMENTY TEORII PRĘTÓW SILNIE ZAKRZYWIONYCH (Opracowano na podstawie [9, 11, 13, 34, 51])

Defi f nicja n aprę r żeń

Fale skrętne w pręcie

Sprawdzanie transformatora jednofazowego

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO

Modele materiałów

PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE PIERWSZEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Belki złożone i zespolone

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

STATYCZNA PRÓBA ROZCIĄGANIA

Politechnika Poznańska. Metoda Elementów Skończonych

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN Eurokod 7

Laboratorium Wytrzymałości Materiałów

Animowana grafika 3D. Opracowanie: J. Kęsik.

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Analiza MES pojedynczej śruby oraz całego układu stabilizującego do osteosyntezy

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji

PROJEKT BUDOWLANO-WYKONAWCZY

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

Katedra Geotechniki i Budownictwa Drogowego. WYDZIAŁ NAUK TECHNICZNYCH Uniwersytet Warmińsko-Mazurski

ZASTOSOWANIE GRANICZNYCH ZAGADNIEŃ ODWROTNYCH DO OKREŚLANIA DOPUSZCZALNYCH STĘŻEŃ SUBSTANCJI CHEMICZNYCH NA POWIERZCHNI TERENU

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

Metoda Elementów Skończonych

Badanie wymiennika ciepła typu płaszczowo-rurowy

Dobór materiałów konstrukcyjnych cz. 10

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150

OBLICZENIA STATYCZNO WYTRZYMAŁOŚCIOWE. 1. Założenia obliczeniowe. materiały:

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

Badania właściwości zmęczeniowych bimetalu stal S355J2- tytan Grade 1

6. ZWIĄZKI FIZYCZNE Wstęp

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

Metoda Elementów Skończonych - Laboratorium

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

UOGÓLNIONE PRAWO HOOKE A

Stan odkształcenia i jego parametry (1)

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Funkcje pola we współrzędnych krzywoliniowych cd.

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

Podstawy wytrzymałości materiałów

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

I. Cel ćwiczenia: Poznanie własności oraz metody badania diod półprzewodnikowych.

Specyfikacja przedmiotu zamawianego

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE

Metoda Elementów Skończonych

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

ĆWICZENIE 15 WYZNACZANIE (K IC )

Pręt nr 3 - Element drewniany wg EN 1995:2010

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Analiza obciążeń belki obustronnie podpartej za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Przestrzeń liniowa R n.

ANALIZA ROZDZIAŁU SIŁ HAMOWANIA POJAZDU HYBRYDOWEGO Z NAPĘDEM NA KOŁA TYLNE W ASPEKCIE REKUPERACJI ENERGII

Zestaw pytań z konstrukcji i mechaniki

Równanie Schrödingera dla elektronu w atomie wodoru Równanie niezależne od czasu w trzech wymiarach współrzędne prostokątne

Wyboczenie ściskanego pręta

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

PROJEKT WZMOCNIENIA NAWIERZCHNI W TECHNOLOGII BITUFOR

PROGNOZA OSIADANIA BUDYNKU W ZWIĄZKU ZE ZMIANĄ SPOSOBU POSADOWIENIA THE PROGNOSIS OF BUILDING SETTLEMENT DUE TO CHANGES OF FOUNDATION

Analiza płyt i powłok MES

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ

Analiza fundamentu na mikropalach

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty

PROWIZJA I AKORD1 1 2

napór cieczy - wypadkowy ( hydrostatyczny )

Transkrypt:

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane agadnienia optymaliacji elementów konstrukcji Optymaliacja wielowarstwowych płyt laminowanych Podstawowym celem ćwicenia jest wynacenie optymalnego ułożenia włókien wmacniających w ściskanej dwukierunkowo płycie prostokątnej wykonanej laminatu wielowarstwowego. W toku ćwicenia studenci aponają się także podstawowymi pojęciami klasycnej teorii kompoytów, a także metodami obliceniowymi mechaniki materiałów kompoytowych. 2. PODSTAWY TEORETYCZNE Jedną istotniejsych alet materiałów kompoytowych są ich bardo dobre wględne parametry wytrymałościowe tn. wytrymałość ora stywność odniesione do gęstości materiału. Dięki temu doskonale nadają się do budowy lekkich konstrukcji powłokowych np. premysłu lotnicego, motoryacyjnego itp. Są wykorystywane także w budowie smukłych, wirujących cęści masyn, co do których ocekiwana jest niewielka bewładność np. łopaty wirników turbin wiatrowych. Dodatkową aletą laminatów wielowarstwowych jest możliwość miany wynikowych własności mechanicnych materiału(moduł Younga, moduł Kirchhoffa i współcynnik Poissona) popre mianę kąta ułożenia włókien wmacniających wględem kierunków obciążeń. A atem orientacja włókien kompoytu, podobnie jak np. grubość elementu, może być parametrem projektowym w adaniach konstrukcyjnych. Można atem mówić o swego rodaju projektowaniu materiału. strona18

...... Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 2 of 8 Roważmy cienką płytę wykonaną symetrycnego, równoważonego laminatu wielowarstwowego o wymiarach a b i grubości całkowitej h. Płyta jestściskanawkierunkuosioxoraoyodpowiedniosiłamiλn x iλn y,gdie λ jest skalą(mnożnikiem) obciążenia. Zakładamy, że laminat składa się N laminojednakowejgrubościt.pryjmujemyponadto,żekątyθ k ułożenia włókien wmacniających poscególnych warstw laminatu są ogranicone do cterechwartości tj.:0,90,+45 i 45,prycymkąttenmierony jest od osi Ox globalnego układu współrędnych patr Rysunek 1. b 2 y k warstwa k a N x N y 1 x y x N y k N x t=tk k 2 1 płascyna symetrii Rysunek 1. Prykład płyty wykonanej symetrycnego laminatu wielowarstwowego W wyniku diałania sił ściskających płyta ulega wyboceniu, jeśli wartość obciążeń określonych pre współcynnik amplitudy λ osiągnie wartość granicną: λ λ kr =π 2D 11(m/a) 4 +2(D 12 +2D 66 )(m/a) 2 (n/b) 2 +D 22 (n/b) 4, (1) (m/a) 2 N x +(n/b) 2 N y gdie m i n są licbami naturalnymi odpowiadającymi licbie pół-fal postaci wybocenia w kierunku odpowiednio osi x i y(patr Rysunek 2) minimaliującychλ kr. 1 1 Tonacyjesttotakombinacjaparlicbminspośródwsystkichmożliwych,dla którejwartośćλ kr jestnajmniejsa. strona28

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 3 of 8 Rysunek 2. Poglądowe postacie wybocenia płyty ściskanej dwukierunkowo:(a)m=1,n=1;(b)m=1,n=2;(c)m=2,n=2 Występującewewore(1)wielkościD ij sąnaywanestywnościami płytowymi: D 11 =U 1 V 0 +U 2 V 1 +U 3 V 3, D 12 =U 4 V 0 U 3 V 3, (2) D 22 =U 1 V 0 U 2 V 1 +U 3 V 3, D 66 =U 5 V 0 U 3 V 3 isąwyrażaneapomocątrechwyrażeńcałkowychv 0D,V 1D,iV 3D ora pięciuniemiennikówmateriałowychu i,i=1...5. ZmienneVawierająinformacjęoustawieniuwłókienθ k wposcególnych laminach wględem osi płyty. Oblicane są na podstawie ależności: V 0D = V 1D = V 3D = h 2 h 2 h 2 h 2 h 2 2 d= 1 N ( 3 3 k k 1) 3 2 ( ) = 3 3 k k 1 3, 2 cos2θd= 2 3 ( 3 k 3 k 1 ) cos2θk, h 2 2 cos4θd= 2 3 ( 3 k 3 k 1 ) cos4θk, gdieh=n tjestgrubościąlaminatu, k odległościąwarstwykodpłascyny symetrii płyty patr Rysunek 1. Występującewrównaniach(2)niemiennikiU i sąfunkcjamijedyniedanych wytrymałościowych materiału kompoytowego. Dane są ależnościa- (3) strona38

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 4 of 8 mi: U 1 = 1 8 (3Q 11+3Q 22 +2Q 12 +4Q 66 ), U 2 = 1 2 (Q 11 Q 22 ), U 3 = 1 8 (Q 11+Q 22 2Q 12 4Q 66 ), U 4 = 1 8 (Q 11+Q 22 +6Q 12 4Q 66 ), U 5 = 1 8 (Q 11+Q 22 2Q 12 +4Q 66 ), gdiewystępującewyrażeniaq ij sąredukowanymistywnościamipłaskiego stanu naprężeń w lokalnym układie współrędnych 102 (patr także Rysunek3): σ 1 Q 11 Q 12 0 ε 1 σ 2 = Q 12 Q 22 0 ε 2 (5) τ 12 0 0 Q 66 γ 12 gdie występujący po lewej stronie wektor repreentuje tensor stanu naprężenia, aś wektor po prawej stronie repreentuje tensor stanu odkstałcenia. E 1 Q 11 =, Q 12 = ν 12E 2 = ν 21E 1, 1 ν 12 ν 21 1 ν 12 ν 21 1 ν 12 ν 21 E 2 Q 22 =, Q 66 =G 12 ν 21 =ν 12 E 2 /E 1. 1 ν 12 ν 21 WpowyżsychależnościachE 1,E 2,ν 12,ν 21 ig 12 onacająodpowiednio moduły Younga w kierunku ułożenia włókien wmacniających(1) i w kierunku poprecnym(2)(patr rysunek 1), moduły Poissona i moduł Kirchhoffa. Roważmy adanie optymaliacyjne polegające na naleieniu takiego ułożenia kolejnych N warstw laminatu, które odpowiada maksymalnej statecności analiowanej płyty tn. maksymalnej wartości współcynnika amplitudy λ. Z uwagi na fakt, że kąty ustawienia włókien w poscególnych warstwach są ogranicone jedynie do cterech wartości(patr str. 2) można wprowadić (4) (6) strona48

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 5 of 8 l 0 σ 1 τ 12 σ 2 τ 21 2 l 0 σ 2 1 τ 21 τ 12 σ 1 Rysunek 3. Płaskistannaprężeń;odkstałceniaε 1 =(l 1 l 0 )/l 0, ε 2 =(l 2 l 0 )/l 0 ;naprężeniastycneτ 12 =τ 21 miennecałkowitolicbowex k pryjmującewartość0,1,2,lub3wależności odkątaustawieniawłókienθ k wdanejwarstwie.wdalsychroważaniach, ora w dołąconym oprogramowaniu komputerowym, pryjmuje się wartość miennejx k równa0odpowiadakątowiθ k =0,oraθ k =90 x k =1, θ k =45 x k =2iθ k = 45 x k =3.Zaletątakiegodefiniowania agadnienia jest istotne uproscenie charakteru adania optymaliacyjnego.zmiennev 0D,V 1D iv 3D równanie(3) mogąbyćbowiemwyrażone popre liniowe funkcje miennych opisujących kąty ułożenia włókien w poscególnych warstwach laminatu. Tym samym, w sposób liniowy od tychmiennychależąstywnościpłytowed ij patr(2)iposukiwana mienna stanu λ będąca miarą dopuscalnego obciążenia płyty. Ostatecnie atem predstawione adanie posukiwania ułożenia włókien w poscególnych warstwach laminatu maksymaliującego jej statecność jest adaniem programowania liniowego i może być wynacone jedną dostępnych metod rowiąań. Reasumując, sformułowane adanie optymaliacyjne można apisać następująco: γ 12 l 1 l 2 strona58

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 6 of 8 wynacyć wektor miennych decyyjnych taki,aby wobec x=θ={θ 1,θ 2,...,θ k } T k (1...) (7) maxλ(m, n, x) (8) x θ k (0,90,45, 45 ) where,...,, (9) (θ k =45 )= (θ k = 45 ) (10) Ogranicenie(9) naruca poscególnym miennym θ jedynie dowolone wartości kąta ułożenia włókien, aś ogranicenie(10) odpowiada warunkowi równoważenialaminatu(licbawarstw,wktórychkątwynosi45 musi odpowiadaćlicbiewarstw,wktórychkątwynosi 45 ). 2 Występującew(8) parametry(m, n) odpowiadają możliwym postaciom wybocenia płyty pred rowiąaniem adania postać deformacji nie jest bowiem nana. Z uwaginafakt,żewyżsepostacie(np.m,n=3,4itd.występująbardo radko, w praktyce wystarcy sprawdić statecność dla dowolnej kombinacji licba1i2. 3. PRZEBIEG ĆWICZENIA Prowadący ajęcia prydieli każdemu espołowi laboratoryjnemu parametry geometrycne płyty kompoytowej i stałe wytrymałościowe materiału kompoytowego. Na podstawie otrymanych danych studenci oblicają wartościniemiennikówmateriałowychu i (patr(4))oramiennychv i (patr (3)) dla dopuscalnych kątów θ. Otrymane wyniki obliceń skonsultować prowadącym. Następnie należy, korystając dowolnego edytora tekstu, utworyć plik ASCI dane.txt danymi do obliceń optymaliacyjnych; wydruk worcowego plik danymi amiescono na rysunku 4. Plik utworonymi danymi apisać w prydielonym foldere. Uruchomić program optymaliacyjny 2 Zrównoważenielaminatupowoduje,żediałanienaprężeńnormalnychniepowoduje deformacjipostaciowejγ 12 próbki;równieżodwrotnie diałanienaprężeństycnychnie powoduje miany wymiarów liniowych patr rysunek 3 strona68

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 7 of 8 300 a - wymiar płyty [mm] 0.7 ba - stosunek b/a [-] 100 Nx - obciążenie wdłuż x (na jedn. długości [N/m]) 0.2 NyNx - stosunek obciążeń [-] 0.13 t - grubość jednej warstwy laminatu [mm] 145500 E1 - m. stwyności wdłuż osi OX [MPa] 900 E2 - m. stwyności wdłuż osi OY [MPa] 6000 G12 - m. stwyności postaciowej [MPa] 0.28 v12 - wsp. Poissona 2 m_max - max licba analiowanych postaci wybocenia 2 n_max - max licba analiowanych postaci wybocenia Rysunek 4. Wydruk prykładowego pliku danymi do obliceń kompoyt.exe. Wyniki obliceń(wartość współcynnika amplitudy obciążeń λ) odcytać pliku wyniki.txt, aś pliku konfiguracje.txt odcytać kolejność ułożenia warstw w rowiąaniu optymalnym. Powtóryć oblicenia optymaliacyjne dla różnych proporcji obciążeń ściskających(n y /N x )wakresiepodanympreprowadącego.wykonać kilkanaście symulacji. 4. OPRACOWANIE WYNIKÓW Dane geometrycne i stałe materiałowe otrymane od prowadącego estawić w Tabeli 1. W tabeli amieścić ponadto wyniki obliceń niemienników materiałowychu i. Wyniki obliceń optymaliacyjnych amieścić w Tabeli 2 5. SPRAWOZDANIE Sprawodanie realiacji ćwicenia powinno awierać: 1. Tabelkę identyfikacyjną. 2. Cel ćwicenia. 3. Sformułowanie adania optymaliacji wg.(7)-(10) 4. Zestawienie danych geometrycnych płyty i stałych materiałowych Tabela1 strona78

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 8 of 8 Tabela 1. Zestawienie danych do obliceń E 1 = E 2 = G 12 = ν 12 = a= b= t= N x = m max n max U 1 = U 2 = U 3 = U 4 = U 5 = Tabela 2. Zestawienie obliceń optymaliacji wielowarstwowej płyty kompoytowej Rowiąanie N y /N x λ N y N x Ułożeniewarstw Licbarowiąań...... 5.OblicenianiemiennikówU 1...U 5 imiennychv 0,V 1,V 3 dlarowiąania optymalnego jednego analiowanych prypadków(dowolnie wybrany o różnym układie warstw). 6. Tabelę 2 w wynikami obliceń optymaliacyjnych. 7. Wnioski. strona88