Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych
|
|
- Bernard Kot
- 9 lat temu
- Przeglądów:
Transkrypt
1 Modelowanie absorbcji cząsteczek LDL w ściankach naczyń krwionośnych
2 Plan prezentacji Co to jest LDL? 1 Budowa naczynia krwionośnego 2 Przykładowe wyniki 3 Mechanizmy wnikania blaszki miażdżycowej w ścianki naczyń 4 Schemat symulacji 5 Różne stężenie LDL w zależności od naprężenia ścinającego 6 Podsumowanie 7
3 Co to jest LDL? 1 2 Low Density Lipoprotein -Lipoproteina niskiej gęstości Jest to główny transporter cholesterolu z wątroby do innych narządów 3 Tzw. zły cholesterol 4 HDL dobry cholesterol
4 Miażdżyca W początkowym stadium powodowana przez gromadzenie się makromolekuł LDL w ściance naczynia Nie jest do końca wyjaśnione, czy miażdżyca powodowana jest anomalnym gromadzeniem się LDL w intimie, czy jest to skutek choroby
5 Miażdżyca W początkowym stadium powodowana przez gromadzenie się makromolekuł LDL w ściance naczynia Nie jest do końca wyjaśnione, czy miażdżyca powodowana jest anomalnym gromadzeniem się LDL w intimie, czy jest to skutek choroby
6 Budowa naczynia krwionośnego
7 Matematyczne modelowanie transportu w ściance naczynia Model wielowarstwowy cztery warstwy Warstwy to makroskopowo jednolite ośrodki porowate
8 Główne warstwy tętnicy Tętnica Światło naczynia Endothelium Intima IEL Media
9 Główne warstwy tętnicy Endothelium Pojedyncza warstwa komórek śródbłonka wydłużonych w kierunku przepływu krwi Komórki te są ze sobą połączone
10 Główne warstwy tętnicy Endothelium Pojedyncza warstwa komórek śródbłonka wydłużonych w kierunku przepływu krwi Komórki te są ze sobą połączone
11 Główne warstwy tętnicy Endothelium Pojedyncza warstwa komórek śródbłonka wydłużonych w kierunku przepływu krwi Komórki te są ze sobą połączone
12 Główne warstwy tętnicy Intima składała się głównie z włókien kolagenowych i proteoglikanów.
13 Główne warstwy tętnicy Intima składała się głównie z włókien kolagenowych i proteoglikanów.
14 Główne warstwy tętnicy Internal Elastic Lamina nieprzepuszczalna elastyczna tkanka z porami fenestralnymi,
15 Główne warstwy tętnicy Internal Elastic Lamina nieprzepuszczalna elastyczna tkanka z porami fenestralnymi,
16 Główne warstwy tętnicy Media składa się z naprzemiennych warstw komórek mięśni gładkich i elastycznej tkanki łącznej,
17 Główne warstwy tętnicy Media składa się z naprzemiennych warstw komórek mięśni gładkich i elastycznej tkanki łącznej,
18 ENDOTHELIUM I IEL Modele matematyczne Biologiczne membrany porowate Istotne są współczynniki filtracyjnego i osmotycznego odbicia Staverman a
19 Modele matematyczne INTIMA I MEDIA Makroskopowo jednorodne ośrodki porowate Ośrodki są selektywnie przepuszczalne dla LDL co odzwierciedlone jest przez współczynniki Staverman a Pobieranie składników przez komórki mięśni gładkich w medii może być przybliżone jako nieodwracalna reakcja pierwszego rzędu.
20 Stężenie LDL otrzymane z symulacji
21 Stężenie LDL otrzymane z symulacji
22 Mechanizmy wnikania Zależności akumulacji blaszki miażdżycowej od parametrów przepływu nie są obecnie do końca wyjaśnione Koncentracja LDL wzrasta tam, gdzie jest małe naprężenie ścinające WSS. Koncentracja ta wzrasta również tam, gdzie obserwowane są duże zmiany WSS i powierzchniowej koncentracji LDL Może być to związane z powstawaniem tzw. leaky cell junctions, które pozwalają LDL na wnikanie do endothelium lub nawet wiążą się ze zniszczeniami w endothelium
23 Schemat postępowania Segmentacja danych uzyskanych z rezonansu magnetycznego Obliczenie parametrów przepływu, w tym WSS Symulacja przepływu z wykorzystaniem pakietu Sage lub OpenFoam Symulacja osadzania blaszki miażdżycowej w istotnych miejscach naczynia krwionośnego
24 Przykład tętniak aorty brzusznej Naprężenie ścinające w przykładowej aorcie
25 Przykład tętniak aorty brzusznej WSS = 1.0
26 Przykład tętniak aorty brzusznej
27 Przykład tętniak aorty brzusznej WSS = 0.1
28 Przykład tętniak aorty brzusznej
29 Przykład tętniak aorty brzusznej WSS = 10
30 Przykład tętniak aorty brzusznej
31 Podsumowanie Obecny model jest bardzo uproszczony i wymaga dalszej rozbudowy W przyszłości symulacje przepływu krwi i wnikania makromolekuł w ścianki naczyń to: Odpowiedzi na wiele interesujących pytań Ważne narzędzie diagnostyczne
32 Dziękuję za uwagę
33 Endothelium i IEL Model matematyczny ε porowatość K przepuszczalność hydrauliczna ρ gęstość μ efektywna lepkość dynamiczna ośrodka σ f współczynnik odbicia filtracyjnego Stavermana σ d współczynnik odbicia osmotycznego Stavermana V wektor prędkości p ciśnienie hydrauliczne R u - stała gazowa T temperatura c stężenie D e efektywny współczynnik dyfuzji
34 Intima i media Model matematyczny k współczynnik reakcji
35 Parametry Endothelium intima IEL media σ L [μm]
36 Stochastyczne rozwiązanie równania na transport The Random Walk Particle Tracking (RWPT) polega na modelowaniu transportu wykorzystując dużą ilość cząstek (Ujęcie Lagrange a) Pozwala łączyć transport adwekcyjny, dyspersyjny i dyfuzyjny. Problem w przypadku nieciągłości współczynnika dyfuzji
37 Równanie transportu
38
39 Proces Wienera
40 Całka statystyczna
41 Interpretacja Ito
42 Interpretacja Stratonowicza
43 Związek między (I) i (S)
44 Związek między (I) i (S)
45 Związek między (I) i (S)
46 Związek między (I) i (S)
47 Związek między (I) i (S)
48 Związek między (I) i (S)
49 SDE w ujęciu Stratonowicza
50 Backward Ito Pozwala uniknąć problemu z nieciągłym współczynnikiem dyfuzji. B obliczane jest w punkcie X(t k ), czyli:
51 Backward Ito
52 Backward Ito
53 Backward Ito
54 Backward Ito
55 Backward Ito
56 Backward Ito
57 SDE w ujęciu backward Ito
58 Problem z nieciągłością współczynnika dyfuzji
59 Błądzenie przypadkowe - Metoda Monte Carlo
60 Generalized Backward Ito
61 Warunki brzegowe C(x=0)=1 C(x=214)=0 Pochłanianie w warstwie medii z prawdopodobieństwem k
62 Implementacja z wykorzystaniem CUDY Każda cząstka reprezentowana jest przez osobny wątek Każda cząstka ma 2 stany żywy (a=true) i uśpiony (a=false) Obszar [0,L[0]] to obszar, w którym zadajemy stałe stężenie c=1
63 Algorytm n1, n2 zmienne losowe o rozkładzie normalnym w1, w2 zmienna losowa o rozkładzie ciągłym a czy cząstka jest żywa if(x>l, w<k): a=false else if (0 x<l[0]): x=l[0]*w1 if(a): Obliczamy Y(n1) Obliczamy nowe położenie X(n1) Zliczamy wszystkie cząstki w przedziale 0 x<l[0] Budzenie lub usypianie odpowiedniej ilości cząstek
64 Wyniki działania algorytmu
65 Wyniki działania algorytmu
66 Wyniki działania algorytmu
67 Wyniki działania algorytmu
68 Rozwiązanie numeryczny Metodą różnic skończonych szukamy rozwiązania równania dla przypadku jednowymiarowego:
69 Różnice skończone 1. Dzięki rozwinięciu funkcji w szereg Taylor a możemy wyprowadzić przybliżone wzory na pierwszą i drugą pochodną:
70 Różnice skończone
71 Układ równań 5. Konstruujemy układ równań -> 1 równanie z każdego punktu, a z niego macierz rzadką
72 Warunki brzegowe
73 Wnętrza obszarów
74 Ciągłość strumienia
75 Dziękuję za uwagę
76 Przybliżone rozwiązanie analityczne Uproszczenie problemu do zagadnienia jednowymiaro wego Zaniedbanie krzywizny Przybliżone rozwiązanie analityczne
77 Intima IEL i Endothelium Liczba Reynoldsa Liczba Darcy
78 Intima IEL i Endothelium Liczba Peclet a
79 Intima IEL i Endothelium
80 Media
81 Warunki brzegowe Warunek brzegowy na ciśnienie: Warunki na stężenie Warunek na strumień między obszarami
82 Rozwiązania A wykorzystując równanie charakterystyczne:
83
84 Forma macierzowa
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI
Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Spis treści Wstęp... 2 Opis problemu... 3 Metoda... 3 Opis modelu... 4 Warunki brzegowe... 5 Wyniki symulacji...
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład
Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą
Laboratorium komputerowe z wybranych zagadnień mechaniki płynów
FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez
Proces transportu lipoprotein niskiej gęstości (LDL) w ścianach naczyń krwionośnych
Uniwersytet Śląski Wydział Matematyki Fizyki i Chemii Instytut Fizyki Katarzyna Jesionek Rozprawa doktorska Proces transportu lipoprotein niskiej gęstości (LDL) w ścianach naczyń krwionośnych Promotor:
Długotrwały niedobór witaminy C (hipoascorbemia) powoduje miażdżycę oraz osadzanie się lipoproteiny(a) w naczyniach krwionośnych transgenicznych myszy
Długotrwały niedobór witaminy C (hipoascorbemia) powoduje miażdżycę oraz osadzanie się lipoproteiny(a) w naczyniach krwionośnych transgenicznych myszy Nowa publikacja Instytutu Medycyny Komórkowej dr Ratha
Dyfuzyjny transport masy
listopad 2013 Koagulacja w ruchach Browna, jako stacjonarna, niejednorodna reakcja, kontrolowana przez dyfuzję Promień sfery zderzeń r i + r j możemy utożsamić z promieniem a. Każda cząstka typu j, która
Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak
Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak Instytut Metalurgii Żelaza DICTRA jest pakietem komputerowym
- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.
4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )
pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)
Simulink MATLAB Przegląd obiektów i przykłady zastosowań
Simulink MATLAB Przegląd obiektów i przykłady zastosowań M. Berndt-Schreiber 1 Simulink MATLAB SIMULINK jest rozszerzeniem pakietu MATLAB; przy pomocy graficznego środowiska pozwala konstruować diagramy
Laboratorium Metoda Elementów Skończonych Projekt z wykorzystaniem programu COMSOL Multiphysics 3.4
Laboratorium Metoda Elementów Skończonych Projekt z wykorzystaniem programu COMSOL Multiphysics 3.4 Radosław Inczewski, Tomasz Kiwerski 2013-06-30 Wydział: ELEKTRYCZNY Kierunek: MATEMATYKA (studia stacjonarne
Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).
Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.
Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.
Dwurównaniowe domknięcie turbulentnego strumienia ciepła
Instytut Maszyn Przepływowych PAN Ośrodek Termomechaniki Płynów Zakład Przepływów z Reakcjami Chemicznymi Dwurównaniowe domknięcie turbulentnego strumienia ciepła Implementacja modelu: k 2 v' f ' 2 Michał
Spis treści. Wykaz ważniejszych oznaczeń. Przedmowa 15. Wprowadzenie Ruch falowy w ośrodku płynnym Pola akustyczne źródeł rzeczywistych
Spis treści Wykaz ważniejszych oznaczeń u Przedmowa 15 Wprowadzenie 17 1. Ruch falowy w ośrodku płynnym 23 1.1. Dźwięk jako drgania ośrodka sprężystego 1.2. Fale i liczba falowa 1.3. Przestrzeń liczb falowych
Fizyka statystyczna Równanie Fokkera-Plancka
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 17 marca 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t)
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D
Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia
BIOMECHANIKA KRĘGOSŁUPA. Stateczność kręgosłupa
BIOMECHANIKA KRĘGOSŁUPA Stateczność kręgosłupa Wstęp Pojęcie stateczności Małe zakłócenie kątowe Q Q k 1 2 2 spadek energii potencjalnej przyrost energii w sprężynie V Q k 1 2 2 Q Stabilna równowaga występuje
. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem
Układ krążenia krwi. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 2014-11-18 Biofizyka 1
Wykład 7 Układ krążenia krwi Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 2014-11-18 Biofizyka 1 Układ krążenia krwi Source: INTERNET 2014-11-18 Biofizyka 2 Co
Numeryczne rozwiązanie równania Schrodingera
Numeryczne rozwiązanie równania Schrodingera Równanie ruchu dla cząstki o masie m (elektron- cząstka elementarna o masie ~9.1 10-31 kg) Mechanika klasyczna - mechanika kwantowa 1. Druga zasada dynamiki
Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów
Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and
Statystyka i Analiza Danych
Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania wybranych technik regresyjnych do modelowania współzależności zjawisk Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści
Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie
DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI
DWUKROTNA SYMULACJA MONTE CARLO JAKO METODA ANALIZY RYZYKA NA PRZYKŁADZIE WYCENY OPCJI PRZEŁĄCZANIA FUNKCJI UŻYTKOWEJ NIERUCHOMOŚCI mgr Marcin Pawlak Katedra Inwestycji i Wyceny Przedsiębiorstw Plan wystąpienia
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1
J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska
VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
WARUNKI HYDRAULICZNE PRZEPŁYWU WODY W PRZEPŁAWKACH BLISKICH NATURZE
Uniwersytet Rolniczy w Krakowie, Wydział Inżynierii Środowiska i Geodezji Katedra Inżynierii Wodnej i Geotechniki Leszek Książek WARUNKI HYDRAULICZNE PRZEPŁYWU WODY W PRZEPŁAWKACH BLISKICH NATURZE Kraków,
Metoda Różnic Skończonych (MRS)
Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Fizyka statystyczna Równanie Fokkera-Plancka. P. F. Góra
Fizyka statystyczna Równanie Fokkera-Plancka P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Mamy równanie master dla ciagłych rozkładów prawdopodobieństwa: P (y, t) t = (W (y y )P (y, t) W (y y)p
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI
Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):
2. Zapoczątkowanie kawitacji. - formy przejściowe. - spadek sprawności maszyn przepływowych
J. A. Szantyr Wykład 22: Kawitacja Podstawy fizyczne Konsekwencje hydrodynamiczne 1. Definicja kawitacji 2. Zapoczątkowanie kawitacji 3. Formy kawitacji - kawitacja laminarna - kawitacja pęcherzykowa -
Spis treści Przedmowa
Spis treści Przedmowa 1. Wprowadzenie do problematyki konstruowania - Marek Dietrich (p. 1.1, 1.2), Włodzimierz Ozimowski (p. 1.3 -i-1.7), Jacek Stupnicki (p. l.8) 1.1. Proces konstruowania 1.2. Kryteria
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
1.3. Prawa Eulera Pierwsze prawo Eulera Drugie prawo Eulera Tensor naprężenia w płynie... 10
Słowo wstępne... XI Ważniejsze oznaczenia... XIII 1. Podstawowe równania mechaniki płynów... 1 1.1. Wprowadzenie... 1 1.2. Prawa przenoszenia... 2 1.2.1. Pochodna zupełna i substancjalna... 2 1.2.2. Ogólne
Metody rozwiązania równania Schrödingera
Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania
ANALIZA MATEMATYCZNA
ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej
Filtracja prowadzona pod stałą różnicą ciśnień
Filtracja prowadzona pod stałą różnicą ciśnień Cel ćwiczenia Celem ćwiczenia jest: 1. Zapoznanie się z aparaturą do procesu filtracji plackowej prowadzonej przy stałej różnicy ciśnień. Opis procesu filtracji
METODY KOMPUTEROWE W MECHANICE
METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
Spis treści. Przedmowa 11
Podstawy konstrukcji maszyn. T. 1 / autorzy: Marek Dietrich, Stanisław Kocańda, Bohdan Korytkowski, Włodzimierz Ozimowski, Jacek Stupnicki, Tadeusz Szopa ; pod redakcją Marka Dietricha. wyd. 3, 2 dodr.
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
wartość oczekiwana choinki
wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera
Materiały pomocnicze z Aparatury Przemysłu Chemicznego
Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA
CO NALEŻY WIEDZIEĆ O MIAŻDŻYCY?
Wstęp Miażdżyca jest dziś chorobą bardzo rozpowszechnioną. Schorzenie to należy do chorób cywilizacyjnych, ponieważ wiąże się z trybem życia, jaki prowadzą mieszkańcy krajów rozwiniętych, a zwłaszcza mieszkańcy
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL
Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość
Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.
Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi
Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów.
W niniejszym dokumencie znajdują się propozycje projektów na rok 2008. Tematy sformułowane są ogólnie, po wyborze tematu i skontaktowaniu z prowadzącym zostaną określone szczegółowe wymagania co do projektu.
CHOLESTONE NATURALNA OCHRONA PRZED MIAŻDŻYCĄ. www.california-fitness.pl www.calivita.com
CHOLESTONE NATURALNA OCHRONA PRZED MIAŻDŻYCĄ Co to jest cholesterol? Nierozpuszczalna w wodzie substancja, która: jest składnikiem strukturalnym wszystkich błon komórkowych i śródkomórkowych wchodzi w
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA
I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura
Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału
Fizyka 2 Wykład 4 1 Jednowymiarowa mechanika kwantowa Rozpraszanie na potencjale Na początek rozważmy najprostszy przypadek: próg potencjału Niezależne od czasu równanie Schödingera ma postać: 2 d ( x)
ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO
ZAGADNIENIA DO EGZAMINU MAGISTERSKIEGO Na egzaminie magisterskim student powinien: 1) omówić wyniki zawarte w pracy magisterskiej posługując się swobodnie pojęciami i twierdzeniami zamieszczonymi w pracy
Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel
Modelowanie zjawisk przepływowocieplnych w rurach gładkich i wewnętrznie ożebrowanych Karol Majewski Sławomir Grądziel Plan prezentacji Wprowadzenie Wstęp do obliczeń Obliczenia numeryczne Modelowanie
2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26
Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne
PSO Rój cząsteczek - Particle Swarm Optimization. Michał Szopiak
PSO Rój cząsteczek - Particle Swarm Optimization Michał Szopiak Inspiracje biologiczne Algorytm PSO wywodzą się z obserwacji gróp zwierzą tworzony przez członków ptasich stad, czy ławic ryb, który umożliwia
Projektowanie elementów z tworzyw sztucznych
Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu
Opcje koszykowe a lokaty strukturyzowane - wycena
Opcje koszykowe a lokaty strukturyzowane - wycena Basket options and structured deposits - pricing Janusz Gajda Promotor: dr hab. inz. Rafał Weron Politechnika Wrocławska Plan prezentacji Cel pracy Wprowadzenie
III r. EiP (Technologia Chemiczna)
AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Zmienne losowe i teoria prawdopodobieństwa 3. Populacje i próby danych 4. Testowanie hipotez i estymacja parametrów 5. Najczęściej wykorzystywane testy statystyczne
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1
Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz
Metody symulacji komputerowych Modelowanie systemów technicznych
Metody symulacji komputerowych Modelowanie systemów technicznych dr inż. Ryszard Myhan Katedra Inżynierii Procesów Rolniczych Program przedmiotu Lp. Temat Zakres 1. Wprowadzenie do teorii systemów Definicje
Modelowanie niezawodności prostych struktur sprzętowych
Modelowanie niezawodności prostych struktur sprzętowych W ćwiczeniu tym przedstawione zostaną proste struktury sprzętowe oraz sposób obliczania ich niezawodności przy założeniu, że funkcja niezawodności
1 Rachunek prawdopodobieństwa
1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const
3. Równania konstytutywne
3. Równania konstytutywne 3.1. Strumienie w zjawiskach transportowych Podczas poprzednich zajęć wprowadziliśmy pojęcie strumienia masy J. W większości zjawisk transportowych występuje analogiczna wielkość
Wykład z Technologii Informacyjnych. Piotr Mika
Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły
Zagadnienia na egzamin dyplomowy Matematyka
INSTYTUT MATEMATYKI UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Zagadnienia na egzamin dyplomowy Matematyka Pytania kierunkowe Wstęp do matematyki 1. Relacja równoważności, przykłady relacji równoważności.
Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego w kwadracie [a, b] [a, b].
Rachunek Prawdopodobienstwa MAEW104 Wydział Elektroniki, rok akad. 2008/09, sem. letni wykład: dr hab. Agnieszka Jurlewicz Temat projektu: Ilustracja metody Monte Carlo do obliczania pola obszaru D zawartego
Całkowanie metodą Monte Carlo
Całkowanie metodą Monte Carlo Plan wykładu: 1. Podstawowa metoda Monte Carlo 2. Metody MC o zwiększonej efektywności a) losowania ważonego b) zmiennej kontrolnej c) losowania warstwowego d) obniżania krotności
Stochastyczne równania różniczkowe, model Blacka-Scholesa
Stochastyczne równania różniczkowe, model Blacka-Scholesa Marcin Orchel Spis treści 1 Wstęp 1 1.1 Błądzenie losowe................................ 1 1. Proces Wienera................................. 1.3
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Rozwiązywanie równań nieliniowych
Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej
Metoda elementów skończonych-projekt
Metoda elementów skończonych-projekt Ziarniak Marcin Nawrocki Maciej Mrówczyński Jakub M6/MiBM 1. Analiza odkształcenia kierownicy pod wpływem obciążenia W pierwszym zadaniu przedmiotem naszych badań będzie
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Spis treści. Wstęp 13. Część I. UKŁADY REDUKCJI DRGAŃ Wykaz oznaczeń 18. Literatura Wprowadzenie do części I 22
Spis treści Wstęp 13 Literatura - 15 Część I. UKŁADY REDUKCJI DRGAŃ - 17 Wykaz oznaczeń 18 1. Wprowadzenie do części I 22 2. Teoretyczne podstawy opisu i analizy układów wibroizolacji maszyn 30 2.1. Rodzaje
HYDRODYNAMIKA PRZEPŁYWÓW USTALONYCH PRZEZ KANAŁY PROSTE
Przedmowa Uszczelnienia spełniają bardzo ważne funkcje w budowie oraz eksploatacji maszyn i urządzeń. Tradycyjnie chronią one środowisko przed wyciekiem substancji szkodliwych z maszyn oraz zabezpieczają
LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH
LABORATORIUM METODA ELEMENTÓW SKOŃCZONYCH Projekt z wykorzystaniem programu COMSOL Multiphysics Prowadzący: dr hab. Tomasz Stręk, prof. PP Wykonali: Aleksandra Oźminkowska, Marta Woźniak Wydział: Elektryczny
IX. MECHANIKA (FIZYKA) KWANTOWA
IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji
Symulacja przepływu ciepła dla wybranych warunków badanego układu
Symulacja przepływu ciepła dla wybranych warunków badanego układu I. Część teoretyczna Ciepło jest formą przekazywana energii, która jest spowodowana różnicą temperatur (inną formą przekazywania energii
Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają
Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH
METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
Komputerowa analiza danych doświadczalnych
Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student