Skąd się w bierze sprężystość ciał?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Skąd się w bierze sprężystość ciał?"

Transkrypt

1 K. Wierzbanowski PRĘŻYTOŚĆ Wszystkie ciała wykazuą charakterystyczny zakres odkształcenia, zwany sprężystością. Jeśli rozciągamy pręt (w kierunku osi x, to relacę miedzy przyłożonym naprężeniem i uzyskanym względnym wydłużeniem ciała opisue słynne prawo Hooke a: l dl F Prawo Hooke a w ednym wymiarze (klasyczny test rozciągania ( E gdzie E est modułem Younga, F/ ( est przekroem poprzecznym pręta, zaś dl/l. kąd się w bierze sprężystość ciał? póność ciał stałych zapewniaą wiązania: onowe, metaliczne, kowalencyne, polaryzacyne (Van der Walsa i wodorowe. V(x x x x Potencał między dwoma atomami. Linią przerywaną pokazano, że w położeniu równowagi (minimum potencału, kształt potencału może być przybliżony przez parabolę. Prawa sprężystości wyprowadzić można z oddziaływań atomowych. Rozpatrzmy zagadnienie w ednym wymiarze (wzdłuż osi x. Wprowadźmy zmienną u, opisuącą wychylenie atomu z położenia równowagi: lub ux - x xx + u gdzie x est aktualnym położeniem atomu, zaś x ego położeniem równowagi.

2 Rozkładamy potencał w szereg Taylora: dv u d V V (x V(x + u + +K ( dx x! dx x Tylko te trzy składniki rozwinięcia są dla nas istotne, dalsze ako zaniedbywalne pomamy. dv W punkcie równowagi (xx zachodzi:. A zatem: dx V(x u x d V V(x + dx ( x Pamiętaąc, że: xx +u, powyższą relacę możemy napisać: u V(u A + B ( gdzie A i B są stałymi. Jeśli atom zostae wychylony z położenia równowagi, to działa na niego siła F: dv(u F F ub ku du ( gdzie kb możemy zidentyfikować ako stałą sprężystości. A zatem odnaduemy typową relacę, która opisue rozciąganie sprężyny: F ku (6 Jeżeli to my rozciągamy ciało (np. pręt, to przykładana siła wynosi: F ku. Normalizuąc siłę i wydłużenie: F/ k u/l (gdzie est przekroem poprzecznym, L długością początkową pręta, odnaduemy klasyczne prawo Hooke a ( Równ. dla ednego wymiaru:, gdzie Ek est modułem Younga. E Przypadek ogólny - trówymiarowy W przypadku ogólnym, interesuą nas ednak wszystkie składowe przyłożonych naprężeń i również wszystkie składowe odkształcenia (wywołane przez przyłożone naprężenia. ytuacę taką opisue trówymiarowe prawo Hooke a, które est relacą pomiędzy tensorami: (7a kl kl Wielkości kl i kl są tensorami czwartego rzędu (maą cztery wskaźniki. kl est tensorem sztywności (ang.: stiffness, zaś kl tensorem podatności sprężyste (ang.: susceptibility. W relaci powyższe zastosowano oczywiście konwencę sumowania po powtarzaących się wskaźnikach (np., po prawe stronie Równ. 7a występue 9 składowych tensora odkształcenia; ponadto równanie to przedstawia 9 równań na poszczególne składowe tensora naprężenia. Trzeba zwrócić uwagę, że Równ. 7a i 7b nie są po prostu swoimi odwrotnościami. Równania te opisuą inne sytuace eksperymentalne. Równ. 7a opisue sytuacę, gdy czynnikiem wymuszaącym są odkształcenia (, a odpowiedzią materiału są kl kl (7b

3 naprężenia wytworzone w materiale (. Natomiast Równ. 7b opisue sytuacę odwrotną: do materiału przykładamy zestaw naprężeń (, a odpowiedzią est odkształcenie materiału (. Omówmy teraz kilka własności symetrii tensorów i. ymetrie tensorów sprężystości Rozważymy w tym celu kilka sytuaci doświadczalnych. a Przykładamy tylko edną składową naprężenia:. Ile wynoszą i? tosuemy Równ. 7b: lecz: i ogólnie: kl ikl (8 b przykładamy składową naprężeń, ile wynosi? tosuąc ponownie Równ. 7b: + ( + kładowych i nie możemy wyznaczyć oddzielnie, lecz tylko ich sumę. Przymue się zatem konwencę, że wartość powyższego nawiasu dzielimy równo pomiędzy te składowe tensora ; a zatem: kl lk (9 Tak więc istniee symetria ze względu na przestawienie wskaźników w pierwsze parze, a także w drugie. c Istniee eszcze edna symetria tensorów i, polegaąca na przestawieniu obu par wskaźników: kl kl ymetrię tą można wykazać w oparciu o rozważania energetyczne. ( Zapamiętamy także, iż: WZYTKIE POWYŻZE YMETRIE WYKAZUJE TAKŻE TENOR kl!! d Na ogół kl kl Jest tak, ponieważ obie stałe opisuą różne eksperymenty. Rozważmy test rozciągania osiowego:

4 l dl F zynnikiem wymuszaącym est tu składowa naprężenia: F/, zaś mierzoną odpowiedzią materiału est wydłużenie względne ; związek między nimi est następuący: Z drugie strony wiemy, że: E ; ostatecznie: E ( ( Trzeba tu dodać, że choć mierzymy składową, to w materiale wystąpiły i inne składowe odkształcenia (np. i. Natomiast stała opisue inny eksperyment: wymuszamy na próbce wydłużenie względne (i tylko tę składową, inne składowe maą być zerowe! i pytamy ile wynosi składowa naprężeń, która wyindukowała się w materiale (wystąpią i inne składowe. Oczywiście: ( prężystość liniowa i nieliniowa Widzieliśmy powyże, że liniowy charakter sprężystości wynika z przybliżenia dołka potencału międzyatomowego przez funkcę drugiego stopnia (parabolę. Przybliżenie to est dobrze spełnione dla małych wychyleń atomu z położenia równowagi. Natomiast dla większych wychyleń, ale eszcze odwracalnych mamy sprężystość nieliniową. Efekt ten dobrze widać na krzywe rozciągania wiskersów, zamieszczone na końcu Rozdziału: Naprężenia i odkształcenia. My zamować się będziemy tuta wyłącznie sprężystością liniową. Transformaca tensorów i do nowego układu odniesienia. Ponieważ stałe sprężyste są tensorami czwartego rzędu, to ich wzory transformacyne zawieraą iloczyny czterech kosinusów kierunkowych: ' a a a a ' kl kl a im im a n n a ko ko a lp lp mnop mnop ( W równaniach tych zastosowana est konwenca sumowania po powtarzaących się wskaźnikach. Po prawe stronie, np., pierwszego z równań występue 8 składowych tensora ze starego układu odniesienia; ponadto równanie to przedstawia 8 równań na poszczególne składowe tensora w nowym układzie odniesienia.

5 Notaca macierzowa Tensory i posiadaą po 8 składowych. Ze względu na przedstawione powyże symetrie, ilość niezależnych składowych est dużo mniesza. Jest to powód dla którego używa się zredukowane notaci zapisu tensorów i, zwane notacą macierzową. Poza tym est rzeczą wygodną operować dwuwymiarową macierzą, którą możemy w sposób przerzysty przedstawić na kartce papieru. Biorąc pod uwagę, że est sześć niezależnych składowych tensorów odkształcenia i naprężeń, tensory i przedstawia się ako macierze o wymiarach (6x6. Istotą tego skróconego zapisu est zastępowanie pary wskaźników ednym, zgodnie z następuącą regułą: stare wskaźniki nowe wskaźniki,,, 6 ( Rozpocznmy od tensora : 6 (6 Zamieniaąc tensor na macierz kolumnową, używamy dodatkowo współczynników przy składowych ścinaących (czynnik ten uwzględnia fakt, że istnieą zawsze dwie, równe sobie składowe ścinaące odkształcenia; a zatem przykładowo: 6, gdyż. chemat zamiany tensora na macierz kolumnową podany est poniże: 6 (7 Tensor kl zamieniamy na macierz kwadratową zgodnie z regułami podanymi w tabelce (Równ. : kl mn (8 Ostatecznie prawo Hooke a (Równ. 7a możemy zapisać w postaci macierzowe:

6 Prawo Hooke a: lub też w postaci rozwinięte: (9 i ( hcielibyśmy mieć ten zapis również i w drugą stronę, tzn. i. Konsekwencą Równ. (7 oraz faktu, że również w tensorze odkształcenia są pary równych sobie składowych ścinaących (np., zamiana kl mn est nieco bardzie złożona (niż tensora. Przy redukci tensora do macierzy stosuemy następuący algorytm: p mn mn m ( kl n gdzie redukca wskaźników est dana Równ., zaś czynnik p mn ma następuące wartości: p mn dla m, n p mn dla m, n > p mn dla pozostałych przypadków (m>, n oraz n>, m. Poniże pokazano schematycznie, akie wartości przyporządkowuemy poszczególnym wyrazom macierzy p mn : p mn ( Ostatecznie możemy zapisać prawo Hooke a w postaci macierzowe, przy użyciu macierzy : ( lub też w postaci rozwinięte: i kl ( Zbierzmy, raz eszcze uzyskane relace macierzowe: 6

7 [ ] [ ] [ ] oraz [ ] [ ] [ ] zatem: [ ] [ ] I ( Energia zgromadzona w materiale odkształconym sprężyście dla sprężyny: x Rozciągamy sprężynę na odległość x (od położenia równowagi. Przykładana siła przy wychyleniu x wynosi: Fkx Praca rozciągnięcia sprężyny na odległość x wynosi: x' W F(xdx x' W kxdx kx' W F(x'x' (6 zyli ogólnie: W F(x x (6 a w przypadku odkształcenia -wymiarowego: Rozważmy odkształcenie ednostkowego sześcianu danego materiału. W analogii do Równ. 6 a, całkowita praca odkształcenia sześcianu est sumą prac związanych z poszczególnymi składowymi odkształcenia (, a zatem: W (7 Powyższa praca est ednocześnie energią sprężystą zgromadzoną w ednostkowe obętości materiału (czyli energią właściwą. Równanie powyższe można wyrazić w kilku równoważnych postaciach: 7

8 W lub : W klmn kl mn i i klmn kl mn (8 Wyrażenia powyższe dotyczą energii właściwe (czyli energii na ednostkę obętości. Jeśli liczymy energię sprężystą całego ciała, musimy policzyć całkę po ego obętości: gdzie V est całkowitą obętością ciała. W W(x, y,z dv V (9 WPŁYW YMETRII NA TAŁE PRĘŻYTE ymetria ciała (kryształu wpływa na kształt macierzy stałych sprężystych i. Na początku zauważmy, że macierze i są symetryczne, tzn: i i ( Wynik ten można dostać przy okazi rozważań dotyczących pracy odkształcenia sprężystego ciała. Również symetria ciała wywiera przemożny wpływ na kształt macierzy i. Poniże podamy macierze i dla trzech przypadków symetrii ciał (kryształów: sześcienne, rombowe i izotropowe. ymetria sześcienna: [ ] ( Występuą tuta trzy różne współczynniki,,, które definiuą niezerowych wyrazów te macierzy. Oczywiście kształt macierzy est identyczny. ymetria rombowa 66 ( 8

9 Występue tuta 9 niezależnych współczynników, które definiuą niezerowych wyrazów macierzy. Kształt macierzy est identyczny. Zauważmy, że im niższa symetria ciała tym więce będzie niezależnych współczynników, definiuących macierz sprężystości. W przypadku ciała o naniższe możliwe symetrii, czyli kryształu tróskośnego, niezależnych współczynników będzie. Materiał izotropowy Przykładem materiału izotropowego może być ciało o strukturze amorficzne (szkło, zastygła smoła itp., ale także polikryształ bez tekstury (est to tzw. ciało quasi-izotropowe. Łatwo można wykazać, że w przypadku ciała izotropowego tylko dwie niezależne stałe λ i µ (stałe Lamé go definiuą całą macierz sprężystości. I tak: λ, µ oraz λ+µ. Macierze i maą następuącą postać: λ + µ λ λ λ λ + µ λ λ λ λ + µ µ µ µ ( ( ( ( ( gdzie: µ + λ µ ( λ + µ λ µ λ + µ ( µ ( Przykłady zastosowań: a materiał izotropowy pod obciążeniem osiowym: Rozciągamy materiał w kierunku osi x. Relaca łącząca i est następuąca: 9

10 czyli: E ( Obok wydłużenia, w kierunku x, wystąpią też skrócenia poprzeczne: (6 Interesuący est stosunek obu skrócenia poprzecznego do wydłużenia; podae go współczynnik Poissona (ν: ν W świetle relaci podanych wyże: ν (7 (8 b ścinanie ciała izotropowego: x x Zmiana kształtu ciała pod wpływem odkształcenia typu ścinaącego x x Załóżmy, że przykładamy naprężenie ścinaące (pozostałe składowe są zerowe. Korzystaąc z Równ. i : ( (9 Z drugie strony, z klasyczne postaci prawa Hooke a ( G Po porównaniu otrzymuemy następuące wyrażenie na moduł ścinania Gµ : G µ ( ( Różne wprowadzone uż przez nas stałe sprężystości dla ciała izotropowego nie są od siebie niezależne. I tak, wiedząc, że: E oraz ν otrzymuemy:

11 G ν + E E E ( + ν ( c odkształcenie materiału izotropowego pod wpływem naprężeń hydrostatycznych Jest to stan naprężeń, w którym występuą tylko składowe normalne o takie same wartości p: 6 p Taki stan naprężeń panue np. w cieczy (na stałe wysokości. tosuąc uogólnione prawo Hooke a: [ ] [ ] [ ] dla ośrodka izotropowego otrzymuemy: p + p p( + p p + p + p 6 p( p( Względna zmiana obętości, czyli dylataca : V + + p( V A zatem moduł sprężystości obętościowe, K, wynosi: p p p K V p( + ( V + ( ( ( (6 Ostatecznie: K [( (7 + ] Moduł sprężystości obętościowe K możemy wyrazić również przez E i ν (korzystaąc z Równ. ( i (8: E K ν (8 ( Wartości współczynnika Poissona Wykorzystuąc Równ. ( i (8 obliczmy wyrażenie: K ( + ν G ( ν (9 Wyliczmy stąd ν:

12 K ν G K 6 + G ( Na podstawie te zależności znadziemy granice w akich może się zmieniać ν. K ν G Gdyby zatem zakres dopuszczalny wynosi: <ν<. K ( ν G Przykładowe wartości dla materiałów: piryt żelaza Fe : ν -. Ni Al, N : ν< (związki te to tzw. auksetyki r : ν - bardzo małe wartości uemne Be: ν metale polikrystaliczne: ν guma: ν Na koniec zobaczmy, akie są typowe wartości stałych sprężystości. Współczynnik Poissona est bezwymiarowy, natomiast pozostałe stałe wyrażone zostały w GPa ( Pa N/m : Materiał E K G ν Granica Wytrzymałości Aluminium tal (Fe-α Mosiądz Ołów Duraluminium Miedź 7 6. ód W tabelce te podano również dla kilku metali tzw. granicę wytrzymałości. Jest to maksymalna wartość naprężenia normalnego akiemu może być poddana próbka; powyże niego próbka ulega przewężeniu, a następnie zerwaniu. Anizotropia sprężysta zęsto ako wskaźnika anizotropii sprężystości ciał (kryształów używa się współczynnika Zenera: ( A Łatwo sprawdzić, że dla ciała izotropowego: A.

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ

11. WŁASNOŚCI SPRĘŻYSTE CIAŁ 11. WŁANOŚCI PRĘŻYTE CIAŁ Efektem działania siły może być przyspieszanie ciała, ae może być także jego deformacja. Przykładami tego ostatniego są np.: rozciąganie gumy a także zginanie ub rozciąganie pręta.

Bardziej szczegółowo

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie Rozciąganie lub ściskanie Zginanie Skręcanie Ścinanie 1. Pręt rozciągany lub ściskany

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

UOGÓLNIONE PRAWO HOOKE A

UOGÓLNIONE PRAWO HOOKE A UOGÓLNIONE PRAWO HOOKE A Układ liniowosprężysty Clapeyrona Robert Hooke podał następującą, pierwotna postać prawa liniowej sprężystości: ut tensio sic vis, czyli takie wydłużenie jaka siła W klasycznej

Bardziej szczegółowo

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia

Podstawowe pojęcia wytrzymałości materiałów. Statyczna próba rozciągania metali. Warunek nośności i użytkowania. Założenia Wytrzymałość materiałów dział mechaniki obejmujący badania teoretyczne i doświadczalne procesów odkształceń i niszczenia ciał pod wpływem różnego rodzaju oddziaływań (obciążeń) Podstawowe pojęcia wytrzymałości

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

σ ij x 3 x 2 x 1 NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów

σ ij x 3 x 2 x 1 NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów Krzysztof Wierzbanowski NAPRĘŻENIA I ODKSZTAŁCENIA Wstęp: Pojęcia te występują w opisie procesu odkształcenia tzn. są to zmiany wymiarów ciała pod wpływem przyłożonych sił. Siły powinny być znormalizowane

Bardziej szczegółowo

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis

Nauka o Materiałach. Wykład VIII. Odkształcenie materiałów właściwości sprężyste. Jerzy Lis Nauka o Materiałach Wykład VIII Odkształcenie materiałów właściwości sprężyste Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Właściwości materiałów -wprowadzenie 2. Klasyfikacja reologiczna odkształcenia

Bardziej szczegółowo

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY.

SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. ĆWICZENIE 5 SPRAWDZENIE PRAWA HOOKE'A, WYZNACZANIE MODUŁU YOUNGA, WSPÓŁCZYNNIKA POISSONA, MODUŁU SZTYWNOŚCI I ŚCIŚLIWOŚCI DLA MIKROGUMY. Wprowadzenie Odkształcenie, którego doznaje ciało pod działaniem

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Wykład 5. Skręcanie nieskrępowane prętów o przekroju prostokątnym.

Wykład 5. Skręcanie nieskrępowane prętów o przekroju prostokątnym. Adresy internetowe, pod którymi można znaleźć wykłady z Wytrzymałości Materiałów: Politechnika Krakowska http://limba.wil.pk.edu.pl/kwm-edu.html Politechnika Łódzka http://kmm.p.lodz.pl/dydaktyka Wykład

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11

WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. RUCHU PŁYNU. 1/11 WYKŁAD 4 ZASADA ZMIENNOŚCI PĘDU I OGÓLNE RÓWNANIA RUCHU PŁYNU. ZNACZENIE ZASADY ZMIENNOŚCI KRĘTU. 1/11 RÓŻNICZKOWE RÓWNANIA RUCHU PŁYNU Wiemy uż, że Zasada Zmienności Pędu est szczególnym przypadkiem ogólne

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: STATYCZNA PRÓBA ROZCIĄGANIA oprac. dr inż. Jarosław Filipiak Cel ćwiczenia 1. Zapoznanie się ze sposobem przeprowadzania statycznej

Bardziej szczegółowo

Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów.

Rys Przykładowe krzywe naprężenia w funkcji odkształcenia dla a) metali b) polimerów. 6. Właściwości mechaniczne II Na bieżących zajęciach będziemy kontynuować tematykę właściwości mechanicznych, którą zaczęliśmy tygodnie temu. Ponownie będzie nam potrzebny wcześniej wprowadzony słowniczek:

Bardziej szczegółowo

ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2.

ROZDZIAŁ 2 RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW KONFIGURACJA OSIOWA. σ = (2.1a) ε = (2.1b) σ = i, j = 1,2,...6 (2.2a) ε = i, j = 1,2,...6 (2. ROZDZIAŁ J. German: PODTAWY MCHANIKI KOMPOZYTÓW WŁÓKNITYCH ROZDZIAŁ RÓWNANIA FIZYCZN DLA KOMPOZYTÓW KONFIGURACJA OIOWA W rozdziale tym zostaną przedstawione równania fizyczne dla materiałów anizotropowych,

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Wytrzymałość Materiałów

Wytrzymałość Materiałów Wytrzymałość Materiałów Rozciąganie/ ściskanie prętów prostych Naprężenia i odkształcenia, statyczna próba rozciągania i ściskania, właściwości mechaniczne, projektowanie elementów obciążonych osiowo.

Bardziej szczegółowo

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych

LABORATORIUM ELEKTROAKUSTYKI. ĆWICZENIE NR 1 Drgania układów mechanicznych LABORATORIUM ELEKTROAKUSTYKI ĆWICZENIE NR Drgania układów mechanicznych Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z właściwościami układów drgających oraz metodami pomiaru i analizy drgań. W ramach

Bardziej szczegółowo

INSTRUKCJA DO CWICZENIA NR 5

INSTRUKCJA DO CWICZENIA NR 5 INTRUKCJA DO CWICZENIA NR 5 Temat ćwiczenia: tatyczna próba ściskania materiałów kruchych Celem ćwiczenia jest wykonanie próby statycznego ściskania materiałów kruchych, na podstawie której można określić

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA

1.5. ZWIĄZKI KONSTYTUTYWNE STRONA FIZYCZNA J. Wyrwał, Wykłady z echaniki ateriałów.5. ZWIĄZKI KONSTYTUTYWN STRONA FIZYCZNA.5.. Wprowadzenie Wyprowadzone w rozdziałach.3 (strona statyczna) i.4 (strona geoetryczna) równania (.3.36) i (.4.) są niezależne

Bardziej szczegółowo

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania

Ćw. 3. Wyznaczanie modułu Younga metodą jednostronnego rozciągania KATEDRA FIZYKI STOSOWANEJ P R A C O W N I A F I Z Y K I Ćw.. Wyznaczanie modułu Younga metodą jednostronnego rozciągania Wprowadzenie Ze względu na budowę struktury cząsteczkowej, ciała stałe możemy podzielić

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Materiały Reaktorowe. Właściwości mechaniczne

Materiały Reaktorowe. Właściwości mechaniczne Materiały Reaktorowe Właściwości mechaniczne Naprężenie i odkształcenie F A 0 l i l 0 l 0 l l 0 a. naprężenie rozciągające b. naprężenie ściskające c. naprężenie ścinające d. Naprężenie torsyjne Naprężenie

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis

Nauka o Materiałach. Wykład XI. Właściwości cieplne. Jerzy Lis Nauka o Materiałach Wykład XI Właściwości cieplne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe 3. Przewodnictwo cieplne 4. Rozszerzalność

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Ćwiczenie 11. Moduł Younga

Ćwiczenie 11. Moduł Younga Ćwiczenie 11. Moduł Younga Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Wyznaczenie modułu Younga metodą statyczną za pomocą pomiaru wydłużenia drutu z badanego materiału obciążonego stałą siłą.

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE

Autor: mgr inż. Robert Cypryjański METODY KOMPUTEROWE METODY KOMPUTEROWE PRZYKŁAD ZADANIA NR 1: ANALIZA STATYCZNA KRATOWNICY PŁASKIEJ ZA POMOCĄ MACIERZOWEJ METODY PRZEMIESZCZEŃ Polecenie: Wykonać obliczenia statyczne kratownicy za pomocą macierzowej metody

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Wykład 8: Lepko-sprężyste odkształcenia ciał

Wykład 8: Lepko-sprężyste odkształcenia ciał Wykład 8: Lepko-sprężyste odkształcenia ciał Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.pl Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków,

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne. Funkcja homograficzna. Definicja. Funkcja homograficzna jest to funkcja określona wzorem f() = a + b c + d, () gdzie współczynniki

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW

MATERIAŁOZNAWSTWO vs WYTRZYMAŁOŚĆ MATERIAŁÓW ĆWICZENIA LABORATORYJNE Z MATERIAŁOZNAWSTWA Statyczna próba rozciągania stali Wyznaczanie charakterystyki naprężeniowo odkształceniowej. Określanie: granicy sprężystości, plastyczności, wytrzymałości na

Bardziej szczegółowo

4. Elementy liniowej Teorii Sprężystości

4. Elementy liniowej Teorii Sprężystości 4. lementy liniowej Teorii Sprężystości 4.1. Podstawowe założenia i hipotezy liniowej TS. 4.2. Stan naprężenia w punkcie 4.3. Równania równowagi stanu naprężenia 4.4. Stan odkształcenia w punkcie 4.5.

Bardziej szczegółowo

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży

STAN NAPRĘŻENIA. dr hab. inż. Tadeusz Chyży STAN NAPRĘŻENIA dr hab. inż. Tadeusz Chyży 1 SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE Rozważmy ciało o objętości V 0 ograniczone powierzchnią S 0, poddane działaniu sił będących w równowadze. Rozróżniamy tutaj

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

BADANIA OPERACYJNE ANALITYKA GOSPODARCZA

BADANIA OPERACYJNE ANALITYKA GOSPODARCZA BADANIA OPERACYJNE ANALITYKA GOSPODARCZA Egzamin pisemny 8.4.7 piątek, salae-6, godz. 8:-9:3 OBECNOŚĆ OBOWIĄZKOWA!!! Układ egzaminu. TEST z teorii: minut (test wielostronnego wyboru; próg 75%). ZADANIA:

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie Teoria sprężystości jest działem mechaniki, zajmującym się bryłami sztywnymi i ciałami plastycznymi. Sprężystość zajmuje się odkształceniami

Bardziej szczegółowo

Wyboczenie ściskanego pręta

Wyboczenie ściskanego pręta Wszelkie prawa zastrzeżone Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: 1. Wstęp Wyboczenie ściskanego pręta oprac. dr inż. Ludomir J. Jankowski Zagadnienie wyboczenia

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE ZACHOWANIA SIĘ MATERIAŁÓW PODCZAS ŚCISKANIA Instrukcja przeznaczona jest dla studentów

Bardziej szczegółowo

WYKŁAD 7 SIŁY WEWNĘTRZNE W PŁYNIE. ZWIĄZKI KONSTYTUTYWNE. PŁYN NEWTONOWSKI.

WYKŁAD 7 SIŁY WEWNĘTRZNE W PŁYNIE. ZWIĄZKI KONSTYTUTYWNE. PŁYN NEWTONOWSKI. WYKŁAD 7 SIŁY WEWNĘTRZNE W PŁYNIE. ZWIĄZKI KONSTYTUTYWNE. PŁYN NEWTONOWSKI. 1/1 OPIS SIŁ WEWNĘTRZNYCH W PŁYNIE. TENSOR NAPRĘŻEŃ. Zgodnie z hipotezą Cauchy ego, siły reakci dwóch części płynu wynikaące

Bardziej szczegółowo

Fizyka 11. Janusz Andrzejewski

Fizyka 11. Janusz Andrzejewski Fizyka 11 Ruch okresowy Każdy ruch powtarzający się w regularnych odstępach czasu nazywa się ruchem okresowym lub drganiami. Drgania tłumione ruch stopniowo zanika, a na skutek tarcia energia mechaniczna

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów

WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ MATERIAŁ. Właściwości materiałów. Właściwości materiałów WŁAŚCIWOŚCI MECHANICZNE SPRĘŻYSTOŚĆ Właściwości materiałów O możliwości zastosowania danego materiału decydują jego właściwości użytkowe; Zachowanie się danego materiału w środowisku pracy to zaplanowana

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

9. PODSTAWY TEORII PLASTYCZNOŚCI

9. PODSTAWY TEORII PLASTYCZNOŚCI 9. PODSTAWY TEORII PLASTYCZNOŚCI 1 9. 9. PODSTAWY TEORII PLASTYCZNOŚCI 9.1. Pierwsze kroki Do tej pory zajmowaliśmy się w analizie ciał i konstrukcji tylko analizą sprężystą. Nie zastanawialiśmy się, co

Bardziej szczegółowo

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO

BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO ĆWICZENIE 36 BADANIE DRGAŃ TŁUMIONYCH WAHADŁA FIZYCZNEGO Cel ćwiczenia: Wyznaczenie podstawowych parametrów drgań tłumionych: okresu (T), częstotliwości (f), częstotliwości kołowej (ω), współczynnika tłumienia

Bardziej szczegółowo

5. Indeksy materiałowe

5. Indeksy materiałowe 5. Indeksy materiałowe 5.1. Obciążenia i odkształcenia Na poprzednich zajęciach poznaliśmy różne możliwe typy obciążenia materiału. Na bieżących, skupimy się na zagadnieniu projektowania materiałów tak,

Bardziej szczegółowo

VI. Równania różniczkowe liniowe wyższych rzędów

VI. Równania różniczkowe liniowe wyższych rzędów VI. 1. Równanie różniczkowe liniowe n-tego rzędu o zmiennych współczynnikach Niech podobnie jak w poprzednim paragrafie K = C lub K = R. Podobnie jak w dziedzinie rzeczywistej wprowadzamy pochodne wyższych

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Fizyczne właściwości materiałów rolniczych

Fizyczne właściwości materiałów rolniczych Fizyczne właściwości materiałów rolniczych Właściwości mechaniczne TRiL 1 rok Stefan Cenkowski (UoM Canada) Marek Markowski Katedra Inżynierii Systemów WNT UWM Podstawowe koncepcje reologii Reologia nauka

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Rachunek Prawdopodobieństwa istatystyka W4 Rozkład normalny Parametry rozkładu zmienne losowe Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny - standaryzaca

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH

STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i

Bardziej szczegółowo

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania Charakterystyczne wielkości i równania PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny Instytut L-5, Wydział Inżynierii Lądowej,

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a); Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Wektory i wartości własne

Wektory i wartości własne Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com

Bardziej szczegółowo

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW.

Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, Andrzej Wysmołek Komitet Główny Olimpiady Fizycznej, IFD UW. XLVIII OLIMPIADA FIZYCZNA (1998/1999). Stopień III, zadanie doświadczalne D Źródło: Komitet Główny Olimpiady Fizycznej A. Wysmołek; Fizyka w Szkole nr 1, 2000. Autor: Nazwa zadania: Działy: Słowa kluczowe:

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013)

CZAS I PRZESTRZEŃ EINSTEINA. Szczególna teoria względności. Spotkanie II ( marzec/kwiecień, 2013) CZAS I PRZESTRZEŃ EINSTEINA Szczególna teoria względności Spotkanie II ( marzec/kwiecień, 013) u Masa w szczególnej teorii względności u Określenie relatywistycznego pędu u Wyprowadzenie wzoru Einsteina

Bardziej szczegółowo

Algebra liniowa. Macierze i układy równań liniowych

Algebra liniowa. Macierze i układy równań liniowych Algebra liniowa Macierze i układy równań liniowych Własności wyznaczników det I = 1, det(ab) = det A det B, det(a T ) = det A. Macierz nieosobliwa Niech A będzie macierzą kwadratową wymiaru n n. Mówimy,

Bardziej szczegółowo

SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA

SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA ĆWICZENIE 10 SPRAWDZANIE PRAWA HOOKE A I WYZNACZANIE MODUŁU YOUNGA Cel ćwiczenia: Sprawdzenie prawa Hooke a oraz wyznaczenie modułu Younga badanego metalu metodą pomiaru wydłużenia. Zagadnienia: sprężystość,

Bardziej szczegółowo