Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1
Sprawy organizacyjne Książki: Marek Żelazny; Podstawy Automatyki; PWN Zaliczenie: 2x kolokwium egzamin (45%) Wykład: 2
Automatyka? dyscyplina naukowa zajmująca się teorią i praktyczną realizacją urządzeń sterujących procesami technologicznymi bez udziału człowieka teoria sterowania automatyzacja sterowanie procesami złożonymi pomiary automatyczne przetwarzanie i utrwalanie danych mechatronika 3
Proces technologiczny Sterowanie procesem sterowanie procesem oddziaływanie na strumień energii lub materiałów w taki sposób, aby zrealizowany został zamierzony przebieg procesu 4
Mechanizacja vs. Automatyzacja 5
Pojęcia podstawowe automatyki sygnał dowolna wielkość fizyczna występująca w procesie sterowania będąca funkcją czasu wykorzystywany do przekazywania informacji oznaczenia: WE x przykłady sygnałów elektryczne napięcie (U) prąd (I) częstotliwość (f) WY - y pneumatyka hydraulika mechaniczne przesunięcie ciśnienie (p) 6
Pojęcia podstawowe automatyki informacja dane zawarte w wartości lub kształcie sygnału element (człon) automatyki dowolny zespół, podzespół, przyrząd lub urządzenie występujące w układzie automatyki, w którym można wyróżnić sygnał wejściowy (WE / I) i wyjściowy (WY / O) 7
Pojęcia podstawowe automatyki układ automatyki zespół elementów stanowiących: obiekt sterowania, urządzenie sterujące zapewniające przebieg sterowanego procesu zgodnie z założonym algorytmem. 8
Rodzaje układów automatyki otwarty w sygnał wymuszenia z zakłócenia x sygnał sterujący y wielkość sterowana US urządzenie sterujące O obiekt sterowany przykład 9
Rodzaje układów automatyki zamknięty w sygnał wymuszenia z zakłócenia x sygnał sterujący y wielkość sterowana US urządzenie sterujące R - regulator O obiekt sterowany ε uchyb regulacji ε = x0 - y regulator układ mający za zadanie generowanie sygnału sterującego powodującego minimalizację ε 10
Rodzaje układów automatyki zamknięty 11
Klasyfikacja URA podział ze względu na zadanie układu stabilizujące (stałowartościowe) x0 = const. cel: utrzymanie stałej wartości wielkości regulowanej (y) programowe x0 = x0(t) 12
Klasyfikacja URA podział ze względu na zadanie układu nadążne x0 = x0(w) w wartość zmieniająca się w nieznany sposób (losowy) w czasie y u 45º po ło że ni e (w ) ε R 13
Klasyfikacja URA podział ze względu na zadanie układu sterowania optymalnego cel: maksymalizacja lub minimalizacja funkcji wielu zmiennych f (x1,..., xn) sens funkcji f: wydajność produkcji, zysk, koszt produkcji, zużycie paliwa 14
Klasyfikacja URA podział ze względu na zadanie układu sterowania sekwencyjnego cel: zapewnienie wykonania składowych operacji procesu technologicznego w określonej kolejności 15
Klasyfikacja URA podział ze względu na sposób działania elementów układu układy o działaniu ciągłym wszystkie elementy układu działają w sposób ciągły w czasie i poziomie => sygnały są funkcjami ciągłymi i mogą przybierać każdą wartość ze zbioru ich zmienności 16
Klasyfikacja URA podział ze względu na sposób działania elementów układu układy o działaniu dyskretnym co najmniej jeden element układu działa w sposób dyskretny => sygnał przyjmuje tylko wybrane wartości lub występuje tylko w niektórych chwilach czasu cyfrowe sygnał na wyjściu przyjmuje tylko kilka określonych wartości DO 0, 1 AO 0 255 17
Klasyfikacja URA podział ze względu na sposób działania elementów układu układy o działaniu dyskretnym impulsowe sygnał na wyjściu pojawia się w określonych chwilach czasu (impulsowania) nośnik informacji: wysokość (amplituda), szerokość, częstotliwość impulsów. 18
Klasyfikacja URA podział ze względu na liniowość elementów układu układy liniowe zawierają wyłącznie elementy o prostoliniowych charakterystykach statycznych opisywane za pomocą liniowych równań różniczkowych, różnicowych, całkowych lub algebraicznych układy nieliniowe układ zawierający co najmniej jeden element nieliniowy 19
Opis matematyczny układów dynamicznych ciągłych układ dynamiczny: dowolny układ fizyczny rozpatrywany z punktu widzenia jego zachowania się w czasie, opisywany przez rachunek różniczkowy => równania różniczkowe nazywane są równaniami dynamiki, charakterystyka czasowa - graficzna reprezentacja rozwiązania równania różniczkowego charakterystyka statyczna graficzna reprezentacja zależności y=f(x) w stanie ustalonym (t-> ) 20
Opis matematyczny układów dynamicznych ciągłych Model matematyczny ciągłego elementu lub układu składa się z: równania charakterystyki statycznej, równania różniczkowego lub operatorowego, które opisuje własności statyczne i dynamiczne w otoczeniu wybranego punktu pracy Jeśli charakterystyka statyczna jest: liniowa równanie różniczkowe lub operatorowe nieliniowa (krzywoliniowa) równanie różniczkowe i operatorowe linearyzacja 21
Linearyzacja statyczna Jeśli przesuniemy oś rzędnych do punktu x0, w badaniach ograniczymy sygnał wejściowy do wartości xmax=x1 to możemy układ traktować jako liniowy 22
Linearyzacja dynamiczna linearyzacja dynamiczna zastąpienie krzywoliniowego odcinka charakterystyki statycznej odcinkiem prostoliniowym, stycznym do rzeczywistej charakterystyki statycznej w wybranym punkcie 23
Linearyzacja dynamiczna Jeśli człon automatyki opisywany jest przez równanie różniczkowe nieliniowe postaci: f x, x,, x n, y, y,, y n =0 gdzie: x = i 1 dx dt x = i d x i=2,3,, n i dt to, o ile istnieją pochodne funkcji f dostatecznie wysokiego rzędu względem wszystkich argumentów, możemy dokonać linearyzacji równania (1) przez rozwinięcie w szereg Taylora w punkcie pracy (x0, y0) i odrzucenie składników nieliniowych. 24
Linearyzacja dynamiczna Rozwinięcie funkcji f w szereg Taylora ma postać: f x0, y0 x x0 x x n n n x 0 x 0 x 0 x 0 n + y y0 y n y + y 0 y 0 y 0 2 2 f f 2 2 + 2 2 x x0 2 2 x R x 0 x 0 reszta x część nieliniowa N - wartość pochodnej funkcji f względem zmiennej x w punkcie (x 0 0, y0) 25
Linearyzacja dynamiczna Aby otrzymać równanie zlinearyzowane odrzucamy wszystkie składniki nieliniowe oraz część R. Charakterystykę statyczną otrzymamy z równania (1) po przyrównaniu wszystkich pochodnych do zera. f x 0, y 0 + n x x 0 x x n x x 0 x 0 x 0 x 0 y y 0 y n y n + y 0 y 0 y 0 2 f 2 f 2 2 + 2 2 x x 0 2 2 x R x 0 x 0 reszta część nieliniowa N 26
Linearyzacja dynamiczna 2 f 2 f n n 2 f x 0, y 0 x x 0 x n x y y 0 n y 2 2 x x 0 2 2 x 2 R x 0 x 0 y 0 x 0 y 0 x 0 x 0 N Niech x=x x 0 y= y y 0 to x = x y = y oraz przyjmując, że f x 0, y 0 =0 otrzymujemy zlinearyzowane równanie różniczkowe dla przyrostów Δx oraz Δy n n x x n x y n y =0 x 0 x 0 y 0 x 0 y 0 27
Linearyzacja dynamiczna Gdyby człon automatyki opisywało równanie nieliniowe pierwszego rzędu postaci f x, x, y, y =0 to zlinearyzowane równanie różniczkowe dla przyrostów Δx oraz Δy miało by postać x x y y =0 x 0 x 0 y 0 y 0 28
Przykład Wyznacz charakterystykę statyczną i zlinearyzowane równanie różniczkowe dla g y y = x h y funkcji: równanie to można przedstawić w postaci: f x, y, y = g y y x h y=0 uwzględniając ponadto cechę charakterystyki statycznej f x 0, y 0 =0 gdzie: x, y stałe 0 0 otrzymujemy: gdzie y0 g y 0 y 0 x0 h y 0=0 y 0=0 ostatecznie więc x0 h y 0=0 y0= x h 2 0 2 x0 29
Przykład Linearyzacja przez fozwinięcie w szereg Taylora n n x x n x y n y =0 x 0 x 0 y 0 x 0 y 0 f x, y, y = g y y x h y=0 x y y =0 x 0 y 0 y 0 30
Przykład x y y =0 x 0 y 0 y 0 f x, y, y = g y y x h y=0 = 1 x 0 h y h = = y 0 y 0 2 y0 h y y 1 =h =h y y 2 y = g y 0 =g y 0 y 0 Równanie zlinearyzowane ma postać: x h 2 y0 y g y 0 y =0 Δx sygnał WE, Δy sygnał WY 31
Opis dynamiki układów automatyki Metody opisu dynamiki elementów liniowych można rozciągnąć na elementy linearyzowane, ale trzeba pamiętać o przyjętych ograniczeniach. Własności ciągłego liniowego elementu automatyki o parametrach stałych (stacjonarnego) można opisać za pomocą równania różniczkowego liniowego o stałych współczynnikach, który ma postać: n m bi y i = a j x j i=0 j =0, m n 2 d j x x = j dt j Jeśli a j = f t i bi= f t to równanie (2) nazywanym niestacjonarnym (opisuje układ niestacjonarny). 32
Opis dynamiki układów automatyki n m bi y i = a j x j i=0 j =0, m n 2 Równanie charakterystyki statycznej: a0 y= x b0 W przypadku układu automatyki o wielu WE i WY ich model stanowi układ równań różniczkowych. 33
Ocena dynamiki układów automatyki By ocenić dynamikę układu automatyki wymagane jest rozwiązanie równania (układu równań) różniczkowego. Sposoby rozwiązania równania różniczkowego: podejście klasyczne stworzenie równania charakterystycznego y a y by=0 r 2 ar b=0 obliczenie pierwiastków =b2 4ac r1 = b 2a r 2= b 2a wyznaczenie stałych na podstawie warunków brzegowych metoda operatorowa 34
Metoda operatorowa pozwala zastąpić równanie różniczkowo-całkowe równaniem algebraicznym W celu przekształcenia wykorzystywane jest przekształcenie całkowe postaci: b X s = x t K t, s dt a które przyporządkowuje funkcji x(t) pewną funkcję X(s) przy założeniu, że całka jest zbieżna (ma granicę skończoną). Przekształcenie to można ogólnie zapisać w postaci: X s =T [ x t ] a jego odwrotność: x t =T 1 [ X s ] 35
Przekształcenie Fourier'a X j = x t e j t dt 0 odwrotne przekształcenie Fouriera + 1 j t x t = X j e d 2 - TF 3 TF transformata Fouriera ω częstość kołowa Ponieważ w (3) x(t) składa się z nieskończonej liczby nietłumionych drgań harmonicznych dlatego dla większości sygnałów (np. skok jednostkowy) całka nie jest zbieżna. 36
Przekształcenie Laplace'a t j t X s = x t e e 0 WT dt= x t e st 0 dt s= j O WT współczynnik tłumienia O oryginał s operator całkowy X s = L[ x t ] Przekształcenie Laplace'a istnieje dla funkcji czasu spełniających warunki: x(t)=0 dla t<0 x(t) jest funkcją ciągłą x(t) narasta szybciej niż WT 37
Odwrotne przekształcenie Laplace'a 1 x t = 2 j j X s e st ds dla t 0 j 1 x t = L [ X s ] 38
Zastosowanie rachunku operatorowego 39
Własności rachunku operatorowego twierdzenie o dodawaniu L[a1 x1 t a 2 x 2 t ]=a 1 L [ x 1 t ] a 2 L [ x 2 t ] twierdzenie o iloczynie stałej i funkcji L[a x t ]=a L[ x t ]=a X s twierdzenie o transformacie pochodnej + L [ x t ]=s X s x 0 x 0+ wartość początkowa funkcji x t w punkcie t=0 + prawostronna granica 40
Własności rachunku operatorowego twierdzenie o transformacie II pochodnej 2 + + L [ x t ]=s X s sx 0 x 0 twierdzenie o transformacie n-tej pochodnej [ ] d n x t n n 1 + n 1 + L =s X s s x 0 x 0 n dt twierdzenie o transformacie całek [ t ] X s L x t dt = s 0 41
Własności rachunku operatorowego twierdzenie o transformacie całek ogólnie X s L. x t dt = n s [ ] n twierdzenie o przesunięciu rzeczywistym L[ x t ]=e s X s przesunięcie czasowe 42
Przykład Rozwiąż równanie postaci dy =5 e 2t dt o warunku początkowym y 0 =0 ponieważ L[ x t ]=s Y s y 0+ L[e at ]= więc 1 s a 1 s Y s y 0 =5 s 2 + 1 [ Y s = 5 s s 2 ] 1 1 t = e 1 s s ponieważ L więc 5 y t = e 2t 1 2 43
KONIEC CDN... Pytania 44