Lista 1 - Rachunek zdań i reguły wnioskowania
|
|
- Dominika Lewicka
- 7 lat temu
- Przeglądów:
Transkrypt
1 Lista 1 - Rachunek zdań i reguły wnioskowania 1. Każda karta z jednej strony jest czerwona albo niebieska, z drugiej zaś ma narysowane kółko albo trójkąt. Na stole widzimy cztery takie karty, widoczna strona jest w nich kolejno czerwona, niebieska, trójkątem i kółkiem. Jacek twierdzi, że karty niebieskie mają na odwrocie kółko. Które karty Placek musi odwrócić, aby sprawdzić, czy Jacek mówi prawdę? 2. Zbadaj, które z poniższych formuł są tautologiami: a) (p p) p; b) p ( p q); c) (p q) [( p) ( q)]; d) (p q) (p q); e) (p q) [ p) ( q)]; f) (p q) [( p) ( q)]; g) [(p (q r)] [(p q) (p r)]; h) [(p q) r] [p (q r)]; i) [p (q r)] [(p q) (p r)]; j) [p (q r)] [( (p q) (p r)]; k) [p (q r)] [( q r) p]; l) [(p q) r)] [( p (q r)]. 3. Przyjmijmy, że gdy Jacek chrapie, to Agata śni. Które z poniższych zdań są prawdziwe przy tym założeniu? a) Gdy Agatka nie śni, to Jacek nie chrapie. b) Gdy Jacek nie chrapie, to Agatka nie śni. c) Gdy Agatka śni, to Jacek chrapie. d) Jacek nie chrapie lub Agatka śni. e) Nie jest możliwe, aby Jacek chrapał, a Agatka nie śniła. 4. Zapisz formułę korzystając wyłącznie ze wskazanych spójników: a) p q za pomocą koniunkcji i negacji; b) p q za pomocą alternatywy i negacji; c) p q za pomocą implikacji i negacji; d) p q za pomocą implikacji i negacji; 5. Zapisz za pomocą alternatywy, koniunkcji i negacji spójnik albo (alternatywę wykluczającą). 6. Zapisz formułę: p 1 (p 2 (p 3... (p n q))...) używając znak implikacji: a) tylko raz; b) ani razu. 7. Spójnik Pierce a (operator NOR) jest zdefiniowany wzorem (p q) (( p) ( q)). Kreska Sheffera, (operator NAND) jest zdefiniowana wzorem p q (( p) (( q)). Wyraź: a) alternatywę, implikację oraz równoważność za pomocą negacji oraz koniunkcji; b) koniunkcję, implikację oraz równoważność za pomocą negacji oraz alternatywy; c) negację, koniunkcję, alternatywę oraz implikację za pomocą spójnika Pierce a. d) negację, koniunkcję, alternatywę oraz implikację za pomocą kreski Sheffera. 8. Przyjmijmy oznaczenia: N p negacja p, Cpq implikacja, Apq alternatywa, Kpq koniunkcja, Epq równoważność. System ten (tzw. notacja polska) pozwala zapisywać formuły rachunku zdań bez użycia nawiasów. a) Zapisz w zwykłej notacji KCpNqp. b) Zapisz w notacji polskiej zasady sprzeczności i wyłączonego środka oraz prawa de Morgana.
2 9. Zbadaj, czy poniższe schematy wnioskowania są poprawne: ( p) q, p (p q) r, q p (q r), r a) ; b) ; c) ; q p r p q p q, ( p) q (p q) r, q p q,p ( q) d) ; e) : f). q p r p 10. Zbadaj poprawność każdego z poniższych wnioskowań. Jeżeli jest poprawne, daj pełne wyprowadzenie ze wskazaniem stosowanych reguł wnioskowania. Jeżeli jest niepoprawne, wyjaśnij dlaczego. a) Jeśli płyta jest głośna lub monotonna, to nie jest długa. Płyta jest monotonna. Wniosek: Płyta nie jest długa. b) Jeśli Rybin jest nudny, to trudno go znaleźć. Jeżeli Rybin nie jest mały, to nietrudno go znaleźć. Rybin jest nudny. Wniosek: Rybin jest mały. c) Nieprawda, ze Franek gra zarówno na gitarze jak i na flecie. Jeżeli Franek nie gra ani na gitarze, ani na flecie, to gra na organach i na harfie. Jeżeli gra na harfie, to gra na organach. Wniosek: Franek gra na organach. UWAGA! d) Jeżeli napadniesz na bank, trafisz do więzienia. Jeśli trafisz do więzienia, nie spędzisz czasu miło. Jeśli wyjedziesz na wakacje, to spędzisz czas miło. Napadasz na bank lub jedziesz na wakacje. Wniosek: Trafisz do więzienia lub spędzisz miło czas. e) Jeśli Jones nie spotkał tej nocy Smitha, to Smith jest mordercą lub Jones kłamie. Jeżeli Smith nie jest mordercą, to Jones nie spotkał tej nocy Smitha i morderstwo nastąpiło po północy. Jeżeli morderstwo miało miejsce po północy, to Smith jest mordercą lub Jones kłamie. Wniosek: Smith jest mordercą.uwaga! 11. Zbadaj, czy podany zestaw informacji jest niesprzeczny: a) Jeśli wieczór nudny, to Ala płacze lub Anatol opowiada śmieszne historie. Jeżeli wieczorem zjawia się Sylwester, to wieczór jest nudny lub Ala płacze. Jeżeli Anatol opowiada śmieszne historie, to Ala nie płacze. Sylwester zjawia się wieczorem wtedy i tylko wtedy, gdy Anatol nie opowiada śmiesznych historii. Jeśli Ala płacze, to Anatol opowiada śmieszne historie. b) Jeżeli kurs papierów wartościowych rośnie lub stopa procentowa maleje, to ceny akcji spadają lub podatki nie rosną. Ceny akcji spadają wtedy i tylko wtedy, gdy idzie w górę kurs papierów wartościowych i rosną podatki. Jeżeli stopa procentowa maleje, to ceny akcji nie spadają lub kurs papierów wartościowych nie rośnie. Podatki rosną lub (druga mażliwość) ceny akcji maleją i maleje stopa procentowa. 12. W czasie kampanii wyborczej panowie Alfa, Beta i Gamma złożyli oświadczenia: Alfa: Beta zawsze kłamie. Beta: Gamma zawsze kłamie. Gamma: Alfa zawsze kłamie. Uzasadnij, że przynajmniej dwa z tych oświadczeń są fałszywe. 13. W czasie kampanii wyborczej panowie Alfa, Beta, Gamma i Delta złożyli następujące oświadczenia: Alfa: Beta zawsze kłamie. Beta: Gamma przynajmniej czasem mówi prawdę. Gamma: Delta przynajmniej czasem kłamie. Delta: Alfa zawsze mówi prawdę. Wykaż, że dokładnie dwa z tych zdań są prawdziwe.
3 Lista 2 - Kwantyfikatory 1. Niech d(x,y) oznacza x jest dzieckiem y, m(x) x jest mężczyzną. Zapisz formuły: a) x jest bratem y; b) x jest dziadkiem y; c) x jest stryjkiem y; d) x oraz y są przyrodnim rodzeństwem. 2. Przyjmijmy, że w języki arytmetyki liczb naturalnych mamy stałe 0, 1, 2,... oraz symbole + i. Zapisz w tym języku: a) n jest liczbą parzystą; b) m > n; c) n jest liczbą złożoną; d) n jest liczba pierwszą; e) każda liczba parzysta większa od 2 jest sumą dwu liczb pierwszych (hipoteza Goldbacha); f) istnieje nieskończenie wiele liczb pierwszych. 3. Kwantyfikatory ograniczone określamy wzorami x A P(x) x(x A P(x)), x A P(x) x(x A P(x)). Sformułuj i udowodnij prawa de Morgana dla kwantyfikatorów ograniczonych. 4. Wykaż, że nie zachodzi wynikanie: a) x(a(x) B(x)) ( xa(x) xb(x)); b) ( xa(x) xb(x)) x(a(x) B(x)); c) x yr(x, y) y xr(x, y); d) [ xa(x) xb(x))] [ x(a(x) B(x))]. 5. Wykaż, wskazując odpowiedni kontrprzykład, że reguła wnioskowania x(p(x) Q(x)), xm(x) x(p(x) M(x)) jest błędna. Uzupełnij komentarze przy przejściach poprawnych i wskaż błąd (błędy) w poniższym dowodzie poprawności tej reguły: 1. x(p(x) Q(x)) 2. xm(x) 3. P(a) Q(a) 4. P(a) 5. M(a) 6. P(a) M(a) 7. (P(x) M(x). 6. Wyprowadź poniższe reguły wnioskowania: x(p(x) Q(x)), x(p(x) M(x)) a) ; x(q(x) M(x) b) c) x((a(x) (R(x)) T(x)), x(t(x) P(x)), x(a(x) P(x)) ; xr(x) x(r(x) C(x)), x(t(x) R(x)). x( C(x) T(x)) 7. Wiadomo, że: a) jeżeli wielkie twierdzenie Fermata jest fałszywe, to krzywa Freya nie jest modularna; b) krzywa Freya jest krzywą eliptyczną; c) każda krzywa eliptyczna jest modularna. Wywnioskuj z tych przesłanek, że wielkie twierdzenie Fermata jest prawdziwe. Wskaż wykorzystywane reguły wnioskowania. Zauważ, że nie musisz rozumieć żadnego z terminów! 8. Przyjmijmy, że zakresem zmienności wszystkich zmiennych są liczby naturalne. Niech k l oznacza k dzieli l. Wykaż, że za pomocą 0, 1, + oraz można zdefiniować predykat z = xy. Wsk.: Zdefiniuj najpierw predykat y(x = y 2 ). Przydadzą się tożsamości: (x + y) 2 = x 2 + xy + xy + y 2 ; NWD(x,x + 1) = 1 oraz x 2 + x = NWW(x,x + 1), gdzie NWD oznacza największy wspólny dzielnik, NWW najmniejszą wspólną wielokrotność.
4 Lista ekstra e = 2, Typowe techniki dowodzenia Poniższe zadania pokazują charakter zadań, jakie mogą pojawić się na I minikolokwium w charakterze zadań na redagowanie dowodów. Nie są przeznaczone do rozwiazywania na ćwiczeniach. Niestety, czasem wymagana jest samodzielność! 1. Wykaż, że: a) suma dwu liczb nieparzystych jest parzysta; b) jeżeli iloczyn dwu liczb całkowitych jest parzysty, to przynajmniej jeden z czynników jest parzysty. 2. Wykaż, że: a) suma trzech kolejnych liczb naturalnych dzieli się przez 3; b) iloczyn trzech kolejnych liczb naturalnych dzieli sie przez Czy prawdą jest, że: a) iloczyn trzech kolejnych liczb naturalnych dzieli się przez 8; b) iloczyn czterech kolejnych liczb naturalnych dzieli się przez 24; c) pośród trzech kolejnych nieparzystych liczb naturalnych występuje liczba złożona; d) suma trzech liczb pierwszych jest liczbą złożoną; e) suma dwu sześcianów różnych dodatnich liczb naturalnych jest liczbą złożoną. Odpowiedź dokładnie uzasadnij, dając krótkie rozumowanie bądź kontrprzykład. 4. Podaj kontrprzykłady dla ponizszych zdań: a) kwadrat liczby niewymiernej jest liczba niewymierną; b) suma liczb niewymiernych jest liczbą niewymierną; c) iloczyn liczby niewymiernej przez liczbe wymierną jest liczba niewymierną. 5. Wiadomo, że dla liczby naturalnej n jest liczbą wymierną wtedy i tylko wtedy, gdy n jest kwadratem liczby naturalnej. Korzystając z tego faktu wykaż, że liczbami niewymiernymi są: a) 2 3; b) 1+ 5; c) 2+ 3; d) 4 2. Możesz korzystać z faktu, że suma, różnica i iloczyn liczb wymiernych jest liczba wymierną. 6. Korzystając z zasady indukcji matematycznej wykaż, że: a) n = 3n+1 1 ; 2 b) 7 n 1 dzieli się przez 6; c) dla n N zachodzi nierówność 4 n > n Wiadomo, że liczby e oraz π są niewymierne. Wywnioskuj stąd, że któraś z liczb e+π lub e π jest niewymierna. Czy wiadomo która?
5 Lista 3 - Rachunek zbiorów 1. Czy dla dowolnych zbiorów A,B i C prawdziwe są następujące równości: a) A (B C) = (A B) C; b) (A B) B = (A B) B; c) A (B C) = (A B) C; d)a (B C) = (A B) (A C); e) A (B C) = (A B) (A C); f) (A\B)\C = A\(B \C); g) (A\B) C = (A C)\(B C); h) (A\B) C = (A C)\(B C); i) (A B) C = (A C) (B C); j) (A B) C = (A C) (B C); k) (A B) C = (A C) (B C); l) (A B) C = (A C) (B C)? Uzasadniając odpowiedź pozytywną wskazuj, przy których przejściach korzystasz z definicji, a przy których z praw rachunku zdań (jakich?). 2. Czy dla dowolnych zbiorów A,B,C i D prawdziwe są następujące zdania: a) (A B) (B C) A C; b) (A B) (A\C B \C); c) (A C) (B C) A B C; d) (A B) (A C) A B C; e) (A B) (C D) A C B D; f) (A B) (C D) A C B D? 3. Wykaż, że A B = B A wtedy i tylko wtedy, gdy A = B lub A = lub B =. 4. Znajdź sumę n=0 oraz iloczyn n=0 dla poniższych rodzin zbiorów: a) A n = [n, ); b) B n = (0,1/n); c) C n = [0,1 1/n]; d) A n = ( n,1/(n+2)). 5. Znajdź sumę t T oraz iloczyn t T dla poniższych rodzin zbiorów: a) A t = (,t], T = R + ; b) B t = R\{t}, T = Q; c) C t = [t,1] [0,t], T = (0,1). 6. Które z ponizszych ciągów są elementami n=0 A n, gdzie A n = (n, ): a) a n = 1; b) b n = n+1; c) c n = 2n; d) d n = n 2 +1; e) e n = n+1+sinn? 7. Które z poniższych funkcji są elementami t R A t, gdzie A t = [0, 1+ t ]: a) a(t) = 1; b) b(t) = t ; c) c(t) = sint; d) d(t) = t 2 ; e) e(t) = t 1?
6 Lista 4 - Funkcje 1. Dla funkcji f : R R znajdź f(a), f 1 (f(a)), f 1 (C), f(f 1 (C)): a) f(x) = e x, A = (0, ), C = [0,1]; ZMIENIC! b) f(x) = sinx, A = [0,π/2], C = {1}; c) f(x) = lnx, A = (0,1], C = [0,1]; d) f(x) = x +1, A = [ 1,2], C = R. 2. Niech f : R 2 R 2 będzie funkcją zadaną wzorem f((x,y)) = (x+y,x y). a) Czy odwzorowanie f jest injekcją? b) Czy f jest surjekcją? c) Znajdźf(R {0}), f(l) orazf 1 (L), gdzieljest prostą zadaną równaniemy = x Dla funkcji f(x) = x 2 oraz A = [ 2,0], B = [0,2] wyznacz: a) f(a B), f(a) f(b); b) f(a B), f(a) f(b); c) f(a\b), f(a)\f(b). 4. Niech f : X Y, A,B X, C Y. Wykaż, że a) f(a B) f(a) f(b); b) f(a)\f(b) f(a\b); c) A f 1 (f(a)); d) f(f 1 (C)) C. 5. Wykaż, że przy dodatkowym założeniu (typu f jest różnowartościowa lub f jest na ) każdą z inkluzji w poprzednim zadaniu można zastąpić równością. 6. Niech f : X Y, g : Y X. Wykaż, że: a) jeżeli g f = id X, to f jest injekcją; b) jeżeli f g = id Y, to f jest surjekcją. 7. Inwolucją nazywamy taką funkcję f : X X, że f f jest identycznością. Wykaż, że każda inwolucja jest bijekcją. Podaj przykłady nieidentycznościowych inwolucji w algebrze i geometrii. 8. Inwersją względem okręgu x 2 +y 2 = 1 o środku O = (0,0) nazywamy przekształcenie, które punktowi P O przyporządkowuje punkt P leżący na półprostej OP, taki że OP OP = 1. a) Uzasadnij, że inwersja jest inwolucją na R 2 \{O}. b)* Znajdź obraz i przeciwobraz prostej x = 1/2 przez inwersję.
7 Lista 5 - Pojęcie relacji i relacje porządku 1. Wypisz wszystkie elementy relacji: a) podzielności na zbiorze {1, 2, 3, 4, 5}; b) relacji x < y < z na {1,2,3,4,5}. 2. Z ilu elementów składa się: a) relacja x < y na zbiorze {1,2,...,n}; b) relacja x+y = z na zbiorze {0,1,2,...,n}? 3. Ile jest relacji: a) zwrotnych na zbiorze {1,2,...,n}; b) symetrycznych na zbiorze {1,2,...,n}; c) słabo antysymetrycznych na zbiorze {1,2,...,n}? 4. Rozważmy trzy własności relacji: zwrotność, symetryczność i przechodniość. Podaj przykłady relacji mających: a) zwrotnej, symetrycznej, ale nieprzechodniej; b) zwrotnej, przechodniej, ale niesymetrycznej; c) tylko zwrotnej; d) tylko symetrycznej; e) tylko przechodniej. 5. Poniższe rozumowanie dowodzi, że każda relacja symetryczna i przechodnia jest zwrotna. Weźmy dowolne a. Niech b dowolne a takie, że arb. Z symetrii wynika, że bra, a skoro arb i bra, to z przechodniości wynika, ze ara. Gdzie tkwi błąd? Podaj przykład relacji symetrycznej, przechodniej, ale niezwrotnej. 6. Niech R = {(n,n+1) : n N}. Wyznacz najmniejszą relację przechodnią na zbiorze N zawierającą relację R. 7. Wykaż, że (N\{0}, ) jest częściowym porządkiem. Znajdź w nim element najmniejszy. Znajdź elementy minimalne w częściowym porządku (N\{0,1}, ). 8. Na zbiorze R 2 rozważamy relację zadaną formułą ((x,y) (x y )) (x x ) (y y ). Wykaż, że relacja ta jest częściowym porządkiem. NiechK = {(x,y) R 2 : x 2 +y 2 1}. Wyznacz elementy minimalne zbioru K. Dla ustalonego punktu (a,b) R 2 wyznacz zbiory {(x,y) R 2 : (a,b) (x,y)}, {(x,y) R 2 : (x,y) (a,b)} oraz {(x,y) R 2 : ((a,b) (x,y)) ((x,y) (a,b))}. 9. Rozważamy częściowy porządek ({2,...,30}, ), gdzie oznacza relację podzielności. Ile jest elementów minimalnych oraz ile jest elementów maksymalnych w tym częściowym porządku? 10. Czy poniższe zbiory uporządkowane przez relację podzielności są izomorficzne: a) D(100) i D(36); b) D(24) i D(30). 11. Narysuj diagram Hassego minimalnego porządku, przy którym 1 2, 2 3, 5 4, 4 2, 6 7, 7 3, 7 8, 8 9, 3 0, 9 0. a) Wskaż elementy minimalne, najmniejsze, maksymalne i największe; b) Jakiej liczebności łańcuchy (antyłańcuchy) występują w tym porządku? c) Rozważmy rodzinę niepustych łańcuchów w tym porządku. Ile ma elementów minimalnych, a ile maksymalnych? d) Analogicznie dla rodziny niepustych antyłańcuchów. 12. Zdefiniuj złozenie relacji analogicznie do składania funkcji. Niech R = {(x,y) R 2 : x = y } oraz Q = {(x,y) R 2 : y = sin(x)}. Narysuj wykres relacji R Q oraz Q R. 13. Wykaż twierdzenie Spernera: Każdy antyłańcuch w rodzinie podzbiorów zbioru n- elementowego ma co najwyżej ( n n/2 ) elementów.
8 Lista 6 - Relacje równoważności i podziały 1. Wykaż, że następujące relacje są relacjami równoważności na zbiorze X i wyznacz ich klasy abstrakcji oraz przestrzenie ilorazowe X/ : a) X = N 2 ; (x,y) (a,b) x+y = a+b, b) X = N 2 ; (x,y) (a,b) max{x,y} = max{a,b}, c) X = R; x y ( t 0)(tx = y), d) X = R; x y ( t > 0)(tx = y), e) X = R 2 ; x y ( t 0)(tx = y), f) X = R 2 ; x y ( t > 0)(tx = y). 2. Czy jest relacją równoważności na zbiorze liczb całkowitych: a) liczby x, y sa w relacji, gdy ich różnica dzieli sie przez 2 lub 3; b) liczby x, y sa w relacji, gdy ich różnica dzieli sie przez 2 lub 4? 3. Na zbiorze liczb całkowitych Z określamy relacje x y 3 (x + 2y) oraz x y 5 x 2 y 2. Czy są to relacje równoważności? 4. Dla (x 1,x 2 ),(y 1,y 2 ) [0,1] 2 określamy relację (x 1,x 2 ) (y 1,y 2 ) u(x 1 ) = u(y 1 ) u(x 2 ) = u(y 2 ), gdzie u(x) = x x. Wykaż, że jest relacją równoważności. Wyznacz jej klasy abstrakcji. 5. Ile jest: a) relacji równoważności na zbiorze {1,2,3}; b) podziałów zbioru {1,2,3,4}; c) relacji równoważności na zbiorze czteroelementowym? 6. Opisz klasy abstrakcji relacji na zbiorze liczb rzeczywistych R zadanej formułą x y (x y Z). 7. Na zbiorze N N określamy relacją równoważności formułą (x,y) (x,y ) max{x,y} = max{x,y }. Ile elementów ma klasa abstrakcji [(0,20)]? 8. Na o promieniu 1 określamy relację: punkt A jest w relacji z punktem B, jeżeli A = B lub ich odległość wynosi d. a) Dla jakich d relacja ta jest relacją równoważności? b) Jak wyglądają wówczas klasy abstrakcji? c) Rozwiąż analogiczne zadanie dla sfery. 9. Wykaż, że jeśli i η są relacjami równoważności na zbiorze Ω, to również η jest relacją równoważności na zbiorze Ω. 10. Na zbiorze N N określamy relację (a,b) (c,d) (a + d = b + c). Wykaż, że jest to relacja równoważności. Pokaż, że jej klasy abstrakcji można w naturalny sposób ponumerować liczbami całkowitymi, tzn. istnieje (naturalna) bijekcja ze zbioru Z na zbiór tych klas abstrakcji. 11. Na zbiorze Z N + określamy relację (a,b) (c,d) (ad = bc). Wykaż, że jest to relacja równoważności. Jej klasy abstrakcji można w naturalny sposób ponumerować pewnymi liczbami. Jakimi?
9 Lista 7 - Równoliczność i liczby kardynalne 1. Znajdź bijekcję pomiędzy następującymi parami zbiorów: a) (0,1) i (2,5); b) (a,b) i (c,d); c) (0, ) i R; d) ( π/2,π/2) i R; e) (0,2) i R; f) (1, i R; g) (1, ) i (2, ); h) [0,1] i [0,1). 2. Punktem kratowym płaszczyzny nazywamy punkt o obu współrzędnych całkowitych. Pokaż, jak ustawić w ciąg wszystkie punkty kratowe płaszczyzny. 3. Czy jest zbiorem przeliczalnym zbiór: a) funkcji liniowych o współczynnikach całkowitych; b) funkcji stałych f : R R; c) funkcji f : N {0, 1} stałych od pewnego miejsca? 4. Czy jest zbiorem przeliczalnym zbiór okręgów o środku w punkcie kratowym: a) i promieniu całkowitym; b) zawierających pewien punkt kratowy? 5. Jaka jest moc zbioru punktów płaszczyzny: a) o obu współrzędnych wymiernych; b) takich, że przynajmniej jedna współrzędna jest wymierna? 6. Wykaż, że dowolna rodzina parami rozłącznych otwartych przedziałów liczb rzeczywistych jest przeliczalna. 7. Wykaż, że dowolna rodzina parami rozłącznych niepustych kół na płaszczyźnie jest przeliczalna. Czy dowolna rodzina parami rozłącznych niepustych okręgów na płaszczyźnie jest przeliczalna? 8. Znajdź moc zbioru: a) funkcji f : R N; b) funkcji f : R R; c) funkcji f : N R; d) relacji trójargumentowych na R. Wynik podaj w formie ℵ 0, c lub 2 do odpowiedniej potęgi. 9. Jaka jest moc zbioru wszystkich ciągów zbieżnych do zera o wyrazach: a) rzeczywistych; b) całkowitych? 10. Wykaż, że zbiór wszystkich permutacji zbioru N (czyli bijekcji f : N N) jest mocy continuum. 11. Znajdź moc zbioru wszystkich permutacji zbioru R. 12. Jaka może być moc zbioru A\B jeśli A i B, jeżeli są one zbiorami mocy: a) ℵ 0 ; b) c? 13. Ile można narysować na płaszczyźnie parami rozłącznych liter: a) L; b) T? 14. Niech A będzie zbiorem powstałym z płaszczyzny przez usunięcie przeliczalnie wielu punktów. Wykaż, że każde dwa punkty tego zbioru można połączyć: a) łamaną w nim zawartą; b) łukiem okręgu w nim zawartym.
10 Lista 8 -Lemat Kuratowskiego-Zorna 1. Wykaż, że pośród podzbiorów płaszczyzny nie zawierających wierzchołków kwadratu istnieje maksymalny. A pośród podzbiorów płaszczyzny zawierających wierzchołki kwadratu? 2. Spróbuj wykazać, że pośród podzbiorów płaszczyzny nie zawierających żadnego okręgu istnieje maksymalny. W którym miejscu schematyczne zastosowanie lematu Kuratowskiego-Zorna zawodzi? Lista 9 (MiS) -Arytmetyka kardynalna - c.d. 1. Znajdź moc zbioru: a) {X N : X < ℵ 0 }; b) {X N : X = ℵ 0 }; c) {X R : X < ℵ 0 }; d) {X R : X = ℵ 0 }. 2. Znajdź moc zbioru wszystkich funkcji z liczb rzeczywistych w liczby rzeczywiste nieciągłych choćby w jednym punkcie. 3. Niech f : R R będzie funkcją monotoniczną. Wykaż, że zbiór punktów nieciągłości funkcji f jest przeliczalny. 4. Niech {f n : n N} będzie dowolną rodziną funkcji ze zbioru N N. Znajdź taką funkcję g N N, że ( n)( k)(f n (k) < g(k)). Lista 9 (MS) - Kombinatoryka 1. Ile jest numerów rejestracyjnych postaci trzyliterowe słowo - układ czterech cyfr, przy założeniu, że alfabet ma 26 liter? 2. W ilu permutacjach zbioru {1,2,...,n}, gdzie n 2: a) 1 poprzedza 2; b) 1 stoi obok 2; c) 1 jest bezpośrednim poprzednikiem 2? 3. Na ile sposobów można utworzyć 10 par tanecznych spośród: a) 10 pań i 10 panów; b) 10 pań i 15 panów; c) 12 pań i 15 panów? 4. Znajdź liczbę ciągów długości n o wyrazach A, C, G, T takich, że a) wyrazy sąsiednie są różne; b) pośród dowolnych czterech kolejnych wyrazów występują wszystkie cztery litery. 5. Ile spośród podzbiorów zbioru {1,2,...,n}: a) zawiera 1; b) ma parzysta liczbę elementów? 6. W przestrzeni danych jest 10 płaszczyzn w położeniu ogólnym (tzn. żadne dwie nie są równoległe, żadne trzy nie zawierają wspólnej prostej itd.). Ile prostych i ile punktów wyznaczają te płaszczyzny? 7. Ile trójkątów wyznacza 12 punktów, jeżeli: a) żadne trzy nie są współliniowe; b) 5 leży na prostej, a poza tym żadne trzy nie sa wspólliniowe? 8. Na ile sposobów można rozdać 52 karty pomiędzy 4 graczy, po 13 kart każdemu: a) bez dodatkowych warunków; b) tak, aby każdy miał po jednym sie, jednym królu itd.? c) aby jeden z graczy miał wszystkie karty w jednym kolorze. 9. Znajdź liczbę rozwiązań równania x 1 +x x 8 = n: a) w liczbach całkowitych nieujemnych dla n = 20; b) w liczbach całkowitych dodatnich dla n = 8, 9 i n = 20.
Lista 1 - Rachunek zdań i reguły wnioskowania
Lista 1 - Rachunek zdań i reguły wnioskowania 1. Każda karta z jednej strony jest czerwona albo niebieska, z drugiej zaś ma narysowane kółko albo trójkąt. Na stole widzimy cztery takie karty, widoczna
Lista 0 - Okolice rachunku zdań
Lista 0 - Okolice rachunku zdań 1. W używanym obecnie kalendarzu gregoriańskim rok jest przestępny, gdy dzieli się przez 4, lecz nie dzieli się przez 100, chyba, że dzieli się przez 400. Niech p oznacza
Lista 1 - Rachunek zdań i reguły wnioskowania
Lista 1 - Rachunek zdań i reguły wnioskowania 1. W używanym obecnie kalendarzu gregoriańskim rok jest przestępny, gdy dzieli się przez 4, lecz nie dzieli się przez 100, chyba, że dzieli się przez 400.
Pytania i polecenia podstawowe
Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:
Lista zadań - Relacje
MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,
1 Rachunek zdań, podstawowe funk tory logiczne
1 Rachunek zdań, podstawowe funk tory logiczne 1.1 Zapisz symbolicznie następujące stwierdzenia i Jeśli z tego, że Paweł gra w palanta wynika to, że Robert jeździ na rowerze, to z tego, że Robert nie gra
1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.
Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.
1 Rachunek zdań, podstawowe funktory logiczne
1 Rachunek zdań, podstawowe funktory logiczne 1.1 Pokaż, że dla dowolnych zmiennych zdaniowych p, q, r poniższe formuły są tautologiami a p p p b q q q c p p p p d p q r p q p r e p q r p q p r f p q p
Wstęp do matematyki listy zadań
Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki
W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się
1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I
IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:
1. Funkcje monotoniczne, wahanie funkcji.
1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.
Egzamin z logiki i teorii mnogości, rozwiązania zadań
Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?
Wstęp do Logiki i Struktur Formalnych Lista zadań
Wstęp do Logiki i Struktur Formalnych Lista zadań Jacek Cichoń Politechnika Wrocławska, WPPT Wrocław 2018 G1: Rachunek Zdań Które z następujących zdania są tautologiami: 1. (p (q r)) ((p q) (p r) 2. ((p
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Relacje. opracował Maciej Grzesiak. 17 października 2011
Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla
Elementy logiki. Zdania proste i złożone
Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie
(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];
Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +
Równoliczność zbiorów
Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność
1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.
Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i
Funkcja kwadratowa. f(x) = ax 2 + bx + c = a
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.
ELiTM 0 Indukcja Dany jest ciąg a 0 R, a n = a n 1. Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą.
ELiTM 0 Indukcja Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą. Zasada indukcji Jeżeli (1) istnieje n 0 N takie że T (n 0 ) jest prawdziwe; (2) z faktu, że T (n) jest
0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.
Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek
Indukcja matematyczna. Zasada minimum. Zastosowania.
Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór
Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),
Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości
Elementy logiki i teorii mnogości
Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje
domykanie relacji, relacja równoważności, rozkłady zbiorów
1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
LOGIKA I TEORIA ZBIORÓW
LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja
Elementy logiki matematycznej
Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w
Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski
Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),
1 Podstawowe oznaczenia
Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.
Relacje. 1 Iloczyn kartezjański. 2 Własności relacji
Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):
Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A
Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.
Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.
Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność
Wykład ze Wstępu do Logiki i Teorii Mnogości
Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje
1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14
Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10
Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1
Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'
Zadania do Rozdziału X
Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,
Zbiory, relacje i funkcje
Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
Roger Bacon Def. Def. Def. Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
Jarosław Wróblewski Matematyka Elementarna, zima 2012/13
Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log
Funkcja kwadratowa. f(x) = ax 2 + bx + c,
Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/2011
dr Przemysław Szczepaniak ZDANIA WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/2011 1. Udowodnij prawa rachunku zdań poznane na wykładzie. 2. Sprawdź, które z poniższych zdań są
III. Funkcje rzeczywiste
. Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.
I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne
Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.
Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568
Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch
IVa. Relacje - abstrakcyjne własności
IVa. Relacje - abstrakcyjne własności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny wiva. Krakowie) Relacje - abstrakcyjne własności 1 / 22 1 Zwrotność
Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM
Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie
Roger Bacon Def. Def. Def Funktory zdaniotwórcze
Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym
FUNKCJE. 1. Podstawowe definicje
FUNKCJE. Podstawowe definicje DEFINICJA. Funkcja f odwzorowującą zbiór X w zbiór Y (inaczej f : X Y ) nazywamy takie przyporządkowanie, które każdemu elementowi x X przyporządkowuje dokładnie jeden element
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń
Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.
10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.
Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
Matematyka dyskretna. 1. Relacje
Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze
1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:
1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów
Podstawowe struktury algebraiczne
Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.
Podstawy logiki i teorii zbiorów Ćwiczenia
Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
Logika i teoria mnogości Ćwiczenia
Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.
Teoria automatów i języków formalnych. Określenie relacji
Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego
Rozdział 7 Relacje równoważności
Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
Test kwalifikacyjny na I Warsztaty Matematyczne
Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja
Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.
Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością
Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.
Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych
1 Funktory i kwantyfikatory
Logika, relacje v07 egzamin mgr inf niestacj 1 1 Funktory i kwantyfikatory x X x X Φ(x) dla każdego x X (= dla wszystkich x) zachodzi formuła Φ(x) Φ(x) istnieje x X takie, że (= dla pewnego x) zachodzi
Lista 1 (elementy logiki)
Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły
Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
Zadania z analizy matematycznej - sem. I Liczby i funkcje
Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.
Elementy teorii mnogości. II 1 Elementy teorii mnogości Część II Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości.
Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje
Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.put.poznan.pl/ maciej.grzesiak Konsultacje: poniedziałek, 8.45-9.30, środa 8.45-9.30, piątek 9.45-10.30, pokój 724E Treść
LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:
LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.
postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n
Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:
Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27
Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze
Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie
Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16
Zbiory, funkcje i ich własności XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory Zbiory ograniczone, kresy Zbiory ograniczone, min, max, sup, inf Zbiory ograniczone 1 Zbiór X R jest
Wykłady z Matematyki Dyskretnej
Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje
Logika Matematyczna 16 17
Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
RELACJE I ODWZOROWANIA
RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.
Zestaw zadań dotyczących liczb całkowitych
V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.