Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych"

Transkrypt

1 Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych

2 Plan prezentacji Co to jest LDL? 1 Budowa naczynia krwionośnego 2 Przykładowe wyniki 3 Mechanizmy wnikania blaszki miażdżycowej w ścianki naczyń 4 Schemat symulacji 5 Różne stężenie LDL w zależności od naprężenia ścinającego 6 Podsumowanie 7

3 Co to jest LDL? 1 2 Low Density Lipoprotein -Lipoproteina niskiej gęstości Jest to główny transporter cholesterolu z wątroby do innych narządów 3 Tzw. zły cholesterol 4 HDL dobry cholesterol

4 Miażdżyca W początkowym stadium powodowana przez gromadzenie się makromolekuł LDL w ściance naczynia Nie jest do końca wyjaśnione, czy miażdżyca powodowana jest anomalnym gromadzeniem się LDL w intimie, czy jest to skutek choroby

5 Miażdżyca W początkowym stadium powodowana przez gromadzenie się makromolekuł LDL w ściance naczynia Nie jest do końca wyjaśnione, czy miażdżyca powodowana jest anomalnym gromadzeniem się LDL w intimie, czy jest to skutek choroby

6 Budowa naczynia krwionośnego

7 Matematyczne modelowanie transportu w ściance naczynia Model wielowarstwowy cztery warstwy Warstwy to makroskopowo jednolite ośrodki porowate

8 Główne warstwy tętnicy Tętnica Światło naczynia Endothelium Intima IEL Media

9 Główne warstwy tętnicy Endothelium Pojedyncza warstwa komórek śródbłonka wydłużonych w kierunku przepływu krwi Komórki te są ze sobą połączone

10 Główne warstwy tętnicy Endothelium Pojedyncza warstwa komórek śródbłonka wydłużonych w kierunku przepływu krwi Komórki te są ze sobą połączone

11 Główne warstwy tętnicy Endothelium Pojedyncza warstwa komórek śródbłonka wydłużonych w kierunku przepływu krwi Komórki te są ze sobą połączone

12 Główne warstwy tętnicy Intima składała się głównie z włókien kolagenowych i proteoglikanów.

13 Główne warstwy tętnicy Intima składała się głównie z włókien kolagenowych i proteoglikanów.

14 Główne warstwy tętnicy Internal Elastic Lamina nieprzepuszczalna elastyczna tkanka z porami fenestralnymi,

15 Główne warstwy tętnicy Internal Elastic Lamina nieprzepuszczalna elastyczna tkanka z porami fenestralnymi,

16 Główne warstwy tętnicy Media składa się z naprzemiennych warstw komórek mięśni gładkich i elastycznej tkanki łącznej,

17 Główne warstwy tętnicy Media składa się z naprzemiennych warstw komórek mięśni gładkich i elastycznej tkanki łącznej,

18 ENDOTHELIUM I IEL Modele matematyczne Biologiczne membrany porowate Istotne są współczynniki filtracyjnego i osmotycznego odbicia Staverman a

19 Modele matematyczne INTIMA I MEDIA Makroskopowo jednorodne ośrodki porowate Ośrodki są selektywnie przepuszczalne dla LDL co odzwierciedlone jest przez współczynniki Staverman a Pobieranie składników przez komórki mięśni gładkich w medii może być przybliżone jako nieodwracalna reakcja pierwszego rzędu.

20 Stężenie LDL otrzymane z symulacji

21 Stężenie LDL otrzymane z symulacji

22 Mechanizmy wnikania Zależności akumulacji blaszki miażdżycowej od parametrów przepływu nie są obecnie do końca wyjaśnione Koncentracja LDL wzrasta tam, gdzie jest małe naprężenie ścinające WSS. Koncentracja ta wzrasta również tam, gdzie obserwowane są duże zmiany WSS i powierzchniowej koncentracji LDL Może być to związane z powstawaniem tzw. leaky cell junctions, które pozwalają LDL na wnikanie do endothelium lub nawet wiążą się ze zniszczeniami w endothelium

23 Schemat postępowania Segmentacja danych uzyskanych z rezonansu magnetycznego Obliczenie parametrów przepływu, w tym WSS Symulacja przepływu z wykorzystaniem pakietu Sage lub OpenFoam Symulacja osadzania blaszki miażdżycowej w istotnych miejscach naczynia krwionośnego

24 Przykład tętniak aorty brzusznej Naprężenie ścinające w przykładowej aorcie

25 Przykład tętniak aorty brzusznej WSS = 1.0

26 Przykład tętniak aorty brzusznej

27 Przykład tętniak aorty brzusznej WSS = 0.1

28 Przykład tętniak aorty brzusznej

29 Przykład tętniak aorty brzusznej WSS = 10

30 Przykład tętniak aorty brzusznej

31 Podsumowanie Obecny model jest bardzo uproszczony i wymaga dalszej rozbudowy W przyszłości symulacje przepływu krwi i wnikania makromolekuł w ścianki naczyń to: Odpowiedzi na wiele interesujących pytań Ważne narzędzie diagnostyczne

32 Dziękuję za uwagę

33 Endothelium i IEL Model matematyczny ε porowatość K przepuszczalność hydrauliczna ρ gęstość μ efektywna lepkość dynamiczna ośrodka σ f współczynnik odbicia filtracyjnego Stavermana σ d współczynnik odbicia osmotycznego Stavermana V wektor prędkości p ciśnienie hydrauliczne R u - stała gazowa T temperatura c stężenie D e efektywny współczynnik dyfuzji

34 Intima i media Model matematyczny k współczynnik reakcji

35 Parametry Endothelium intima IEL media σ L [μm]

36 Stochastyczne rozwiązanie równania na transport The Random Walk Particle Tracking (RWPT) polega na modelowaniu transportu wykorzystując dużą ilość cząstek (Ujęcie Lagrange a) Pozwala łączyć transport adwekcyjny, dyspersyjny i dyfuzyjny. Problem w przypadku nieciągłości współczynnika dyfuzji

37 Równanie transportu

38

39 Proces Wienera

40 Całka statystyczna

41 Interpretacja Ito

42 Interpretacja Stratonowicza

43 Związek między (I) i (S)

44 Związek między (I) i (S)

45 Związek między (I) i (S)

46 Związek między (I) i (S)

47 Związek między (I) i (S)

48 Związek między (I) i (S)

49 SDE w ujęciu Stratonowicza

50 Backward Ito Pozwala uniknąć problemu z nieciągłym współczynnikiem dyfuzji. B obliczane jest w punkcie X(t k ), czyli:

51 Backward Ito

52 Backward Ito

53 Backward Ito

54 Backward Ito

55 Backward Ito

56 Backward Ito

57 SDE w ujęciu backward Ito

58 Problem z nieciągłością współczynnika dyfuzji

59 Błądzenie przypadkowe - Metoda Monte Carlo

60 Generalized Backward Ito

61 Warunki brzegowe C(x=0)=1 C(x=214)=0 Pochłanianie w warstwie medii z prawdopodobieństwem k

62 Implementacja z wykorzystaniem CUDY Każda cząstka reprezentowana jest przez osobny wątek Każda cząstka ma 2 stany żywy (a=true) i uśpiony (a=false) Obszar [0,L[0]] to obszar, w którym zadajemy stałe stężenie c=1

63 Algorytm n1, n2 zmienne losowe o rozkładzie normalnym w1, w2 zmienna losowa o rozkładzie ciągłym a czy cząstka jest żywa if(x>l, w<k): a=false else if (0 x<l[0]): x=l[0]*w1 if(a): Obliczamy Y(n1) Obliczamy nowe położenie X(n1) Zliczamy wszystkie cząstki w przedziale 0 x<l[0] Budzenie lub usypianie odpowiedniej ilości cząstek

64 Wyniki działania algorytmu

65 Wyniki działania algorytmu

66 Wyniki działania algorytmu

67 Wyniki działania algorytmu

68 Rozwiązanie numeryczny Metodą różnic skończonych szukamy rozwiązania równania dla przypadku jednowymiarowego:

69 Różnice skończone 1. Dzięki rozwinięciu funkcji w szereg Taylor a możemy wyprowadzić przybliżone wzory na pierwszą i drugą pochodną:

70 Różnice skończone

71 Układ równań 5. Konstruujemy układ równań -> 1 równanie z każdego punktu, a z niego macierz rzadką

72 Warunki brzegowe

73 Wnętrza obszarów

74 Ciągłość strumienia

75 Dziękuję za uwagę

76 Przybliżone rozwiązanie analityczne Uproszczenie problemu do zagadnienia jednowymiaro wego Zaniedbanie krzywizny Przybliżone rozwiązanie analityczne

77 Intima IEL i Endothelium Liczba Reynoldsa Liczba Darcy

78 Intima IEL i Endothelium Liczba Peclet a

79 Intima IEL i Endothelium

80 Media

81 Warunki brzegowe Warunek brzegowy na ciśnienie: Warunki na stężenie Warunek na strumień między obszarami

82 Rozwiązania A wykorzystując równanie charakterystyczne:

83

84 Forma macierzowa

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Spis treści Wstęp... 2 Opis problemu... 3 Metoda... 3 Opis modelu... 4 Warunki brzegowe... 5 Wyniki symulacji...

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

Proces transportu lipoprotein niskiej gęstości (LDL) w ścianach naczyń krwionośnych

Proces transportu lipoprotein niskiej gęstości (LDL) w ścianach naczyń krwionośnych Uniwersytet Śląski Wydział Matematyki Fizyki i Chemii Instytut Fizyki Katarzyna Jesionek Rozprawa doktorska Proces transportu lipoprotein niskiej gęstości (LDL) w ścianach naczyń krwionośnych Promotor:

Bardziej szczegółowo

Długotrwały niedobór witaminy C (hipoascorbemia) powoduje miażdżycę oraz osadzanie się lipoproteiny(a) w naczyniach krwionośnych transgenicznych myszy

Długotrwały niedobór witaminy C (hipoascorbemia) powoduje miażdżycę oraz osadzanie się lipoproteiny(a) w naczyniach krwionośnych transgenicznych myszy Długotrwały niedobór witaminy C (hipoascorbemia) powoduje miażdżycę oraz osadzanie się lipoproteiny(a) w naczyniach krwionośnych transgenicznych myszy Nowa publikacja Instytutu Medycyny Komórkowej dr Ratha

Bardziej szczegółowo

Dyfuzyjny transport masy

Dyfuzyjny transport masy listopad 2013 Koagulacja w ruchach Browna, jako stacjonarna, niejednorodna reakcja, kontrolowana przez dyfuzję Promień sfery zderzeń r i + r j możemy utożsamić z promieniem a. Każda cząstka typu j, która

Bardziej szczegółowo

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji Roman Kuziak Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak Instytut Metalurgii Żelaza DICTRA jest pakietem komputerowym

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t ) pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)

Bardziej szczegółowo

Simulink MATLAB Przegląd obiektów i przykłady zastosowań

Simulink MATLAB Przegląd obiektów i przykłady zastosowań Simulink MATLAB Przegląd obiektów i przykłady zastosowań M. Berndt-Schreiber 1 Simulink MATLAB SIMULINK jest rozszerzeniem pakietu MATLAB; przy pomocy graficznego środowiska pozwala konstruować diagramy

Bardziej szczegółowo

Laboratorium Metoda Elementów Skończonych Projekt z wykorzystaniem programu COMSOL Multiphysics 3.4

Laboratorium Metoda Elementów Skończonych Projekt z wykorzystaniem programu COMSOL Multiphysics 3.4 Laboratorium Metoda Elementów Skończonych Projekt z wykorzystaniem programu COMSOL Multiphysics 3.4 Radosław Inczewski, Tomasz Kiwerski 2013-06-30 Wydział: ELEKTRYCZNY Kierunek: MATEMATYKA (studia stacjonarne

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

Dwurównaniowe domknięcie turbulentnego strumienia ciepła

Dwurównaniowe domknięcie turbulentnego strumienia ciepła Instytut Maszyn Przepływowych PAN Ośrodek Termomechaniki Płynów Zakład Przepływów z Reakcjami Chemicznymi Dwurównaniowe domknięcie turbulentnego strumienia ciepła Implementacja modelu: k 2 v' f ' 2 Michał

Bardziej szczegółowo

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych

Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych

Bardziej szczegółowo

Fizyka statystyczna Równanie Fokkera-Plancka

Fizyka statystyczna Równanie Fokkera-Plancka Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 17 marca 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t)

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa

BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa BIOMECHANIKA KRĘGOSŁUPA Stateczność kręgosłupa Wstęp Pojęcie stateczności Małe zakłócenie kątowe Q Q k 1 2 2 spadek energii potencjalnej przyrost energii w sprężynie V Q k 1 2 2 Q Stabilna równowaga występuje

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Układ krążenia krwi. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 2014-11-18 Biofizyka 1

Układ krążenia krwi. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 2014-11-18 Biofizyka 1 Wykład 7 Układ krążenia krwi Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 2014-11-18 Biofizyka 1 Układ krążenia krwi Source: INTERNET 2014-11-18 Biofizyka 2 Co

Bardziej szczegółowo

Numeryczne rozwiązanie równania Schrodingera

Numeryczne rozwiązanie równania Schrodingera Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki

Bardziej szczegółowo

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI

DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH

PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

WARUNKI HYDRAULICZNE PRZEPŁYWU WODY W PRZEPŁAWKACH BLISKICH NATURZE

WARUNKI HYDRAULICZNE PRZEPŁYWU WODY W PRZEPŁAWKACH BLISKICH NATURZE Uniwersytet Rolniczy w Krakowie, Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej i Geotechniki Leszek Książek WARUNKI HYDRAULICZNE PRZEPŁYWU WODY W PRZEPŁAWKACH BLISKICH NATURZE Kraków,

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Fizyka statystyczna Równanie Fokkera-Plancka. P. F. Góra

Fizyka statystyczna Równanie Fokkera-Plancka. P. F. Góra Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t) W (y y)p

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

2. Zapoczątkowanie kawitacji. - formy przejściowe. - spadek sprawności maszyn przepływowych

2. Zapoczątkowanie kawitacji. - formy przejściowe. - spadek sprawności maszyn przepływowych J. A. Szantyr Wykład 22: Kawitacja Podstawy fizyczne Konsekwencje hydrodynamiczne 1. Definicja kawitacji 2. Zapoczątkowanie kawitacji 3. Formy kawitacji - kawitacja laminarna - kawitacja pęcherzykowa -

Bardziej szczegółowo

Spis treści Przedmowa

Spis treści Przedmowa Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH

1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH 1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,

Bardziej szczegółowo

1.3. Prawa Eulera Pierwsze prawo Eulera Drugie prawo Eulera Tensor naprężenia w płynie... 10

1.3. Prawa Eulera Pierwsze prawo Eulera Drugie prawo Eulera Tensor naprężenia w płynie... 10 Słowo wstępne... XI Ważniejsze oznaczenia... XIII 1. Podstawowe równania mechaniki płynów... 1 1.1. Wprowadzenie... 1 1.2. Prawa przenoszenia... 2 1.2.1. Pochodna zupełna i substancjalna... 2 1.2.2. Ogólne

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

Filtracja prowadzona pod stałą różnicą ciśnień

Filtracja prowadzona pod stałą różnicą ciśnień Filtracja prowadzona pod stałą różnicą ciśnień Cel ćwiczenia Celem ćwiczenia jest: 1. Zapoznanie się z aparaturą do procesu filtracji plackowej prowadzonej przy stałej różnicy ciśnień. Opis procesu filtracji

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Spis treści. Przedmowa 11

Spis treści. Przedmowa 11 Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

wartość oczekiwana choinki

wartość oczekiwana choinki wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera

Bardziej szczegółowo

Materiały pomocnicze z Aparatury Przemysłu Chemicznego

Materiały pomocnicze z Aparatury Przemysłu Chemicznego Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA

Bardziej szczegółowo

CO NALEŻY WIEDZIEĆ O MIAŻDŻYCY?

CO NALEŻY WIEDZIEĆ O MIAŻDŻYCY? Wstęp Miażdżyca jest dziś chorobą bardzo rozpowszechnioną. Schorzenie to należy do chorób cywilizacyjnych, ponieważ wiąże się z trybem życia, jaki prowadzą mieszkańcy krajów rozwiniętych, a zwłaszcza mieszkańcy

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów.

Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów. W niniejszym dokumencie znajdują się propozycje projektów na rok 2008. Tematy sformułowane są ogólnie, po wyborze tematu i skontaktowaniu z prowadzącym zostaną określone szczegółowe wymagania co do projektu.

Bardziej szczegółowo

CHOLESTONE NATURALNA OCHRONA PRZED MIAŻDŻYCĄ. www.california-fitness.pl www.calivita.com

CHOLESTONE NATURALNA OCHRONA PRZED MIAŻDŻYCĄ. www.california-fitness.pl www.calivita.com CHOLESTONE NATURALNA OCHRONA PRZED MIAŻDŻYCĄ Co to jest cholesterol? Nierozpuszczalna w wodzie substancja, która: jest składnikiem strukturalnym wszystkich błon komórkowych i śródkomórkowych wchodzi w

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału

Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)

Bardziej szczegółowo

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO

ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy

Bardziej szczegółowo

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel Modelowanie zjawisk przepływowocieplnych w rurach gładkich i wewnętrznie ożebrowanych Karol Majewski Sławomir Grądziel Plan prezentacji Wprowadzenie Wstęp do obliczeń Obliczenia numeryczne Modelowanie

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

PSO Rój cząsteczek - Particle Swarm Optimization. Michał Szopiak

PSO Rój cząsteczek - Particle Swarm Optimization. Michał Szopiak PSO Rój cząsteczek - Particle Swarm Optimization Michał Szopiak Inspiracje biologiczne Algorytm PSO wywodzą się z obserwacji gróp zwierzą tworzony przez członków ptasich stad, czy ławic ryb, który umożliwia

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

Opcje koszykowe a lokaty strukturyzowane - wycena

Opcje koszykowe a lokaty strukturyzowane - wycena Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie

Bardziej szczegółowo

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

Metody symulacji komputerowych Modelowanie systemów technicznych

Metody symulacji komputerowych Modelowanie systemów technicznych Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje

Bardziej szczegółowo

Modelowanie niezawodności prostych struktur sprzętowych

Modelowanie niezawodności prostych struktur sprzętowych Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności

Bardziej szczegółowo

1 Rachunek prawdopodobieństwa

1 Rachunek prawdopodobieństwa 1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const

Bardziej szczegółowo

3. Równania konstytutywne

3. Równania konstytutywne 3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Zagadnienia na egzamin dyplomowy Matematyka

Zagadnienia na egzamin dyplomowy Matematyka INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.

Bardziej szczegółowo

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b].

Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b]. Rachunek Prawdopodobienstwa MAEW104 Wydział Elektroniki, rok akad. 2008/09, sem. letni wykład: dr hab. Agnieszka Jurlewicz Temat projektu: Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego

Bardziej szczegółowo

Całkowanie metodą Monte Carlo

Całkowanie metodą Monte Carlo Całkowanie metodą Monte Carlo Plan wykładu: 1. Podstawowa metoda Monte Carlo 2. Metody MC o zwiększonej efektywności a) losowania ważonego b) zmiennej kontrolnej c) losowania warstwowego d) obniżania krotności

Bardziej szczegółowo

Stochastyczne równania różniczkowe, model Blacka-Scholesa

Stochastyczne równania różniczkowe, model Blacka-Scholesa Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Metoda elementów skończonych-projekt

Metoda elementów skończonych-projekt Metoda elementów skończonych-projekt Ziarniak Marcin Nawrocki Maciej Mrówczyński Jakub M6/MiBM 1. Analiza odkształcenia kierownicy pod wpływem obciążenia W pierwszym zadaniu przedmiotem naszych badań będzie

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Spis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22

Spis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22 Spis treści Wstęp 13 Literatura - 15 Część I. UKŁADY REDUKCJI DRGAŃ - 17 Wykaz oznaczeń 18 1. Wprowadzenie do części I 22 2. Teoretyczne podstawy opisu i analizy układów wibroizolacji maszyn 30 2.1. Rodzaje

Bardziej szczegółowo

HYDRODYNAMIKA PRZEPŁYWÓW USTALONYCH PRZEZ KANAŁY PROSTE

HYDRODYNAMIKA PRZEPŁYWÓW USTALONYCH PRZEZ KANAŁY PROSTE Przedmowa Uszczelnienia spełniają bardzo ważne funkcje w budowie oraz eksploatacji maszyn i urządzeń. Tradycyjnie chronią one środowisko przed wyciekiem substancji szkodliwych z maszyn oraz zabezpieczają

Bardziej szczegółowo

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH

LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH Projekt z wykorzystaniem programu COMSOL Multiphysics Prowadzący: dr hab. Tomasz Stręk, prof. PP Wykonali: Aleksandra Oźminkowska, Marta Woźniak Wydział: Elektryczny

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Symulacja przepływu ciepła dla wybranych warunków badanego układu

Symulacja przepływu ciepła dla wybranych warunków badanego układu Symulacja przepływu ciepła dla wybranych warunków badanego układu I. Część teoretyczna Ciepło jest formą przekazywana energii, która jest spowodowana różnicą temperatur (inną formą przekazywania energii

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo