DYSKRETNE MODELOWANIE REJESTRÓW LFSR DISCRETE MODELING OF LFSR REGISTERS ELEKTRYKA 2012
|
|
- Agata Dobrowolska
- 7 lat temu
- Przeglądów:
Transkrypt
1 ELEKTRYKA 0 Zeszt () Ro LVIII Jausz WALCZAK, Rafał STĘPIEŃ Isttut Eetrotechii i Iformati, Poitechia Śąsa w Giwicach DYSKRETNE MODELOWANIE REJESTRÓW LFSR Streszczeie. W artue zapropoowao metodę opisu dowoego reestru LFSR z worzstaiem termioogii uładów i sgałów dsretch. Podao uogóioe rówaia reestru LFSR oraz metod ich tworzeia. Poazao taże budowę strutur reestrów wiaącą z propoowach rówań. Słowa uczowe: reestr LFSR, sewece pseudoosowe, cfrowe przetwarzaie sgałów DISCRETE MODELING OF LFSR REGISTERS Summar. This paper shows a method of describig pseudo radom siga geerators with LFSR registers i discrete circuits ad siga termioog. The geeraized equatios of the LFSR register ad their creatio are show. The LFSR structures based o proposed equatios are aso show. Kewords: LFSR register, pseudoradom sequeces, digita siga processig. WSTĘP Geerator seweci pseudoosowch zbudowae a reestrach z iiowm sprzężeiem zaduą wiee zastosowań w techice. Przładowe zastosowaia taich seweci moża zaeźć w pracach oraz. Metod geeraci sgałów przpadowch dziei się a dwie grup rsue. Pierwsza z ich umożiwia geeracę sgałów w pełi osowch i worzstue aturae źródła szumów wstępuące w przrodzie, p. szum termicz cz śrutow. Druga umożiwia geeracę sgałów pseudoosowch programowo opieraąc się a różch techiach agortmiczch ub sprzętowch, często z worzstaiem reestrów przesuwch z iiowm sprzężeiem zwrotm (LFSR Liear Feedbac Shift Registers) 6. Artuł est rozwiięciem prac 5, w tóre opisao rówaia reestru LFSR z dwuweściową bramą XOR, z worzstaiem aparatu matematczego cfrowego przetwarzaia sgałów.
2 98 J. Wacza, R. Stępień Rs.. Źródła sgałów osowch Fig.. The radom siga sources. GENERATORY Z REJESTRAMI LFSR Geerator sgału pseudoosowego słada się z astępuącch boów: a) iiowego reestru przesuwego o długości N z możiwością ustawieia wartości początowe, b) bou sprzężeia zwrotego, c) geeratora sgału zegarowego, d) ewetuaego przetworia cfrowo-aaogowego zamieiaącego ciąg bitów (bądź iczb zawartch w reestrze) a sgał aaogow. Na rsuu zazaczoo boi a c.
3 Dsrete modeowaie reestrów LFSR 99 Rs.. Tpow reestr LFSR Fig.. A tpica LFSR register Sgał wściow geeratora est oreśa staem edego z bitów reestru, p. amie zaczącego bitu, por. rs.. Sgał te est zawsze oresow. Masmaa długość seweci wściowe wosi : N () gdzie: N rząd reestru, długość seweci wściowe. Jeśi długość seweci wściowe est rówa długości masmae (), to taą sewecę azwa się m sewecą. W prac 5 opisao metodę modeowaia dsretego geeratorów pseudoosowch worzstuącch reestr LFSR. Modeowaie to dotczło reestru z dwuweściową bramą XOR pełiącą fucę sprzężeia zwrotego. Wieomia opisuące fucę sprzężeia zwrotego są w tm przpadu trómiaami pierwotmi moduo. W więszości przpadów trómia pierwote umożiwiaą wgeerowaie m seweci. Istieą przpadi geeratorów LFSR, a przład o długości 8 cz 7, tóre ie maą trómiaów pierwotch moduo, co uiemożiwia wgeerowaie m seweci. Z przegądu wieomiaów pierwotch, 4, 7 wia, że worzstaie do opisu reestrów LFSR wieomiau moduo w postaci: a b c d L ( ), () oraz trómiaów pierwotch moduo : a b L ( ), (3) umożiwia stworzeie dsretego opisu ażdego reestru LFSR. Eemetem sprzężeia zwrotego w przpadu wieomiau () est czteroweściowa brama XOR.
4 00 J. Wacza, R. Stępień 3. UOGÓLNIONY DYSKRETNY MODEL GENERATORA Do opisu prac geeratora pseudoosowego zbudowaego a bazie reestrów LFSR worzstao termioogię uładów dsretch. Mode dsret powstae poprzez zaezieie dsretch rówań różicowch uładu geeratora. Rówaia te dotczą samego reestru przesuwego oraz bou sprzężeia zwrotego, tór est reaizowa poprzez bramę XOR. Z putu widzeia przetwarzaia sgałów reestr przesuw o długości N est eemetem opóźiaącm o N próbe (potrzeba N ci zegarowch, ab próba wściowa bou XOR przeszła przez cał reestr). Opis matematcz taie seweci est astępuąc: N (4) Sam reestr (bez bou sprzężeia zwrotego) może zostać opisa za pomocą rówaia (4). Do stworzeia pełego opisu reestru LFSR potrzeba taże opisu matematczego brami XOR. Stosuąc opis matematcz użwa w cfrowm przetwarzaiu sgałów, otrzmue się da dwuweściowe brami XOR rówaie wścia 5: i i (5) gdzie: i, umer odczepów reestru LFSR służące do reaizaci sprzężeia zwrotego, sgał wściow brami XOR. Chcąc uogóić opis matematcz a reestr o dowoe długości N, aeż zauważć, że ietóre długości (N=,3) ie posiadaą wieomiaów pierwotch, utworzoch z dwóch odczepów, umożiwiaącch wgeerowaie m seweci. Datego da pełego opisu aeż uwzgędić ią ofiguracę sprzężeia zwrotego. Doouąc przegądu wieomiaów pierwotch, moża zauważć, że da długości N>4 do N=786 7, 8 wszstie oee reestr rzędu N=5,6, umożiwiaą geeracę m-seweci z worzstaiem czterech odczepów. Istieą taże dłuższe reestr (N>786) 8, tóre maą ofiguracę z czterema odczepami i umożiwiaą geeracę m seweci, ae ich stosowaie ie est uż pratcze, ze wzgędu a obrzmie długości geerowach seweci oraz trudości w impemetaci sprzętowe i programowe. Przładowo, reestru o długości N=00 długość geerowae seweci wosi Ta długa seweca zapewia ores powtórzeia (da częstotiwości tatowaia reestru GHz): T g N 43 ( ) T 50 at. (6) c
5 Dsrete modeowaie reestrów LFSR 0 Stosuąc ograiczeie da masmae iczb odczepów rówe 4 (da N>4), moża dooać aaiz dowoego (N>4) reestru LFSR. Geerator LFSR z czterema odczepami powstae przez podaie sgałów z czterech wbrach odczepów reestru a weście bou sprzężeia zwrotego. Jeśi odczep będą tworzł wieomia pierwot, to tai geerator będzie geeratorem m seweci. Przład geeratora z czterema odczepami przedstawia rsue 3. Rs. 3. Geerator LFSR zbudowa a czteroweściowe bramce XOR Fig. 3. The LFSR geerator based o four iputs XOR gate W ceu uzsaia rówań geeratora z reestrami LFSR da więsze iczb odczepów rówaie (5) aeż stosować reurecie, otrzmuąc w te sposób fucę opisuącą (rówaia różicowe) wieoweściową bramę XOR. Z ogiczego putu widzeia sprowadza się to do szeregowego połączeia brame XOR. Rsue 4 poazue ostrucę czteroweściowe brami XOR. Rs. 4. Czteroweściowa brama XOR Fig. 4. The four iputs XOR gate Opis matematcz powstae poprzez wprowadzeie rówaia da brami XOR z trzema wściami (żade reestr LFSR ie posiada ofiguraci z trzema odczepami). Następie wprowadza się rówaie czteroweściowe brami XOR. Rówaie (5) moża uogóić a p-weściową bramę XOR. Rówaia taie moża otrzmać stosuąc oee podstawieia fuci wściowe poprzedie brami ao eemetu weściowego oee brami oraz dodatowego weścia (rsue 4).
6 0 J. Wacza, R. Stępień Wprowadzaąc ozaczeia: p wście p-weściowe brami XOR, -i, -, -, - oee weścia brami, otrzmue się poiższe wzor. Da p= rówaie to przmue astępuącą postać: i i. (7) Da p=3 rówaie wścia oreśa wzór: 3. (8) Po podstawieiu rówaia (7) do rówaia (8) otrzmue się: ) ( ( 3 i. (9) Rówaie (9) przedstawia mode sgałow tróweściowe brami XOR. Rówaie czteroweściowe brami powstae z rówaia (9): (0) Po podstawieiu rówaia (8) do rówaia (9) oraz sróceiu zapisu otrzmue się mode sgałow czteroweściowe (p=4) brami XOR: ). )( ( ) )( )( ( 4 i () Rówaie () opisuące czteroweściową bramę XOR (rsue 4) moża przedstawić w formie boów stosowach w cfrowm przetwarzaiu sgałów. Schemat boow czteroweściowe brami XOR poazao a rsuu 5. Rs. 5. Strutura czteroweściowe brami XOR Fig. 5. The structure of the four iputs XOR gate Ogóe rówaie p-weściowe brami XOR est astępuące: p p p p p. () Schemat boow taie strutur poazao a rsuu 6:
7 Dsrete modeowaie reestrów LFSR 03 Rs. 6. Uogóioa strutura p-weściowe brami XOR Fig. 6. The geeraized p-iputs XOR gate Przładowo, da p=6 aeż poiczć wszstie fuce wściowe da p= do p=5. Fucę wściową (p=6) otrzmue się poprzez operacę XOR (7) fuci wściowe da p=5 oraz szóstego weścia. Wraz ze wzrostem iości odczepów opis sgałow p-weściowe brami XOR stae się coraz bardzie sompiowa. Datego w te prac ie dooao aaiz reestrów LFSR z więce iż czterema odczepami. Uzasadioe est to tm, że prz dwóch i czterech odczepach moża opisać wszstie pratczie stosowae reestr LFSR. 4. PODSUMOWANIE W artue zaprezetowao metodę opisu reestrów LFSR z worzstaiem termioogii sgałów dsretch. W propoowam opisie rezgue się z artmeti moduo oraz działań w ciee GF(). W zamia do opisu geeratorów propoowae są rówaia reurece. Dzięi uogóieiu tch rówań a p-weściową bramę XOR, będącą eemetem sprzężeia zwrotego, otrzmao mode matematcz, tór może bć worzstwa do aaiz dowoego reestru LFSR. BIBLIOGRAFIA. Kotusi Z.: Geerator iczb osowch: agortm, testowaie, zastosowaia. Matemata Stosowaa 00, r, s Scheier B.: Krptografia da pratów. Vo., WNT, Warszawa 00, s Mutagi R.N.: Pseudo oise sequeces for egieers, Eectroics & Commuicatio Egieerig Joura, Vo. 8 Issue, Apri 996, p
8 04 J. Wacza, R. Stępień 4. Afe P.: Efficiet Shift Registers, LFSR Couters, ad Log Pseudo-Radom Sequece Geerators, Xii appicatio ote. Ju 7, 996, Vo Wacza J., Stępień R.: Modeig Of The Pseudo Radom Siga Geerators Usig Digita Fiters. Materiał oferece IC-SPETO, ma 00, s Goomb S. W.: Shift Register Sequeces. Lagua His, C A Aegea. Par Press, Dae iczbowe firm New Wave Istrumets dotczące reestrów LFSR: ft_register_fsr.htm, paździeri Ward R., Moteo T. V.: Departmet of Phsics, Uiversit of Otago: Tabe of Liear Feedbac Shift Registers. Recezet: Dr hab. iż. Rszard Porada, prof. Po. Pozańsie Wpłęło do Redaci dia 0 wrześia 0 r. Prof. dr hab. iż. Jausz WALCZAK Mgr iż. Rafał STĘPIEŃ Poitechia Śąsa Wdział Eetrcz Isttut Eetrotechii i Iformati u. Aademica Giwice Te.: (03) 37 90; e-mai: Jausz.Wacza@pos.p Te.: (03) ; e-mai: Rafa.Stepie@pos.p
( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW
A. Kaici: warcia w sieciach eletroeergetyczych 7. OBCNA WKOŚC WARCOWCH A POOCĄ KOPUTRÓW 7.. astosowaie metody potecjałów węzłowych do obliczaia zwarć przy założeiu jedaowych sił eletromotoryczych geeratorów
APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne
APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość
Rozkład normalny (Gaussa)
Rozład ormal (Gaussa Wprowadzeie rozładu Gaussa w modelu Laplace a błędów pomiarowch. Rozważm pomiar wielości, tór jest zaburza przez losowch efetów o wielości ε ażd, zarówo zaiżającch ja i zawżającch
IV. RÓWNANIA RÓŻNICOWE
V. RÓWNANA RÓŻNCOWE 4.. Wstęp Prz frowm przetwarzaiu sgałów dooujem ih dsretzaji zli próbowaia, tz. zamia sgału iągłego a iąg sgałów dsreth. Sgał iągł (t) przedstawiam jao iąg rzędh wzazah dla dsreth wartośi
f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n
Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby
Liczby Stirlinga I rodzaju - definicja i własności
Liczby Stiriga I rodzaju - defiicja i własości Liczby Stiriga I rodzaju ozaczae symboem s(, ) moża defiiować jao współczyii w rozwiięciu x s(, )x, 0 (1) 0 gdzie x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały
PREZENTACJA MODULACJI ASK W PROGRAMIE MATCHCAD
POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 76 Electrical Egieerig 3 Jaub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* Jausz KOWALSKI** PREZEACJA MODULACJI ASK W PROGRAMIE MACHCAD W artyule autorzy przedstawili
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Pattern Classification
Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY
LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem
Dodatek 10. Kwantowa teoria przewodnictwa I
Dodate 10 Kwatowa teoria przewodictwa I Teoria lascza iała astępujące aaet: (1) zierzoe wartości średiej drogi swobodej oazał się o ila rzędów wielości więsze iż oczeiwae () teoria ie dawała poprawc zależości
i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3
35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(
Prosta w 3. t ( t jest parametrem).
Prosta w 3 by wyacy rówaie prostej w 3 wystarcy a jede put tej prostej i wetor adajcy jej ierue (way wetore ieruowy) Jei P = ( P yp P ) = [ p] to rówaia paraetryce prostej aj posta = P t : y = yp t t (
Metoda podziału zbioru obiektów na wielokryterialne klastry jakościowe
BIULET ISTTUTU SSTEMÓW IFOMATCZCH (03) Metoda podziału zbioru obietów na wielorterialne lastr jaościowe A. AMELJAŃCZK aameljancz@wat.edu.pl Insttut Sstemów Informatcznch Wdział Cberneti WAT ul. S. Kalisiego,
MODYFIKACJE ALGORYTMU UŚREDNIANIA WYKŁADNICZEGO DO USUWANIA ZAKŁÓCENIA ADDYTYWNEGO
POZA UIVE RSITY OF TE COLOGY ACADE MIC JOURALS o 80 Electrical Engineering 04 Grzegorz MIKOŁAJCZAK* Jaub PĘKSIŃSKI* Janusz KOWALSKI** MODYFIKACJE ALGORYTMU UŚREDIAIA WYKŁADICZEGO DO USUWAIA ZAKŁÓCEIA ADDYTYWEGO
MIKROPROCESOROWY GENERATOR SZUMU BIAŁEGO MICROPROCESSOR BASED WHITE NOISE GENERATOR
EEKTRYKA 00 Zeszyt (4) Rok VI Janusz WACZAK, Rafał STĘPIEŃ Instytut Elektrotechniki i Informatyki, Politechnika Śląska w Gliwicach MIKROPROCESOROWY GENERATOR SZUMU BIAŁEGO Streszczenie. W artykule opisano
RÓWNANIE VAN DER POLA. Paweł Jendykiewicz
Studia i Materiał Iformati Stosowaej, Tom, Nr, 009 RÓWNANIE VAN DER POLA Paweł Jediewicz Uiwerstet Kazimierza Wieliego Isttut Techii II ro MU Eduacja Techiczo-Iformatcza ul.chodiewicza 0, 85-0 Bdgoszcz
STABILNOŚĆ NAPIĘCIOWA PODSYSTEMU ELEKTROENERGETYCZNEGO
Stabiość apięciowa podsystemu eetroeergetyczego 63 SAILNOŚĆ NAIĘCIOWA ODSYSEM ELEKOENEGEYCZNEGO prof. dr hab. iż. yszard Zajczy / oitechia Gdańsa. ZECIĄŻENIE MOCĄ IENĄ.. Charaterystyi turbozespołów W ceu
Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel
Własośi zbiorów otwarth i domięth Tw. a) Suma dowolej ilośi zbiorów otwarth jest zbiorem otwartm. b) Iloz sońzoej ilośi zbiorów otwarth jest zbiorem otwartm. Dow. a) Mam rodzię zbiorów otwarth: U A s {
Twierdzeie Closa Problem: Jak duże musi być m, aby trzysekcye pole Closa ν(m,, r) )było ieblokowale w wąskim sesie? Twierdzeie Closa: Dwustroe trzysek
Sieci i Systemy z Itegracą Usług Trzysekcye pole Closa m r r m Własości kombiatorycze pól komutacyych Prof. dr hab. iż. Wociech Kabaciński r m Pole Closa est edozaczie defiiowae przez trókę m,, r i ozaczae
ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.
Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
WYKŁAD 1 INTERPOLACJA WIELOMIANOWA
WYKŁAD INTERPOLACJA WIELOMIANOWA /6 Sformułowaie problemu iterpolaci. Metoda Lagrage a Rozważmy zaday uład putów {(, y ),,,..., }, zwaych dale węzłami iterpolacyymi. Poszuuemy wielomiau iterpolacyego zadaego
tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze
R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych
ANALIZA WŁAŚCIWOŚCI STATYSTYCZNYCH SYGNAŁÓW PSEUDOLOSOWYCH GENERATORÓW ZBUDOWANYCH NA REJESTRACH PRZESUWNYCH
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrical Engineering 2013 Rafał STĘPIEŃ* Janusz WALCZAK* ANALIZA WŁAŚCIWOŚCI STATYSTYCZNYCH SYGNAŁÓW PSEUDOLOSOWYCH GENERATORÓW ZBUDOWANYCH
Układy kombinacyjne - przypomnienie
SWB - Układy sekwencyjne - wiadomości podstawowe - wykład 4 asz 1 Układy kombinacyjne - przypomnienie W układzie kombinacyjnym wyjście zależy tylko od wejść, SWB - Układy sekwencyjne - wiadomości podstawowe
Wytrzymałość materiałów
Wtrzmałość materiałów IMiR - IA - Wkład Nr 8 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau aprężeia, koło
Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)
Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()
CAŁKA NIEOZNACZONA. F (x) = f(x) dx.
CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Wstęp do Sztucznej Inteligencji: Laboratorium Sterownik rozmyty
Wstęp do Sztucznej Inteligencji: Laboratorium Sterowni rozmt Zbior rozmte pozwalają w sposób usstematzowan modelować pojęcia niepreczjne, jaimi ludzie posługują się na co dzień. Przładem może bć wrażenie
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
ANALIZA FOURIEROWSKA szybkie transformaty Fouriera
AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
KOMBINATORYKA. Oznaczenia. } oznacza zbiór o elementach a, a2,..., an. Kolejność wypisania elementów zbioru nie odgrywa roli.
KOMBINATORYKA Kombiatoryą azywamy dział matematyi zajmujący się zbiorami sończoymi oraz relacjami między imi. Kombiatorya w szczególości zajmuje się wyzaczaiem liczby elemetów zbiorów sończoych utworzoych
PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X
PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac
4. Schematy blokowe; algebra schematów blokowych
57. Schemat bloowe; algebra chematów bloowch W ażdm złożonm ładzie atomati można wodrębnić wpółpracjące ze obą element protze, tórch właściwości ą znane i formłowane np. w potaci tranmitancji operatorowej.
Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011
Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
LABORATORIUM MODELOWANIA I SYMULACJI. Ćwiczenie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW
Wydział Elektryczy Zespół Automatyki (ZTMAiPC) ZERiA LABORATORIUM MODELOWANIA I SYMULACJI Ćwiczeie 3 MODELOWANIE SYSTEMÓW DYNAMICZNYCH METODY OPISU MODELI UKŁADÓW I. Cel ćwiczeia Celem ćwiczeia jest zapozaie
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Zastosowanie metod identyfikacji w wybranych zagadnieniach przepływu biociepła
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechanii mgr inż. Mare Paruch Zastosowanie metod identyfiaci w wybranych zagadnieniach
Sformułowanie zagadnienia aproksymacji w sensie najmniejszych kwadratów
WYKŁAD APROKSYMACJA WIELOMIANOWA I ZAGADNIENIE NAJMNIEJSZYCH KWADRAÓW Sforułowaie zagadieia aprosyaci w sesie aieszych wadratów Rozważy zbiór putów (węzłów) a płaszczyźie {( x y ), 0,.., }, W typowy zadaiu
Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5
ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem
Ł Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć
Porównanie wybranych miar kontrastu obrazów achromatycznych
KWS 00 87 Porównanie wybranych miar ontrastu obrazów achromatycznych Artur Ba Streszczenie: W artyue poruszono zagadnienie oceny ontrastu achromatycznych obrazów cyfrowych. W pracy przedstawiono porównanie
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.
ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f
ZALEŻNY ROZKŁAD DWUMIANOWY I JEGO ZASTOSOWANIE W REASEKURACJI I KREDYTACH. 1. Wstęp
B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 27 Staisław HEILPERN* ZALEŻNY ROZKŁAD DWUMIANOWY I JEGO ZASTOSOWANIE W REASEKURACJI I KREDYTACH Praca est poświęcoa zależemu rozładowi dwumiaowemu.
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia
FUNKCJE DWÓCH ZMIENNYCH
FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam
9/42 ZASTOSOWANIE WĘGLIKA KRZEMU DO WYTOPU ŻELIW A SZAREGO W ŻELIWIAKU WPROW ADZENIE.
9/42 Soidification of Metais and Aoys, Year 2000, Voume 2, Book No 42 Krzepnięcie Metai i Stopów, Rok 2000, Rocznik 2, Nr 42 PAN-Katowice, PL ISSN 0208-9386 ZASTOSOWANIE WĘGLIKA KRZEMU DO WYTOPU ŻELIW
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D
Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.
Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera
PRZETWORNIKI C/A 1. STRUKTURA PRZETWORNIKA C/A
PZETWON C/A. STTA PZETWONA C/A. PZETWON C/A NAPĘCOWE.. PZETWON NAPĘCOWE Z DZELNEM NAPĘCOWYM WYJŚCEM NAPĘCOWYM... Przetwori C/A z drabią rówoległą Deoder z N N N wy stawieia przełącziów dla sytuacji, gdy
Przykładowe pytania na egzamin dyplomowy dla kierunku Automatyka i Robotyka
Przykładowe pytaia a egzami dyplomowy dla kieruku Automatyka i obotyka Aktualizacja: 13.12.2016 r. Przedmiot: Matematyka 1 (Algebra liiowa) 1. Wiemy że struktura (Gh) jest grupą z elemetem eutralym e.
Równania liniowe rzędu drugiego stałych współczynnikach
Rówaia liiowe rzędu drugiego stałyh współzyikah Rówaiem różizkowym zwyzajym liiowym drugiego rzędu azywamy rówaie postai p( t) y q( t) y r( t), (1) gdzie p( t), q( t), r( t ) są daymi fukjami Rówaie to,
Metody Podejmowania Decyzji
Metody Podejmowaia Decyzji Wzrost liczby absolwetów w Politechice Wrocławsiej a ieruach o luczowym zaczeiu dla gospodari opartej a wiedzy r UDA-POKL.04.0.0-00-065/09-0 Recezet: Prof. dr hab. iż. Ja Iżyowsi
jawnie od odleg lości miedzyelektronowych r ij = r i r j Funkcje falowe w postaci kombinacji liniowej wielu wyznaczników.
Notati do wy ladu XII Przy lady metod ab iitio uwzglediaj acych orelacje eletroowa Fucje falowe jawie sorelowae - zależa jawie od odleg lości miedzyeletroowych r ij = r i r j Fucje falowe w postaci ombiacji
Układy kryptograficzne z uŝyciem rejestrów LFSR
Układy kryptograficzne z uŝyciem rejestrów FSR Algorytmy kryptograficzne uŝywane w systemach telekomunikacyjnych własność modulo 2 funkcji XOR P K K = P = P 2 Rejestr z liniowym sprzęŝeniem zwrotnym FSR
Indukcja matematyczna
Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
Analiza współzależności dwóch zjawisk zależności między tymi cechami
Aaza współzaeżośc dwóch zaws Badae zborowośc ze wzgędu a dwe cech ma zazwcza a ceu poszuwae zaeżośc mędz tm cecham. Poszuwae to ma ses to wted, gd mędz cecham może steć ogcze uzasado zwąze przczowo-sutow.
Przetwarzanie analogowo-cyfrowe sygnałów
Przetwarzanie analogowo-cyfrowe sygnałów A/C 111111 1 Po co przekształcać sygnał do postaci cyfrowej? Można stosować komputerowe metody rejestracji, przetwarzania i analizy sygnałów parametry systemów
Metody numeryczne. Wykład nr 2. dr hab. Piotr Fronczak
Metod numerczne Wład nr dr hab. Piotr Froncza Przbliżone rozwiązwanie równań nieliniowch Jedno równanie z jedną niewiadomą Szuam pierwiastów rzeczwistch równania =. zwle jest uncją nieliniową zatem orzstam
Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:
Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego
Elementy modelowania matematycznego
Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,
EGZAMIN POTWIERDZAJĄCY KWALIFIKACJE W ZAWODZIE CZĘŚĆ PRAKTYCZNA
azwa kwalifikacji: Ochrona osób i mienia Oznaczenie kwalifikacji: Z.0 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu umer PESEL zdającego* Wypełnia zdający Miejsce na naklejkę
2013-10-17. Bramki logiczne o specjalnych cechach. τ ~ R*C. Bramka z otwartym kolektorem.
23--7 Brami logiczne o specjalnych cechach U WY Brama chmitta (7432): niestandardowa brama cyrowa charaterystya zawiera pętlę histerezy H Zastosowania: L.9 V.7 V U wprowadzanie do eletronii cyrowej sygnałów
Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne
Systemy cyfrowe z podstawami elektroniki i miernictwa Wyższa Szkoła Zarządzania i Bankowości w Krakowie Informatyka II rok studia dzienne Ćwiczenie nr 4: Przerzutniki 1. Cel ćwiczenia Celem ćwiczenia jest
Zadania z analizy matematycznej - sem. I Szeregi liczbowe
Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych
MATURA 2014 z WSiP. Zasady oceniania zadań
MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość
Mec Me han a ik i a a o gólna Wyp W a yp dko dk w o a w do d w o o w l o ne n g e o g o ukł uk a ł du du sił.
echaika ogóla Wkład r 2 Wpadkowa dowolego układu sił. ówowaga. odzaje sił i obciążeń. odzaje ustrojów prętowch. Wzaczaie reakcji. Wpadkowa układu sił rówoległch rzłożeie układu zerowego (układ sił rówoważącch
Wykład 3 : Podstawowe prawa, twierdzenia i reguły Teorii Obwodów
OBWODY SYNAŁY Wyład 3 : Podstawowe prawa, twierdzeia i reguły Teorii Obwodów 3. PODSTAWOWE PAWA TWEDZENA TEO OBWODÓW 3.. SCHEMAT DEOWY OBWOD Schematem ideowym obwodu (siecią) azywamy graficze przedstawieie
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.
Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE PODSTAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUTOMATYKI
CHARAKERYSYKI CZĘSOLIWOŚCIOWE PODSAWOWYCH CZŁONÓW LINIOWYCH UKŁADÓW AUOMAYKI Do podstawowych form opisu dyamii elemetów automatyi (oprócz rówań różiczowych zaliczamy trasmitację operatorową s oraz trasmitację
4. MODELOWANIE UKŁADÓW DYNAMICZNYCH Wiadomości wstępne o modelowaniu
4. ODELOWANIE UKŁADÓW DYNAICZNYCH 4.. Wiaomości wstępe o moelowaiu Jeą z meto baaia właściwości amiczch ułau jest przeprowazeie espermetu bezpośreio a ułazie. W wielu przpaach woaie espermetu a ułazie
Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna
stalacje i Urządzeia Eletrycze Automatyi Przemysłowej Moderizacja systemu chłodzeia Ciągu echologiczego- część eletroeergetycza Wyoali: Sebastia Marczyci Maciej Wasiuta Wydział Eletryczy Politechii Szczecińsiej
Teoria i metody optymalizacji
eoria i metody optymalizaci Programowaie liiowe całowitoliczbowe PCL Metodologia podziału i ograiczeń Brach ad Boud (B&B) ma c A Z echique Metodologia podziału i ograiczeń B&B { A b i Z } Podstawą metodologii
Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą
Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć
Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą
Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć
Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę
Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę
Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć
ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć
Podstawy wytrzymałości materiałów
Podstaw wtrzmałości materiałów IMiR - MiBM - Wkład Nr 4 Aaliza stau aprężeia Sta aprężeia w pukcie, tesor aprężeia, klasfikacja staów aprężeia, aaliza jedoosiowego stau aprężeia, aaliza płaskiego stau
Niech Φ oznacza funkcję zmiennej x zależną od n + 1 parametrów a 0, a 1, K, a n, tj.
III. INTERPOLACJA 3.. Ogóe zadae terpoac Nech Φ ozacza fucę zmee x zaeżą od + parametrów a 0, a, K, a, t. Defca 3.. Zadae terpoac poega a oreśeu parametrów a ta, żeby da + da- ych par ( x, f ( x ( 0,,...,
WBUDOWANE SAMOTESTOWANIE RUCHEM DROGOWYM
PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 Politechnika Warszawska, WBUOWANE SAMOTESTOWANIE RUCHEM ROGOWYM : 2016 Streszczenie: drogowym e ruchu drogowym stowanie adnieniem. W artykule