Lista 1 - Rachunek zdań i reguły wnioskowania

Wielkość: px
Rozpocząć pokaz od strony:

Download "Lista 1 - Rachunek zdań i reguły wnioskowania"

Transkrypt

1 Lista 1 - Rachunek zdań i reguły wnioskowania 1. Każda karta z jednej strony jest czerwona albo niebieska, z drugiej zaś ma narysowane kółko albo trójkąt. Na stole widzimy cztery takie karty, widoczna strona jest w nich kolejno czerwona, niebieska, trójkątem i kółkiem. Jacek twierdzi, że karty niebieskie mają na odwrocie kółko. Które karty Placek musi odwrócić, aby sprawdzić, czy Jacek mówi prawdę? 2. Zbadaj, które z poniższych formuł są tautologiami: a) (p p) p; b) p ( p q); c) (p q) [( p) ( q)]; d) (p q) (p q); e) (p q) [ p) ( q)]; f) (p q) [( p) ( q)]; g) [(p (q r)] [(p q) (p r)]; h) [(p q) r] [p (q r)]; i) [p (q r)] [(p q) (p r)]; j) [p (q r)] [( (p q) (p r)]; k) [p (q r)] [( q r) p]; l) [(p q) r)] [( p (q r)]. 3. Przyjmijmy, że gdy Jacek chrapie, to Agata śni. Które z poniższych zdań są prawdziwe przy tym założeniu? a) Gdy Agatka nie śni, to Jacek nie chrapie. b) Gdy Jacek nie chrapie, to Agatka nie śni. c) Gdy Agatka śni, to Jacek chrapie. d) Jacek nie chrapie lub Agatka śni. e) Nie jest możliwe, aby Jacek chrapał, a Agatka nie śniła. 4. Zapisz formułę korzystając wyłącznie ze wskazanych spójników: a) p q za pomocą koniunkcji i negacji; b) p q za pomocą alternatywy i negacji; c) p q za pomocą implikacji i negacji; d) p q za pomocą implikacji i negacji; 5. Zapisz za pomocą alternatywy, koniunkcji i negacji spójnik albo (alternatywę wykluczającą). 6. Zapisz formułę: p 1 (p 2 (p 3... (p n q))...) używając znak implikacji: a) tylko raz; b) ani razu. 7. Spójnik Pierce a (operator NOR) jest zdefiniowany wzorem (p q) (( p) ( q)). Kreska Sheffera, (operator NAND) jest zdefiniowana wzorem p q (( p) (( q)). Wyraź: a) alternatywę, implikację oraz równoważność za pomocą negacji oraz koniunkcji; b) koniunkcję, implikację oraz równoważność za pomocą negacji oraz alternatywy; c) negację, koniunkcję, alternatywę oraz implikację za pomocą spójnika Pierce a. d) negację, koniunkcję, alternatywę oraz implikację za pomocą kreski Sheffera. 8. Przyjmijmy oznaczenia: N p negacja p, Cpq implikacja, Apq alternatywa, Kpq koniunkcja, Epq równoważność. System ten (tzw. notacja polska) pozwala zapisywać formuły rachunku zdań bez użycia nawiasów. a) Zapisz w zwykłej notacji KCpNqp. b) Zapisz w notacji polskiej zasady sprzeczności i wyłączonego środka oraz prawa de Morgana.

2 9. Zbadaj, czy poniższe schematy wnioskowania są poprawne: ( p) q, p (p q) r, q p (q r), r a) ; b) ; c) ; q p r p q p q, ( p) q (p q) r, q p q,p ( q) d) ; e) : f). q p r p 10. Zbadaj poprawność każdego z poniższych wnioskowań. Jeżeli jest poprawne, daj pełne wyprowadzenie ze wskazaniem stosowanych reguł wnioskowania. Jeżeli jest niepoprawne, wyjaśnij dlaczego. a) Jeśli płyta jest głośna lub monotonna, to nie jest długa. Płyta jest monotonna. Wniosek: Płyta nie jest długa. b) Jeśli Rybin jest nudny, to trudno go znaleźć. Jeżeli Rybin nie jest mały, to nietrudno go znaleźć. Rybin jest nudny. Wniosek: Rybin jest mały. c) Nieprawda, ze Franek gra zarówno na gitarze jak i na flecie. Jeżeli Franek nie gra ani na gitarze, ani na flecie, to gra na organach i na harfie. Jeżeli gra na harfie, to gra na organach. Wniosek: Franek gra na organach. UWAGA! d) Jeżeli napadniesz na bank, trafisz do więzienia. Jeśli trafisz do więzienia, nie spędzisz czasu miło. Jeśli wyjedziesz na wakacje, to spędzisz czas miło. Napadasz na bank lub jedziesz na wakacje. Wniosek: Trafisz do więzienia lub spędzisz miło czas. e) Jeśli Jones nie spotkał tej nocy Smitha, to Smith jest mordercą lub Jones kłamie. Jeżeli Smith nie jest mordercą, to Jones nie spotkał tej nocy Smitha i morderstwo nastąpiło po północy. Jeżeli morderstwo miało miejsce po północy, to Smith jest mordercą lub Jones kłamie. Wniosek: Smith jest mordercą.uwaga! 11. Zbadaj, czy podany zestaw informacji jest niesprzeczny: a) Jeśli wieczór nudny, to Ala płacze lub Anatol opowiada śmieszne historie. Jeżeli wieczorem zjawia się Sylwester, to wieczór jest nudny lub Ala płacze. Jeżeli Anatol opowiada śmieszne historie, to Ala nie płacze. Sylwester zjawia się wieczorem wtedy i tylko wtedy, gdy Anatol nie opowiada śmiesznych historii. Jeśli Ala płacze, to Anatol opowiada śmieszne historie. b) Jeżeli kurs papierów wartościowych rośnie lub stopa procentowa maleje, to ceny akcji spadają lub podatki nie rosną. Ceny akcji spadają wtedy i tylko wtedy, gdy idzie w górę kurs papierów wartościowych i rosną podatki. Jeżeli stopa procentowa maleje, to ceny akcji nie spadają lub kurs papierów wartościowych nie rośnie. Podatki rosną lub (druga mażliwość) ceny akcji maleją i maleje stopa procentowa. 12. W czasie kampanii wyborczej panowie Alfa, Beta i Gamma złożyli oświadczenia: Alfa: Beta zawsze kłamie. Beta: Gamma zawsze kłamie. Gamma: Alfa zawsze kłamie. Uzasadnij, że przynajmniej dwa z tych oświadczeń są fałszywe. 13. W czasie kampanii wyborczej panowie Alfa, Beta, Gamma i Delta złożyli następujące oświadczenia: Alfa: Beta zawsze kłamie. Beta: Gamma przynajmniej czasem mówi prawdę. Gamma: Delta przynajmniej czasem kłamie. Delta: Alfa zawsze mówi prawdę. Wykaż, że dokładnie dwa z tych zdań są prawdziwe.

3 Lista 2 - Kwantyfikatory 1. Niech d(x,y) oznacza x jest dzieckiem y, m(x) x jest mężczyzną. Zapisz formuły: a) x jest bratem y; b) x jest dziadkiem y; c) x jest stryjkiem y; d) x oraz y są przyrodnim rodzeństwem. 2. Przyjmijmy, że w języki arytmetyki liczb naturalnych mamy stałe 0, 1, 2,... oraz symbole + i. Zapisz w tym języku: a) n jest liczbą parzystą; b) m > n; c) n jest liczbą złożoną; d) n jest liczba pierwszą; e) każda liczba parzysta większa od 2 jest sumą dwu liczb pierwszych (hipoteza Goldbacha); f) istnieje nieskończenie wiele liczb pierwszych. 3. Kwantyfikatory ograniczone określamy wzorami x A P(x) x(x A P(x)), x A P(x) x(x A P(x)). Sformułuj i udowodnij prawa de Morgana dla kwantyfikatorów ograniczonych. 4. Wykaż, że nie zachodzi wynikanie: a) x(a(x) B(x)) ( xa(x) xb(x)); b) ( xa(x) xb(x)) x(a(x) B(x)); c) x yr(x, y) y xr(x, y); d) [ xa(x) xb(x))] [ x(a(x) B(x))]. 5. Wykaż, wskazując odpowiedni kontrprzykład, że reguła wnioskowania x(p(x) Q(x)), xm(x) x(p(x) M(x)) jest błędna. Uzupełnij komentarze przy przejściach poprawnych i wskaż błąd (błędy) w poniższym dowodzie poprawności tej reguły: 1. x(p(x) Q(x)) 2. xm(x) 3. P(a) Q(a) 4. P(a) 5. M(a) 6. P(a) M(a) 7. (P(x) M(x). 6. Wyprowadź poniższe reguły wnioskowania: x(p(x) Q(x)), x(p(x) M(x)) a) ; x(q(x) M(x) b) c) x((a(x) (R(x)) T(x)), x(t(x) P(x)), x(a(x) P(x)) ; xr(x) x(r(x) C(x)), x(t(x) R(x)). x( C(x) T(x)) 7. Wiadomo, że: a) jeżeli wielkie twierdzenie Fermata jest fałszywe, to krzywa Freya nie jest modularna; b) krzywa Freya jest krzywą eliptyczną; c) każda krzywa eliptyczna jest modularna. Wywnioskuj z tych przesłanek, że wielkie twierdzenie Fermata jest prawdziwe. Wskaż wykorzystywane reguły wnioskowania. Zauważ, że nie musisz rozumieć żadnego z terminów! 8. Przyjmijmy, że zakresem zmienności wszystkich zmiennych są liczby naturalne. Niech k l oznacza k dzieli l. Wykaż, że za pomocą 0, 1, + oraz można zdefiniować predykat z = xy. Wsk.: Zdefiniuj najpierw predykat y(x = y 2 ). Przydadzą się tożsamości: (x + y) 2 = x 2 + xy + xy + y 2 ; NWD(x,x + 1) = 1 oraz x 2 + x = NWW(x,x + 1), gdzie NWD oznacza największy wspólny dzielnik, NWW najmniejszą wspólną wielokrotność.

4 Lista ekstra e = 2, Typowe techniki dowodzenia Poniższe zadania pokazują charakter zadań, jakie mogą pojawić się na I minikolokwium w charakterze zadań na redagowanie dowodów. Nie są przeznaczone do rozwiazywania na ćwiczeniach. Niestety, czasem wymagana jest samodzielność! 1. Wykaż, że: a) suma dwu liczb nieparzystych jest parzysta; b) jeżeli iloczyn dwu liczb całkowitych jest parzysty, to przynajmniej jeden z czynników jest parzysty. 2. Wykaż, że: a) suma trzech kolejnych liczb naturalnych dzieli się przez 3; b) iloczyn trzech kolejnych liczb naturalnych dzieli sie przez Czy prawdą jest, że: a) iloczyn trzech kolejnych liczb naturalnych dzieli się przez 8; b) iloczyn czterech kolejnych liczb naturalnych dzieli się przez 24; c) pośród trzech kolejnych nieparzystych liczb naturalnych występuje liczba złożona; d) suma trzech liczb pierwszych jest liczbą złożoną; e) suma dwu sześcianów różnych dodatnich liczb naturalnych jest liczbą złożoną. Odpowiedź dokładnie uzasadnij, dając krótkie rozumowanie bądź kontrprzykład. 4. Podaj kontrprzykłady dla ponizszych zdań: a) kwadrat liczby niewymiernej jest liczba niewymierną; b) suma liczb niewymiernych jest liczbą niewymierną; c) iloczyn liczby niewymiernej przez liczbe wymierną jest liczba niewymierną. 5. Wiadomo, że dla liczby naturalnej n jest liczbą wymierną wtedy i tylko wtedy, gdy n jest kwadratem liczby naturalnej. Korzystając z tego faktu wykaż, że liczbami niewymiernymi są: a) 2 3; b) 1+ 5; c) 2+ 3; d) 4 2. Możesz korzystać z faktu, że suma, różnica i iloczyn liczb wymiernych jest liczba wymierną. 6. Korzystając z zasady indukcji matematycznej wykaż, że: a) n = 3n+1 1 ; 2 b) 7 n 1 dzieli się przez 6; c) dla n N zachodzi nierówność 4 n > n Wiadomo, że liczby e oraz π są niewymierne. Wywnioskuj stąd, że któraś z liczb e+π lub e π jest niewymierna. Czy wiadomo która?

5 Lista 3 - Rachunek zbiorów 1. Czy dla dowolnych zbiorów A,B i C prawdziwe są następujące równości: a) A (B C) = (A B) C; b) (A B) B = (A B) B; c) A (B C) = (A B) C; d)a (B C) = (A B) (A C); e) A (B C) = (A B) (A C); f) (A\B)\C = A\(B \C); g) (A\B) C = (A C)\(B C); h) (A\B) C = (A C)\(B C); i) (A B) C = (A C) (B C); j) (A B) C = (A C) (B C); k) (A B) C = (A C) (B C); l) (A B) C = (A C) (B C)? Uzasadniając odpowiedź pozytywną wskazuj, przy których przejściach korzystasz z definicji, a przy których z praw rachunku zdań (jakich?). 2. Czy dla dowolnych zbiorów A,B,C i D prawdziwe są następujące zdania: a) (A B) (B C) A C; b) (A B) (A\C B \C); c) (A C) (B C) A B C; d) (A B) (A C) A B C; e) (A B) (C D) A C B D; f) (A B) (C D) A C B D? 3. Wykaż, że A B = B A wtedy i tylko wtedy, gdy A = B lub A = lub B =. 4. Znajdź sumę n=0 oraz iloczyn n=0 dla poniższych rodzin zbiorów: a) A n = [n, ); b) B n = (0,1/n); c) C n = [0,1 1/n]; d) A n = ( n,1/(n+2)). 5. Znajdź sumę t T oraz iloczyn t T dla poniższych rodzin zbiorów: a) A t = (,t], T = R + ; b) B t = R\{t}, T = Q; c) C t = [t,1] [0,t], T = (0,1). 6. Które z ponizszych ciągów są elementami n=0 A n, gdzie A n = (n, ): a) a n = 1; b) b n = n+1; c) c n = 2n; d) d n = n 2 +1; e) e n = n+1+sinn? 7. Które z poniższych funkcji są elementami t R A t, gdzie A t = [0, 1+ t ]: a) a(t) = 1; b) b(t) = t ; c) c(t) = sint; d) d(t) = t 2 ; e) e(t) = t 1?

6 Lista 4 - Funkcje 1. Dla funkcji f : R R znajdź f(a), f 1 (f(a)), f 1 (C), f(f 1 (C)): a) f(x) = e x, A = (0, ), C = [0,1]; ZMIENIC! b) f(x) = sinx, A = [0,π/2], C = {1}; c) f(x) = lnx, A = (0,1], C = [0,1]; d) f(x) = x +1, A = [ 1,2], C = R. 2. Niech f : R 2 R 2 będzie funkcją zadaną wzorem f((x,y)) = (x+y,x y). a) Czy odwzorowanie f jest injekcją? b) Czy f jest surjekcją? c) Znajdźf(R {0}), f(l) orazf 1 (L), gdzieljest prostą zadaną równaniemy = x Dla funkcji f(x) = x 2 oraz A = [ 2,0], B = [0,2] wyznacz: a) f(a B), f(a) f(b); b) f(a B), f(a) f(b); c) f(a\b), f(a)\f(b). 4. Niech f : X Y, A,B X, C Y. Wykaż, że a) f(a B) f(a) f(b); b) f(a)\f(b) f(a\b); c) A f 1 (f(a)); d) f(f 1 (C)) C. 5. Wykaż, że przy dodatkowym założeniu (typu f jest różnowartościowa lub f jest na ) każdą z inkluzji w poprzednim zadaniu można zastąpić równością. 6. Niech f : X Y, g : Y X. Wykaż, że: a) jeżeli g f = id X, to f jest injekcją; b) jeżeli f g = id Y, to f jest surjekcją. 7. Inwolucją nazywamy taką funkcję f : X X, że f f jest identycznością. Wykaż, że każda inwolucja jest bijekcją. Podaj przykłady nieidentycznościowych inwolucji w algebrze i geometrii. 8. Inwersją względem okręgu x 2 +y 2 = 1 o środku O = (0,0) nazywamy przekształcenie, które punktowi P O przyporządkowuje punkt P leżący na półprostej OP, taki że OP OP = 1. a) Uzasadnij, że inwersja jest inwolucją na R 2 \{O}. b)* Znajdź obraz i przeciwobraz prostej x = 1/2 przez inwersję.

7 Lista 5 - Pojęcie relacji i relacje porządku 1. Wypisz wszystkie elementy relacji: a) podzielności na zbiorze {1, 2, 3, 4, 5}; b) relacji x < y < z na {1,2,3,4,5}. 2. Z ilu elementów składa się: a) relacja x < y na zbiorze {1,2,...,n}; b) relacja x+y = z na zbiorze {0,1,2,...,n}? 3. Ile jest relacji: a) zwrotnych na zbiorze {1,2,...,n}; b) symetrycznych na zbiorze {1,2,...,n}; c) słabo antysymetrycznych na zbiorze {1,2,...,n}? 4. Rozważmy trzy własności relacji: zwrotność, symetryczność i przechodniość. Podaj przykłady relacji mających: a) zwrotnej, symetrycznej, ale nieprzechodniej; b) zwrotnej, przechodniej, ale niesymetrycznej; c) tylko zwrotnej; d) tylko symetrycznej; e) tylko przechodniej. 5. Poniższe rozumowanie dowodzi, że każda relacja symetryczna i przechodnia jest zwrotna. Weźmy dowolne a. Niech b dowolne a takie, że arb. Z symetrii wynika, że bra, a skoro arb i bra, to z przechodniości wynika, ze ara. Gdzie tkwi błąd? Podaj przykład relacji symetrycznej, przechodniej, ale niezwrotnej. 6. Niech R = {(n,n+1) : n N}. Wyznacz najmniejszą relację przechodnią na zbiorze N zawierającą relację R. 7. Wykaż, że (N\{0}, ) jest częściowym porządkiem. Znajdź w nim element najmniejszy. Znajdź elementy minimalne w częściowym porządku (N\{0,1}, ). 8. Na zbiorze R 2 rozważamy relację zadaną formułą ((x,y) (x y )) (x x ) (y y ). Wykaż, że relacja ta jest częściowym porządkiem. NiechK = {(x,y) R 2 : x 2 +y 2 1}. Wyznacz elementy minimalne zbioru K. Dla ustalonego punktu (a,b) R 2 wyznacz zbiory {(x,y) R 2 : (a,b) (x,y)}, {(x,y) R 2 : (x,y) (a,b)} oraz {(x,y) R 2 : ((a,b) (x,y)) ((x,y) (a,b))}. 9. Rozważamy częściowy porządek ({2,...,30}, ), gdzie oznacza relację podzielności. Ile jest elementów minimalnych oraz ile jest elementów maksymalnych w tym częściowym porządku? 10. Czy poniższe zbiory uporządkowane przez relację podzielności są izomorficzne: a) D(100) i D(36); b) D(24) i D(30). 11. Narysuj diagram Hassego minimalnego porządku, przy którym 1 2, 2 3, 5 4, 4 2, 6 7, 7 3, 7 8, 8 9, 3 0, 9 0. a) Wskaż elementy minimalne, najmniejsze, maksymalne i największe; b) Jakiej liczebności łańcuchy (antyłańcuchy) występują w tym porządku? c) Rozważmy rodzinę niepustych łańcuchów w tym porządku. Ile ma elementów minimalnych, a ile maksymalnych? d) Analogicznie dla rodziny niepustych antyłańcuchów. 12. Zdefiniuj złozenie relacji analogicznie do składania funkcji. Niech R = {(x,y) R 2 : x = y } oraz Q = {(x,y) R 2 : y = sin(x)}. Narysuj wykres relacji R Q oraz Q R. 13. Wykaż twierdzenie Spernera: Każdy antyłańcuch w rodzinie podzbiorów zbioru n- elementowego ma co najwyżej ( n n/2 ) elementów.

8 Lista 6 - Relacje równoważności i podziały 1. Wykaż, że następujące relacje są relacjami równoważności na zbiorze X i wyznacz ich klasy abstrakcji oraz przestrzenie ilorazowe X/ : a) X = N 2 ; (x,y) (a,b) x+y = a+b, b) X = N 2 ; (x,y) (a,b) max{x,y} = max{a,b}, c) X = R; x y ( t 0)(tx = y), d) X = R; x y ( t > 0)(tx = y), e) X = R 2 ; x y ( t 0)(tx = y), f) X = R 2 ; x y ( t > 0)(tx = y). 2. Czy jest relacją równoważności na zbiorze liczb całkowitych: a) liczby x, y sa w relacji, gdy ich różnica dzieli sie przez 2 lub 3; b) liczby x, y sa w relacji, gdy ich różnica dzieli sie przez 2 lub 4? 3. Na zbiorze liczb całkowitych Z określamy relacje x y 3 (x + 2y) oraz x y 5 x 2 y 2. Czy są to relacje równoważności? 4. Dla (x 1,x 2 ),(y 1,y 2 ) [0,1] 2 określamy relację (x 1,x 2 ) (y 1,y 2 ) u(x 1 ) = u(y 1 ) u(x 2 ) = u(y 2 ), gdzie u(x) = x x. Wykaż, że jest relacją równoważności. Wyznacz jej klasy abstrakcji. 5. Ile jest: a) relacji równoważności na zbiorze {1,2,3}; b) podziałów zbioru {1,2,3,4}; c) relacji równoważności na zbiorze czteroelementowym? 6. Opisz klasy abstrakcji relacji na zbiorze liczb rzeczywistych R zadanej formułą x y (x y Z). 7. Na zbiorze N N określamy relacją równoważności formułą (x,y) (x,y ) max{x,y} = max{x,y }. Ile elementów ma klasa abstrakcji [(0,20)]? 8. Na o promieniu 1 określamy relację: punkt A jest w relacji z punktem B, jeżeli A = B lub ich odległość wynosi d. a) Dla jakich d relacja ta jest relacją równoważności? b) Jak wyglądają wówczas klasy abstrakcji? c) Rozwiąż analogiczne zadanie dla sfery. 9. Wykaż, że jeśli i η są relacjami równoważności na zbiorze Ω, to również η jest relacją równoważności na zbiorze Ω. 10. Na zbiorze N N określamy relację (a,b) (c,d) (a + d = b + c). Wykaż, że jest to relacja równoważności. Pokaż, że jej klasy abstrakcji można w naturalny sposób ponumerować liczbami całkowitymi, tzn. istnieje (naturalna) bijekcja ze zbioru Z na zbiór tych klas abstrakcji. 11. Na zbiorze Z N + określamy relację (a,b) (c,d) (ad = bc). Wykaż, że jest to relacja równoważności. Jej klasy abstrakcji można w naturalny sposób ponumerować pewnymi liczbami. Jakimi?

9 Lista 7 - Równoliczność i liczby kardynalne 1. Znajdź bijekcję pomiędzy następującymi parami zbiorów: a) (0,1) i (2,5); b) (a,b) i (c,d); c) (0, ) i R; d) ( π/2,π/2) i R; e) (0,2) i R; f) (1, i R; g) (1, ) i (2, ); h) [0,1] i [0,1). 2. Punktem kratowym płaszczyzny nazywamy punkt o obu współrzędnych całkowitych. Pokaż, jak ustawić w ciąg wszystkie punkty kratowe płaszczyzny. 3. Czy jest zbiorem przeliczalnym zbiór: a) funkcji liniowych o współczynnikach całkowitych; b) funkcji stałych f : R R; c) funkcji f : N {0, 1} stałych od pewnego miejsca? 4. Czy jest zbiorem przeliczalnym zbiór okręgów o środku w punkcie kratowym: a) i promieniu całkowitym; b) zawierających pewien punkt kratowy? 5. Jaka jest moc zbioru punktów płaszczyzny: a) o obu współrzędnych wymiernych; b) takich, że przynajmniej jedna współrzędna jest wymierna? 6. Wykaż, że dowolna rodzina parami rozłącznych otwartych przedziałów liczb rzeczywistych jest przeliczalna. 7. Wykaż, że dowolna rodzina parami rozłącznych niepustych kół na płaszczyźnie jest przeliczalna. Czy dowolna rodzina parami rozłącznych niepustych okręgów na płaszczyźnie jest przeliczalna? 8. Znajdź moc zbioru: a) funkcji f : R N; b) funkcji f : R R; c) funkcji f : N R; d) relacji trójargumentowych na R. Wynik podaj w formie ℵ 0, c lub 2 do odpowiedniej potęgi. 9. Jaka jest moc zbioru wszystkich ciągów zbieżnych do zera o wyrazach: a) rzeczywistych; b) całkowitych? 10. Wykaż, że zbiór wszystkich permutacji zbioru N (czyli bijekcji f : N N) jest mocy continuum. 11. Znajdź moc zbioru wszystkich permutacji zbioru R. 12. Jaka może być moc zbioru A\B jeśli A i B, jeżeli są one zbiorami mocy: a) ℵ 0 ; b) c? 13. Ile można narysować na płaszczyźnie parami rozłącznych liter: a) L; b) T? 14. Niech A będzie zbiorem powstałym z płaszczyzny przez usunięcie przeliczalnie wielu punktów. Wykaż, że każde dwa punkty tego zbioru można połączyć: a) łamaną w nim zawartą; b) łukiem okręgu w nim zawartym.

10 Lista 8 -Lemat Kuratowskiego-Zorna 1. Wykaż, że pośród podzbiorów płaszczyzny nie zawierających wierzchołków kwadratu istnieje maksymalny. A pośród podzbiorów płaszczyzny zawierających wierzchołki kwadratu? 2. Spróbuj wykazać, że pośród podzbiorów płaszczyzny nie zawierających żadnego okręgu istnieje maksymalny. W którym miejscu schematyczne zastosowanie lematu Kuratowskiego-Zorna zawodzi? Lista 9 (MiS) -Arytmetyka kardynalna - c.d. 1. Znajdź moc zbioru: a) {X N : X < ℵ 0 }; b) {X N : X = ℵ 0 }; c) {X R : X < ℵ 0 }; d) {X R : X = ℵ 0 }. 2. Znajdź moc zbioru wszystkich funkcji z liczb rzeczywistych w liczby rzeczywiste nieciągłych choćby w jednym punkcie. 3. Niech f : R R będzie funkcją monotoniczną. Wykaż, że zbiór punktów nieciągłości funkcji f jest przeliczalny. 4. Niech {f n : n N} będzie dowolną rodziną funkcji ze zbioru N N. Znajdź taką funkcję g N N, że ( n)( k)(f n (k) < g(k)). Lista 9 (MS) - Kombinatoryka 1. Ile jest numerów rejestracyjnych postaci trzyliterowe słowo - układ czterech cyfr, przy założeniu, że alfabet ma 26 liter? 2. W ilu permutacjach zbioru {1,2,...,n}, gdzie n 2: a) 1 poprzedza 2; b) 1 stoi obok 2; c) 1 jest bezpośrednim poprzednikiem 2? 3. Na ile sposobów można utworzyć 10 par tanecznych spośród: a) 10 pań i 10 panów; b) 10 pań i 15 panów; c) 12 pań i 15 panów? 4. Znajdź liczbę ciągów długości n o wyrazach A, C, G, T takich, że a) wyrazy sąsiednie są różne; b) pośród dowolnych czterech kolejnych wyrazów występują wszystkie cztery litery. 5. Ile spośród podzbiorów zbioru {1,2,...,n}: a) zawiera 1; b) ma parzysta liczbę elementów? 6. W przestrzeni danych jest 10 płaszczyzn w położeniu ogólnym (tzn. żadne dwie nie są równoległe, żadne trzy nie zawierają wspólnej prostej itd.). Ile prostych i ile punktów wyznaczają te płaszczyzny? 7. Ile trójkątów wyznacza 12 punktów, jeżeli: a) żadne trzy nie są współliniowe; b) 5 leży na prostej, a poza tym żadne trzy nie sa wspólliniowe? 8. Na ile sposobów można rozdać 52 karty pomiędzy 4 graczy, po 13 kart każdemu: a) bez dodatkowych warunków; b) tak, aby każdy miał po jednym sie, jednym królu itd.? c) aby jeden z graczy miał wszystkie karty w jednym kolorze. 9. Znajdź liczbę rozwiązań równania x 1 +x x 8 = n: a) w liczbach całkowitych nieujemnych dla n = 20; b) w liczbach całkowitych dodatnich dla n = 8, 9 i n = 20.

Lista 1 - Rachunek zdań i reguły wnioskowania

Lista 1 - Rachunek zdań i reguły wnioskowania Lista 1 - Rachunek zdań i reguły wnioskowania 1. Każda karta z jednej strony jest czerwona albo niebieska, z drugiej zaś ma narysowane kółko albo trójkąt. Na stole widzimy cztery takie karty, widoczna

Bardziej szczegółowo

Lista 0 - Okolice rachunku zdań

Lista 0 - Okolice rachunku zdań Lista 0 - Okolice rachunku zdań 1. W używanym obecnie kalendarzu gregoriańskim rok jest przestępny, gdy dzieli się przez 4, lecz nie dzieli się przez 100, chyba, że dzieli się przez 400. Niech p oznacza

Bardziej szczegółowo

Lista 1 - Rachunek zdań i reguły wnioskowania

Lista 1 - Rachunek zdań i reguły wnioskowania Lista 1 - Rachunek zdań i reguły wnioskowania 1. W używanym obecnie kalendarzu gregoriańskim rok jest przestępny, gdy dzieli się przez 4, lecz nie dzieli się przez 100, chyba, że dzieli się przez 400.

Bardziej szczegółowo

Pytania i polecenia podstawowe

Pytania i polecenia podstawowe Pytania i polecenia podstawowe Liczby zespolone a) 2 i 1 + 2i 1 + 2i 3 + 4i, c) 1 i 2 + i a) 4 + 3i (2 i) 2, c) 1 3i a) i 111 (1 + i) 100, c) ( 3 i) 100 Czy dla dowolnych liczb z 1, z 2 C zachodzi równość:

Bardziej szczegółowo

Lista zadań - Relacje

Lista zadań - Relacje MATEMATYKA DYSKRETNA Lista zadań - Relacje Zadania obliczeniowe Zad. 1. Która z poniższych relacji jest funkcją? a) Relacja składająca się ze wszystkich par uporządkowanych, których poprzednikami są studenci,

Bardziej szczegółowo

1 Rachunek zdań, podstawowe funk tory logiczne

1 Rachunek zdań, podstawowe funk tory logiczne 1 Rachunek zdań, podstawowe funk tory logiczne 1.1 Zapisz symbolicznie następujące stwierdzenia i Jeśli z tego, że Paweł gra w palanta wynika to, że Robert jeździ na rowerze, to z tego, że Robert nie gra

Bardziej szczegółowo

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3.

1 Logika (3h) 1.1 Funkcje logiczne. 1.2 Kwantyfikatory. 1. Udowodnij prawa logiczne: 5. (p q) (p q) 6. ((p q) r) (p (q r)) 3. Logika (3h). Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( p q) 3. (p q) ( q p) 4. (p q) ( p q) 5. (p q) (p q) 6. ((p q) r) (p (q r)) 7. (p q) r (p r) (q r) 8. (p q) (q r) (p r). Sprawdź, czy wyrażenia:.

Bardziej szczegółowo

1 Rachunek zdań, podstawowe funktory logiczne

1 Rachunek zdań, podstawowe funktory logiczne 1 Rachunek zdań, podstawowe funktory logiczne 1.1 Pokaż, że dla dowolnych zmiennych zdaniowych p, q, r poniższe formuły są tautologiami a p p p b q q q c p p p p d p q r p q p r e p q r p q p r f p q p

Bardziej szczegółowo

Wstęp do matematyki listy zadań

Wstęp do matematyki listy zadań Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu w dziedzinach matematyczno-przyrodniczych realizowany w ramach Poddziałania 4.1.1 Programu Operacyjnego Kapitał Ludzki Wstęp do matematyki

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I

IMIĘ NAZWISKO... grupa C... sala Egzamin ELiTM I IMIĘ NAZWISKO............................ grupa C... sala 10... Egzamin ELiTM I 02.02.15 1. 2. 3. 4.. 1. (8 pkt.) Niech X a,b = {(x, y) R 2 : (x b) 2 + (y 1 b )2 a 2 } dla a, b R, a > 0, b 0. Wyznaczyć:

Bardziej szczegółowo

1. Funkcje monotoniczne, wahanie funkcji.

1. Funkcje monotoniczne, wahanie funkcji. 1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Wstęp do Logiki i Struktur Formalnych Lista zadań

Wstęp do Logiki i Struktur Formalnych Lista zadań Wstęp do Logiki i Struktur Formalnych Lista zadań Jacek Cichoń Politechnika Wrocławska, WPPT Wrocław 2018 G1: Rachunek Zdań Które z następujących zdania są tautologiami: 1. (p (q r)) ((p q) (p r) 2. ((p

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

Elementy logiki. Zdania proste i złożone

Elementy logiki. Zdania proste i złożone Elementy logiki Zdania proste i złożone. Jaka jest wartość logiczna następujących zdań: (a) jest dzielnikiem 7 lub suma kątów wewnętrznych w trójkącie jest równa 80. (b) Jeśli sin 0 =, to 5 < 5. (c) Równanie

Bardziej szczegółowo

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)];

(g) (p q) [(p q) p]; (h) p [( p q) ( p q)]; (i) [p ( p q)]; (j) p [( q q) r]; (k) [(p q) (q p)] (p q); (l) [(p q) (r s)] [(p s) (q r)]; Logika 1. Czy następujące sformułowania są zdaniami: (a) Wszystkie koty w Polsce są czarne. (b) Jak to udowodnić? (c) x + y = 7. (d) Jeśli x 2 = y 2, to x = y. (e) Jeśli x = y, to x 2 = y 2. (f) 2 n +

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią.

1 Logika. 1. Udowodnij prawa logiczne: 3. (p q) (p q) 2. (p q) ( q p) 2. Sprawdź, czy wyrażenie ((p q) r) (p (q r)) jest tautologią. Logika. Udowodnij prawa logiczne:. (p q) ( p q). (p q) ( q p) 3. (p q) (p q). Sprawdź czy wyrażenie ((p q) r) (p (q r)) jest tautologią. 3. Zad 3. Sprawdź czy zdanie: Jeżeli liczba a dzieli się przez i

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

ELiTM 0 Indukcja Dany jest ciąg a 0 R, a n = a n 1. Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą.

ELiTM 0 Indukcja Dany jest ciąg a 0 R, a n = a n 1. Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą. ELiTM 0 Indukcja Zasada minimum Każdy niepusty podzbiór liczb naturalnych zawiera liczbę najmniejszą. Zasada indukcji Jeżeli (1) istnieje n 0 N takie że T (n 0 ) jest prawdziwe; (2) z faktu, że T (n) jest

Bardziej szczegółowo

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań.

0.1. Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań. Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej Wykład ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek

Bardziej szczegółowo

Indukcja matematyczna. Zasada minimum. Zastosowania.

Indukcja matematyczna. Zasada minimum. Zastosowania. Indukcja matematyczna. Zasada minimum. Zastosowania. Arkadiusz Męcel Uwagi początkowe W trakcie zajęć przyjęte zostaną następujące oznaczenia: 1. Zbiory liczb: R - zbiór liczb rzeczywistych; Q - zbiór

Bardziej szczegółowo

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie),

Przykłady zdań w matematyce. Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości a, b, c jest prostokątny (a, b, c oznaczają dane liczby dodatnie), Elementy logiki 1 Przykłady zdań w matematyce Zdania prawdziwe: 1 3 + 1 6 = 1 2, 3 6, 2 Q, Jeśli x = 1, to x 2 = 1 (x oznacza daną liczbę rzeczywistą), Jeśli a 2 + b 2 = c 2, to trójkąt o bokach długości

Bardziej szczegółowo

Elementy logiki i teorii mnogości

Elementy logiki i teorii mnogości Elementy logiki i teorii mnogości Zdanie logiczne Zdanie logiczne jest to zdanie oznajmujące, któremu można przypisać określoną wartość logiczną. W logice klasycznej zdania dzielimy na: prawdziwe (przypisujemy

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Algebra zbiorów 3 3 Różnica symetryczna 4 4 Iloczyn kartezjański. Kwantyfikatory. 5 5 Kwantyfikatory. 6 6 Relacje 7 7 Relacje

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Elementy logiki matematycznej

Elementy logiki matematycznej Elementy logiki matematycznej Przedmiotem logiki matematycznej jest badanie tzw. wyrażeń logicznych oraz metod rozumowania i sposobów dowodzenia używanych w matematyce, a także w innych dziedzinach, w

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

1 Podstawowe oznaczenia

1 Podstawowe oznaczenia Poniżej mogą Państwo znaleźć skondensowane wiadomości z wykładu. Należy je traktować jako przegląd pojęć, które pojawiły się na wykładzie. Materiały te nie są w pełni tożsame z tym co pojawia się na wykładzie.

Bardziej szczegółowo

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji

Relacje. 1 Iloczyn kartezjański. 2 Własności relacji Relacje 1 Iloczyn kartezjański W poniższych zadaniach litery a, b, c, d oznaczają elementy zbiorów, a litery A, B, C, D oznaczają zbiory. Przypomnijmy definicję pary uporządkowanej (w sensie Kuratowskiego):

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A

Bardziej szczegółowo

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem.

Zbiory. Specjalnym zbiorem jest zbiór pusty nie zawierajacy żadnych elementów. Oznaczamy go symbolem. Zbiory Pojęcie zbioru jest w matematyce pojęciem pierwotnym, którego nie definiujemy. Gdy a jest elementem należacym do zbioru A to piszemy a A. Stosujemy również oznaczenie a / A jeżeli (a A). Będziemy

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14

1 Logika Zbiory Pewnik wyboru Funkcje Moce zbiorów Relacje... 14 Wstęp do matematyki Matematyka, I rok. Tomasz Połacik Spis treści 1 Logika................................. 1 2 Zbiory................................. 7 3 Pewnik wyboru............................ 10

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1

Matematyka dyskretna. Andrzej Łachwa, UJ, 2017 Zadania 1 Matematyka dyskretna Andrzej Łachwa, UJ, 2017 andrzej.lachwa@uj.edu.pl Zadania 1 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A B C)'

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)

Bardziej szczegółowo

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze

Roger Bacon Def. Def. Def. Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13

Jarosław Wróblewski Matematyka Elementarna, zima 2012/13 Poniedziałek 12 listopada 2012 - zaczynamy od omówienia zadań z kolokwium nr 1. Wtorek 13 listopada 2012 - odbywają się zajęcia czwartkowe. 79. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/2011

WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/2011 dr Przemysław Szczepaniak ZDANIA WstępdoLogikiiTeoriiMnogości 1 Instytut Matematyki i Informatyki 2010/2011 1. Udowodnij prawa rachunku zdań poznane na wykładzie. 2. Sprawdź, które z poniższych zdań są

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych.

I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. I. Podstawowe pojęcia i oznaczenia logiczne i mnogościowe. Elementy teorii liczb rzeczywistych. 1. Elementy logiki matematycznej. 1.1. Rachunek zdań. Definicja 1.1. Zdaniem logicznym nazywamy zdanie gramatyczne

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1.

Jarosław Wróblewski Matematyka Elementarna, lato 2012/13. Czwartek 28 marca zaczynamy od omówienia zadań z kolokwium nr 1. Czwartek 28 marca 2013 - zaczynamy od omówienia zadań z kolokwium nr 1. 122. Uprościć wyrażenia a) 4 2+log 27 b) log 3 2 log 59 c) log 6 2+log 36 9 123. Dla ilu trójek liczb rzeczywistych dodatnich a,

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568 Sprawy organizacyjne Jak można się ze mna skontaktować dr Barbara Przebieracz Bankowa 14, p.568 barbara.przebieracz@us.edu.pl www.math.us.edu.pl/bp 10 wykładów, Zaliczenie wykładu: ocena z wykładu jest

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

IVa. Relacje - abstrakcyjne własności

IVa. Relacje - abstrakcyjne własności IVa. Relacje - abstrakcyjne własności Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny wiva. Krakowie) Relacje - abstrakcyjne własności 1 / 22 1 Zwrotność

Bardziej szczegółowo

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM

Metalogika (1) Jerzy Pogonowski. Uniwersytet Opolski. Zakład Logiki Stosowanej UAM Metalogika (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Uniwersytet Opolski Jerzy Pogonowski (MEG) Metalogika (1) Uniwersytet Opolski 1 / 21 Wstęp Cel: wprowadzenie

Bardziej szczegółowo

Roger Bacon Def. Def. Def Funktory zdaniotwórcze

Roger Bacon Def. Def. Def Funktory zdaniotwórcze Kto lekceważy osiągnięcia matematyki przynosi szkodę całej nauce, ponieważ ten, kto nie zna matematyki, nie może poznad innych nauk ścisłych i nie może poznad świata." Roger Bacon Def. Zdaniem logicznym

Bardziej szczegółowo

FUNKCJE. 1. Podstawowe definicje

FUNKCJE. 1. Podstawowe definicje FUNKCJE. Podstawowe definicje DEFINICJA. Funkcja f odwzorowującą zbiór X w zbiór Y (inaczej f : X Y ) nazywamy takie przyporządkowanie, które każdemu elementowi x X przyporządkowuje dokładnie jeden element

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania

Zadania do samodzielnego rozwiązania Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14

Matematyka dyskretna. Andrzej Łachwa, UJ, B/14 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Kwantyfikatory. 5 6 Relacje 7

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to:

1 Rachunek zdań. w(p) = 0 lub p 0 lub [p] = 0. a jeśli jest fałszywe to: 1 Rachunek zdań Formuły zdaniowe (lub krócej: zdania) w klasycznym rachunku zdań składają się ze zmiennych zdaniowych nazywanych też zdaniami składowymi (oznaczane są zazwyczaj p, q, r,...) oraz operatorów

Bardziej szczegółowo

Podstawowe struktury algebraiczne

Podstawowe struktury algebraiczne Maciej Grzesiak Podstawowe struktury algebraiczne 1. Wprowadzenie Przedmiotem algebry było niegdyś przede wszystkim rozwiązywanie równań. Obecnie algebra staje się coraz bardziej nauką o systemach matematycznych.

Bardziej szczegółowo

Podstawy logiki i teorii zbiorów Ćwiczenia

Podstawy logiki i teorii zbiorów Ćwiczenia Podstawy logiki i teorii zbiorów Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Logika i teoria mnogości Ćwiczenia

Logika i teoria mnogości Ćwiczenia Logika i teoria mnogości Ćwiczenia Spis treści 1 Zdania logiczne i tautologie 1 2 Zdania logiczne i tautologie c.d. 2 3 Algebra zbiorów 3 4 Różnica symetryczna 4 5 Iloczyn kartezjański 5 6 Kwantyfikatory.

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo

Rozdział 7 Relacje równoważności

Rozdział 7 Relacje równoważności Rozdział 7 Relacje równoważności Pojęcie relacji. Załóżmy, że dany jest niepusty zbiór A oraz własność W, którą mogą mieć niektóre elementy zbioru A. Własność W wyznacza pewien podzbiór W A zbioru A, złożony

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2.

Jarosław Wróblewski Matematyka Elementarna, zima 2013/14. Czwartek 21 listopada zaczynamy od omówienia zadań z kolokwium nr 2. Czwartek 21 listopada 2013 - zaczynamy od omówienia zadań z kolokwium nr 2. Uprościć wyrażenia 129. 4 2+log 27 130. log 3 2 log 59 131. log 6 2+log 36 9 log 132. m (mn) log n (mn) dla liczb naturalnych

Bardziej szczegółowo

1 Funktory i kwantyfikatory

1 Funktory i kwantyfikatory Logika, relacje v07 egzamin mgr inf niestacj 1 1 Funktory i kwantyfikatory x X x X Φ(x) dla każdego x X (= dla wszystkich x) zachodzi formuła Φ(x) Φ(x) istnieje x X takie, że (= dla pewnego x) zachodzi

Bardziej szczegółowo

Lista 1 (elementy logiki)

Lista 1 (elementy logiki) Podstawy nauczania matematyki 1. Zdanie Lista 1 (elementy logiki) EE I rok W logice zdaniem logicznym nazywamy wyrażenie oznajmujące o którym można powiedzieć że jest prawdziwe lub fałszywe. Zdania z reguły

Bardziej szczegółowo

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B: Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich

Bardziej szczegółowo

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

IX Olimpiada Matematyczna Gimnazjalistów

IX Olimpiada Matematyczna Gimnazjalistów IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;

Bardziej szczegółowo

Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im.

Elementy teorii mnogości. Część II. Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Elementy teorii mnogości. II 1 Elementy teorii mnogości Część II Wojciech Buszkowski Zakład Teorii Obliczeń Wydział Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza Elementy teorii mnogości.

Bardziej szczegółowo

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje

Elementy logiki Zbiory Systemy matematyczne i dowodzenie twierdzeń Relacje Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.put.poznan.pl/ maciej.grzesiak Konsultacje: poniedziałek, 8.45-9.30, środa 8.45-9.30, piątek 9.45-10.30, pokój 724E Treść

Bardziej szczegółowo

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe:

LOGIKA MATEMATYCZNA. Poziom podstawowy. Zadanie 2 (4 pkt.) Jeśli liczbę 3 wstawisz w miejsce x, to które zdanie będzie prawdziwe: LOGIKA MATEMATYCZNA Poziom podstawowy Zadanie ( pkt.) Która koniunkcja jest prawdziwa: a) Liczba 6 jest niewymierna i 6 jest liczbą dodatnią. b) Liczba 0 jest wymierna i 0 jest najmniejszą liczbą całkowitą.

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27

Wykład 7. Informatyka Stosowana. 21 listopada Informatyka Stosowana Wykład 7 21 listopada / 27 Wykład 7 Informatyka Stosowana 21 listopada 2016 Informatyka Stosowana Wykład 7 21 listopada 2016 1 / 27 Relacje Informatyka Stosowana Wykład 7 21 listopada 2016 2 / 27 Definicja Iloczynem kartezjańskim

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16

Zbiory, funkcje i ich własności. XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory, funkcje i ich własności XX LO (wrzesień 2016) Matematyka elementarna Temat #1 1 / 16 Zbiory Zbiory ograniczone, kresy Zbiory ograniczone, min, max, sup, inf Zbiory ograniczone 1 Zbiór X R jest

Bardziej szczegółowo

Wykłady z Matematyki Dyskretnej

Wykłady z Matematyki Dyskretnej Wykłady z Matematyki Dyskretnej dla kierunku Informatyka dr Instytut Informatyki Politechnika Krakowska Wykłady na bazie materiałów: dra hab. Andrzeja Karafiata dr hab. Joanny Kołodziej, prof. PK Informacje

Bardziej szczegółowo

Logika Matematyczna 16 17

Logika Matematyczna 16 17 Logika Matematyczna 16 17 Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Semantyka KRP (3) Jerzy Pogonowski (MEG) Logika Matematyczna 16 17 Semantyka KRP (3) 1 / 24

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

RELACJE I ODWZOROWANIA

RELACJE I ODWZOROWANIA RELACJE I ODWZOROWANIA Definicja. Dwuargumentową relacją określoną w iloczynie kartezjańskim X Y, X Y nazywamy uporządkowaną trójkę R = ( X, grr, Y ), gdzie grr X Y. Zbiór X nazywamy naddziedziną relacji.

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo