Obliczenia inspirowane Naturą

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczenia inspirowane Naturą"

Transkrypt

1 Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/ / 43

2 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje wymiaru / 43

3 Określenie nieformalne W jaki sposób określa się fraktale? 1 Są to obiekty określone zależnością rekurencyjną, a nie wzorem. 2 Mają one cechę samopodobieństwa, czyli każda część wygląda jak pomniejszona całość. 3 Ich wymiar nie jest liczbą całkowitą. 3 / 43

4 ... nic nie wyjaśnia Określenie nieformalne 1 Niektóre fraktale można opisać zwartym wzorem. Przykład to zbiór Cantora, który zawiera punkty o współrzędnych zadanych wzorem a k x = 3 k, dla a k {1, 2}. k=1 2 Odcinek składa się z części które wyglądają dokładnie tak samo jak cały odcinek. 3 Niektóre fraktale mają wymiar całkowity. Przykładem jest piramida Sierpińskiego. 4 / 43

5 Zbiór Mandelbrota Pierwsze przykłady fraktali pojawiły się przez wymyśleniem nazwy fraktal. 1872, Karl Weierstrass przykład funkcji ciągłej nigdzie nieróżniczkowalnej Inne przykłady: 1874, Henry Smith; 1883, Georg Cantor zbiór Cantora; 1904, Helge von Koch krzywa (śnieżynka) Kocha; 1916, Wacław Sierpiński dywan Sierpińskiego; Zwykle były to obiekty problematyczne z matematycznego punktu widzenia. 5 / 43

6 Zbiór Mandelbrota W roku 1872 Karl Weierstrass podał przykład ciągłej funkcji rzeczywistej która nie posiada pochodnej. Oryginalnie zdefiniowana była w postaci szeregu Fouriera w a,b (x) = a n cos(b n πx), dla ab > π. n=0 Równoważne określenie w postaci szeregu: w a (x) = k=1 sin πk a x πk a 6 / 43

7 Zbiór Mandelbrota na [0, 1] dla a = 2 ( 7 / 43

8 Zbiór Mandelbrota na [0, 0.1] dla a = 2 8 / 43

9 Zbiór Mandelbrota na [0.9, 0.1] dla a = 2 9 / 43

10 wzór dla liczb wymiernych Zbiór Mandelbrota Dla liczb wymiernych funkcja Weierstrassa ma postać ) ( ) p w = π q 1 sin (k 2 p q π ( ) q 4q k=1 sin kπ 2q 10 / 43

11 wzór dla liczb wymiernych Zbiór Mandelbrota na [ 10000, ] w wersji dla funkcji wymiernych (z krokiem ) i interpolacja szeregu. 11 / 43

12 Zbiór Mandelbrota Wersja tekstowa Zbiór Mandelbrota Pierwszy rysunek zbioru Mandelbrota ( 12 / 43

13 Zbiór Mandelbrota Wersja czarno-biała Zbiór Mandelbrota Rozdzielczość na [ 2, 1] [ 1, 1], 50 iteracji. 13 / 43

14 Zbiór Mandelbrota Definicja Zbiór Mandelbrota Zbiór Mandelbrota jest określony poprzez własności funkcji z(k) = z 2 (k 1) + z 0 za warunkiem początkowym z(0) = z 0. jest zdefiniowany na płaszczyźnie zespolonej; zawiera punkty dla których zachodzi {z 0 : k z 2 (k) < 2} 14 / 43

15 Zbiór Mandelbrota Przybliżenie Zbiór Mandelbrota Piąta iteracja zbioru Mandelbrota. 15 / 43

16 Zbiór Cantora Konstrukcja Zbiór Mandelbrota odcinek [0, 1] podziel na trzy części usuń odcinek ( 1 3, 2 3 ), pozostawiając jego punkty brzegowe powtórz powyższe kroki dla odcinków [0, 1 3 ] i [ 2 3, 1] 16 / 43

17 Zbiór Cantora Przykład Zbiór Mandelbrota Piąta iteracja 17 / 43

18 Zbiór Cantora Własności Zbiór Mandelbrota jest nieprzeliczalny można zbudować surjekcję na [0, 1]; jest miary zero; 18 / 43

19 Zbiór Cantora Uogólnienia Zbiór Mandelbrota Dwa uogólnienia na płaszczyźnie to: dywan Sierpińskiego pył Cantora 19 / 43

20 Trójkąt Sierpińskiego Konstrukcja Zbiór Mandelbrota trójkąt równoboczny podziel na cztery równe trójkąty równoboczne; usuń środkowy trójkąt; zastosuj powyższe kroki do pozostałych trzech trójkątów. 20 / 43

21 Trójkąt Sierpińskiego Przykład Zbiór Mandelbrota 21 / 43

22 Śnieżka Kocha Konstrukcja Zbiór Mandelbrota podziel odcinek na trzy równe części narysuj trójkąt równoboczny o podstawie będącej środkowym odcinkiem usuń podstawę trójkąta 22 / 43

23 Nieformalnie Określenie nieformalne pudełkowy Inne definicje wymiaru Liczba współrzędnych które trzeba podać aby określić obiekt. Na początku XX w. określenie czym jest wymiar było jednym z najważniejszych problemów w matematyce. 23 / 43

24 pudełkowy (fraktalny) Określenie nieformalne pudełkowy Inne definicje wymiaru pudełkowy Określenie wymiaru pudełkowego pochodzi od Hermana Mińkowskiego. Interesuje nas określenie wymiaru obiektu F zanurzonego w n-wymiarowej przestrzenie euklidesowej. korzystamy z miarki o boku ɛ (np. odcinka, kwadratu, itd.); przez N ɛ (F ) oznaczamy minimalną ilość miarek o boku ɛ potrzebną do nakrycia obiektu F ; 24 / 43

25 pudełkowy (fraktalny) Określenie nieformalne pudełkowy Inne definicje wymiaru W przybliżeniu zachodzi zależność N ɛ (F ) 1 ɛ d, gdzie liczbę d można traktować jako wymiar obiektu F. Dokładną wartość d uzyskujemy przechodząc do granicy z rozmiarem miarki, dim B (F ) = lim ɛ 0 log N ɛ (F ) log 1/ɛ 25 / 43

26 pudełkowy (fraktalny) przykład Określenie nieformalne pudełkowy Inne definicje wymiaru Lewis Richarson (1961) Pomiar długości linii brzegowej Wysp Brytyjskich. długością linii brzegowej L(λ) jest długość najkrótszej łamanej złożonej z odcinków o długości λ, takiej, że punkty leżą zawsze na brzegu wyspy, L(λ) = λn(λ) dla krzywych gładkich, przy λ 0, istnieje granica L(λ); okazuje się, że wraz z malejącym λ ilośc odcinków N(λ) rośnie szybciej niż dla krzywych gładkich, N(λ) λ d, gdzie d > / 43

27 pudełkowy (fraktalny) przykład Określenie nieformalne pudełkowy Inne definicje wymiaru Dla zachodniego wybrzeża Wysp Brytyjskich zachodzi d Oczywiście w tym przypadku nie jest możliwe dokonanie przejścia granicznego z długością miarki, λ 0. Początek badania fraktali Eksperyment Richarsona stał się znany dzięki pracy Benoît Mandelbrota How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension opublikowanego w Science w 1967 roku. 27 / 43

28 Hausdorffa Określenie nieformalne pudełkowy Inne definicje wymiaru Określenie wprowadzone w 1918 przez Feliksa Hausdorffa. Pokryciem B zbioru F R n nazywamy rodzinę kul, których suma zawiera F. Średnicą pokrycia nazywamy średnicę największej z kul, α(d, ɛ) = inf B (diam A) d, A B gdzie diam A to maksymalna odległość między elementami A. 28 / 43

29 Hausdorffa Określenie nieformalne pudełkowy Inne definicje wymiaru Hausdorffa Istnieje dokładnie jedna liczba d 0, taka, że { dla d < d0 lim α(d, ɛ) = ɛ 0 0 dla d > d 0 Liczę d 0 nazywamy wymiarem Hausdorffa zbioru F i oznaczamy dim H (F ). 29 / 43

30 Hausdorffa własności Określenie nieformalne pudełkowy Inne definicje wymiaru Własności wymiaru Hausdorffa: jeżeli A B R n, to dim H (A) dim H (B); jeżeli A R n i B R n, to dim H (A) + dim H (B) dim H (A B); dla sumy dim H (A B) = max{dim H A, dim H B}; dla zbioru A otwartego w R n, dim H A = n; dla podzbiorów R n mających zerową miarę Lebesgue a, wymiar Hausdorffa może przybierać wartości od 0 do n. 30 / 43

31 Hausdorffa własności Określenie nieformalne pudełkowy Inne definicje wymiaru Każdy zbiór na płaszczyźnie można z dowolną dokładnością przybliżyć zbiorem o zadanym wymiarze Hausdorffa. Na pytanie Czy zbiór przedstawiony na rysunku jest fraktalem? można zawsze odpowiedzieć twierdząco. 31 / 43

32 topologiczny Określenie nieformalne pudełkowy Inne definicje wymiaru topologiczny Formalnie wprowadził to pojęcie Eduard Čech bazując na wynikach Henriego Lebesguea. 32 / 43

33 topologiczny Określenie nieformalne pudełkowy Inne definicje wymiaru Niech F będzie podzbiorem przestrzeni metrycznej. topologiczny zbioru F definiujemy jako: dim T ( ) = 1; dim T (F ) = n wtedy i tylko wtedy gdy, dla każdego x F i każdego otoczenia U x punktu x, istnieje x V U x taki, że dim T (δv F ) n 1; liczba n jest najmniejszą liczbą naturalną dla której zachodzi powyższa nierówność. 33 / 43

34 topologiczny własności Określenie nieformalne pudełkowy Inne definicje wymiaru Własności wymiaru topologicznego: Dla zbiorów niepustych wymiar topologiczny jest zawsze liczbą całkowitą nieujemną. Jest zawsze mniejszy lub równy wymiarowi Hausdorffa. Jest niezmiennikiem topologicznym dwie homeomorficzne przestrzenie mają ten sam wymiar topologiczny. 34 / 43

35 Fraktal m nazywamy zbiór, którego wymiar topologiczny jest różny od wymiaru Hausdorffa. 35 / 43

36 Przykłady Co jest a co nie jest fraktalem? Gwiazdka Kocha jest fraktalem, ale jej wnętrze nie jest fraktalem. Zbiór Mandelbrota nie jest fraktalem, ale jego brzeg jest fraktalem. Zbiór Cantora jest fraktalem, ale istnieją zbiory homeomorficzne z nim które nie są fraktalami. m jest piramida Sierpińskiego, chociaż jej wymiar jest liczbą całkowitą. 36 / 43

37 Przykłady y wybranych fraktali: funkcja Weierstrass: 3 2 (brak dowodu) wybrzeże Norwegii: 1.52 złoty smok: log ϕ ϕ ϕ kalafior: 2.33 powierzchnia mózgu: 2.79 powierzchnia płuc: 2.97 Więcej na of fractals by Hausdorff dimension 37 / 43

38 Odpowiednik wymiaru fraktalnego w analizie szeregów czasowych. 1951, Harold Edwin Hurst pomiary długozakresowych tendencji w poziomach wody. Daje on miarę nieuporządkowania danych (sygnału czasowego). 38 / 43

39 Definicja Zadany jest ciąg danych pozyskiwanych w czasie ψ(t), gdzie t jest zmienną dyskretną. Średnia i odchylenie standardowe sygnału w przedziale (0, τ) są zdefiniowane jako µ τ [ψ(t)] = 1 τ ψ(t) τ t=1 S τ [ψ(t)] = 1 τ (ψ(t) µ τ τ [ψ(t)]) t=1 39 / 43

40 Definicja Dla sygnału możemy określić akumulowane odchylenie standardowe jest zdefiniowane jako t X (t, τ) = (ψ(u) µ t [ψ]) u=1 oraz jego zakres na przedziale (0, τ) dla 1 t τ. Analiza R/S R(τ) = max X (t, τ) min X (t, τ) Analiza R/S to badanie zależności stosunku R/S od τ. 40 / 43

41 Przykład Efekt korelacji w danych: Jeżeli nie ma korelacji między kolejnymi wartościami sygnału, to π R/S = 2 τ. Hurst badał zmiany poziomu wód w Nilu i w takim przypadku ( ) τ H R/S =, 2 gdzie H = 0.73 ± Zależność tą nazywamy prawem Hursta, a liczbę H określa się mianem wykładnikiem Hursta. 41 / 43

42 Związek z wymiarem fraktalnym wykładnik Hurst jest miarą zależności długozakresowych, natomiast wymiar fraktalny jest własnością lokalną w przypadku danych samoafinicznych (skalujących się różnie w różnych kierunkach), zachodzi zależność dim B +H = n / 43

43 Dzień Sierpińskiego na Politechnice Śląskiej 02/04/ (Złoty Smok, glito.png) 43 / 43

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,

Bardziej szczegółowo

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

samopodobnym nieskończenie subtelny

samopodobnym nieskończenie subtelny Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Wstęp Rekurencja jest to wywołanie podprogramu (procedury) samej przez siebie. W logo zapis rekurencji będzie wyglądał następująco: oto nazwa_funkcji czynności_wykonywane_przez_procedurę nazwa_funkcji

Bardziej szczegółowo

Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych

Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych Sierpiński Carpet Project W ZSTiL Zespół Szkół Technicznych i Licealnych Co to jest fraktal? Fraktale są obiektami matematycznymi, których podstawowa struktura powtarza się przy różnych powiększeniach.

Bardziej szczegółowo

Modele i symulacje - Scratch i Excel

Modele i symulacje - Scratch i Excel Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki, animacje,

Bardziej szczegółowo

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka + Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1 Podobieństwo figur informatyka + 2 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Symulacje komputerowe w fizyce Fraktale

Symulacje komputerowe w fizyce Fraktale Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 13 i 15/11/2017

Bardziej szczegółowo

Funkcje dwóch zmiennych, pochodne cząstkowe

Funkcje dwóch zmiennych, pochodne cząstkowe Wykłady z matematyki inżynierskiej Funkcje dwóch zmiennych, pochodne cząstkowe JJ, IMiF UTP 17 f (x, y) DEFINICJA. Funkcja dwóch zmiennych określona w zbiorze D R 2, to przyporządkowanie każdemu punktowi

Bardziej szczegółowo

Fraktale. i Rachunek Prawdopodobieństwa

Fraktale. i Rachunek Prawdopodobieństwa Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej

Bardziej szczegółowo

Topologia I Wykład 4.

Topologia I Wykład 4. Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych

Bardziej szczegółowo

Robert Kowalczyk. Zbiór zadań z teorii miary i całki

Robert Kowalczyk. Zbiór zadań z teorii miary i całki Robert Kowalczyk Zbiór zadań z teorii miary i całki 2 Zadanie 1 Pokazać, że poniższe dwie definicje σ-ciała M są równoważne: (i) Rodzinę M podzbiorów przestrzeni X nazywamy σ-ciałem jeżeli zachodzą następujące

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Wykład 4: Fraktale deterministyczne i stochastyczne

Wykład 4: Fraktale deterministyczne i stochastyczne Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak

Bardziej szczegółowo

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak

Obliczanie długości łuku krzywych. Autorzy: Witold Majdak Obliczanie długości łuku krzywych Autorzy: Witold Majdak 7 Obliczanie długości łuku krzywych Autor: Witold Majdak DEFINICJA Definicja : Długość łuku krzywej zadanej parametrycznie Rozważmy krzywą Γ zadaną

Bardziej szczegółowo

Zbiór Cantora. Diabelskie schody.

Zbiór Cantora. Diabelskie schody. Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI

METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI WALDEMAR RATAJCZAK Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej, Uniwersytet im. Adama Mickiewicza, Poznań 1. WSTĘP

Bardziej szczegółowo

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS)

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS) Fraktale Plan prezentacji Wprowadzenie Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D Klasyczne fraktale Iteracyjny system funkcji (IFS) L-system Zbiory Julii i Mandelbrota Ruchy

Bardziej szczegółowo

Własności multifraktalne serii czasowych

Własności multifraktalne serii czasowych Własności multifraktalne serii czasowych D. Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański Luty/Marzec 2009 nieformalnie... Skalowanie: rozumie się jako brak charakterystycznej skali czasowej

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Zadania do Rozdziału X

Zadania do Rozdziału X Zadania do Rozdziału X 1. 2. Znajdź wszystkie σ-ciała podzbiorów X, gdy X = (i) {1, 2}, (ii){1, 2, 3}. (b) Znajdź wszystkie elementy σ-ciała generowanego przez {{1, 2}, {2, 3}} dla X = {1, 2, 3, 4}. Wykaż,

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

Wykłady... b i a i. i=1. m(d k ) inf

Wykłady... b i a i. i=1. m(d k ) inf Wykłady... CŁKOWNIE FUNKCJI WIELU ZMIENNYCH Zaczniemy od konstrukcji całki na przedziale domkniętym. Konstrukcja ta jest, w gruncie rzeczy, powtórzeniem definicji całki na odcinku domkniętym w R 1. Przedziałem

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 14 KWIETNIA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 5 30 2 3 5

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

Algebra WYKŁAD 3 ALGEBRA 1

Algebra WYKŁAD 3 ALGEBRA 1 Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę

Bardziej szczegółowo

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

7. Miara, zbiory mierzalne oraz funkcje mierzalne. 7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy Rozdział 1 Ciągłość i topologia Nadanie precyzyjnego sensu intiucyjnemu pojęciu ciągłości jest jednym z głównych tematów dziedziny matematyki, zwanej topologią. Definicja funkcji ciągłej znana z podstawowego

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

Dlaczego nie wystarczają liczby wymierne

Dlaczego nie wystarczają liczby wymierne Dlaczego nie wystarczają liczby wymierne Analiza zajmuje się problemami, w których pojawia się przejście graniczne. Przykładami takich problemów w matematyce bądź fizyce mogą być: 1. Pojęcie prędkości

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

Symulacje komputerowe w fizyce Fraktale

Symulacje komputerowe w fizyce Fraktale Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 15/11/2016 Pasteura,

Bardziej szczegółowo

Kurs wyrównawczy - teoria funkcji holomorficznych

Kurs wyrównawczy - teoria funkcji holomorficznych Kurs wyrównawczy - teoria funkcji holomorficznych wykład 1 Gniewomir Sarbicki 15 lutego 2011 Struktura ciała Zbiór par liczb rzeczywistych wyposażamy w działania: { + : (a, b) + (c, d) = (a + c, b + d)

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a

Bardziej szczegółowo

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P, Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

O liczbach niewymiernych

O liczbach niewymiernych O liczbach niewymiernych Agnieszka Bier Spotkania z matematyką jakiej nie znacie ;) 8 stycznia 0 Liczby wymierne i niewymierne Definicja Liczbę a nazywamy wymierną, jeżeli istnieją takie liczby całkowite

Bardziej szczegółowo

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń Obrazy rekurencyjne Zastosowanie rekurencji w algorytmice AUTOR: Martin Śniegoń Zdolność procedury/funkcji do wywoływania samej siebie Podstawowa i jedna z najważniejszych technik programistycznych Umożliwia

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze

Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze Pojęcia, wymagania i przykładowe zadania na egzamin poprawkowy dla klas II w roku szkolnym 2016/2017 w Zespole Szkół Ekonomicznych w Zielonej Górze I. Funkcja i jej własności POZIOM PODSTAWOWY Pojęcie

Bardziej szczegółowo

Ekstrema globalne funkcji

Ekstrema globalne funkcji SIMR 2013/14, Analiza 1, wykład 9, 2013-12-13 Ekstrema globalne funkcji Definicja: Funkcja f : D R ma w punkcie x 0 D minimum globalne wtedy i tylko (x D) f(x) f(x 0 ). Wartość f(x 0 ) nazywamy wartością

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Marzec 2016 POZIOM ROZSZERZONY 1. Rozwiązania zadań i odpowiedzi wpisuj

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania. 10 1 Wykazać, że liczba 008 008 10 + + jest większa od Nie używając kalkulatora, porównać liczby a = log 5 log 0 + log oraz b = 6 5 Rozwiązać równanie x + 4y + x y + 1 = 4xy 4 W prostokątnym układzie współrzędnych

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?. a) X = R, x = arctg x ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i y i ;

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych. Jarosław Wróblewski Analiza Matematyczna, lato 016/17 Kolokwium nr 10: wtorek 6.06.017, godz. 1:15-1:45, materiał zad. 1 40. Liczby zespolone i ich zastosowanie do wyprowadzania tożsamości trygonometrycznych.

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne Zadanie. 4 Rozwiąż równanie 07 sin( ). Wiadomo, że: wyrażenie 4 przyjmuje wartości nieujemne dla każdego

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki Uniwersytet Mikołaja Kopernika w Toruniu Egzamin wstępny z matematyki lipca 2006 roku Zestaw I wariant A Czas trwania egzaminu: 240 minut 1. Dane są zbiory liczbowe A = {x; x R x < 2}, B = {x; x R x +

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp) Kod ucznia Nazwisko i imię ucznia M A T E M A T Y K A klasa -(pp) MAJ 07 Czas pracy: 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron (zadania -4). Ewentualny brak zgłoś przewodniczącemu

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Filip Piękniewski 10:50:29 1 /56. Fraktale i Chaos Filip Piękniewski 2004

Filip Piękniewski 10:50:29 1 /56. Fraktale i Chaos Filip Piękniewski 2004 FRAKTALE i CHAOS czyli czemu nie można zmierzyć powierzchni trawnika? Filip Piękniewski 1 /56 10:50:29 Mierzymy trawnik Traktujemy trawnik jako gładką powierzchnię. Mierzymy wzdłuż jednego i drugiego boku.

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n

Blok V: Ciągi. Różniczkowanie i całkowanie. c) c n = 1 ( 1)n n. d) a n = 1 3, a n+1 = 3 n a n. e) a 1 = 1, a n+1 = a n + ( 1) n V. Napisz 4 początkowe wyrazy ciągu: Blok V: Ciągi. Różniczkowanie i całkowanie a) a n = n b) a n = n + 3 n! c) a n = n! n(n + ) V. Oblicz (lub zapisz) c, c 3, c k, c n k dla: a) c n = 3 n b) c n = 3n

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Funkcje dwóch zmiennych Andrzej Musielak Str Funkcje dwóch zmiennych Wstęp Funkcja rzeczywista dwóch zmiennych to funkcja, której argumentem jest para liczb rzeczywistych, a wartością liczba rzeczywista.

Bardziej szczegółowo

Fraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM

Fraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM Fraktale Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Fraktale Funkcje rekurencyjne 1 / 56 Wprowadzenie Plan na dziś:

Bardziej szczegółowo

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r. MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 2. Aksjomatyczna definicja prawdopodobieństwa Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 10.10.2017 1 / 33 Klasyczna definicja prawdopodobieństwa

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych

Bardziej szczegółowo

Efekt motyla i dziwne atraktory

Efekt motyla i dziwne atraktory O układzie Lorenza Wydział Matematyki i Informatyki Uniwersytet Mikołaja kopernika Toruń, 3 grudnia 2009 Spis treści 1 Wprowadzenie Wyjaśnienie pojęć 2 O dziwnych atraktorach 3 Wyjaśnienie pojęć Dowolny

Bardziej szczegółowo

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3

ZADANIE 1 Ciag (a n ), gdzie n 1, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 ZADANIE 3 ZADANIE Ciag (a n ), gdzie n, jest rosnacym ciagiem geometrycznym. Wyznacz wartość największa funkcji f (x) = 2xa 6 a 2 a 4 a 3 x 2 a 3 a 6. ZADANIE 2 Długości boków trójkata tworza ciag geometryczny.

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Ciągi liczbowe wykład 3

Ciągi liczbowe wykład 3 Ciągi liczbowe wykład 3 dr Mariusz Grządziel 3 kwietnia 203 Definicja (ciągu liczbowego). Ciagiem liczbowym nazywamy funkcję odwzorowuja- ca zbiór liczb naturalnych w zbiór liczb rzeczywistych. Wartość

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Struktury fraktalne jako źródło inspiracji w kształtowaniu formy architektonicznej

Struktury fraktalne jako źródło inspiracji w kształtowaniu formy architektonicznej Politechnika Wrocławska Wydział Architektury Zakład Geometrii Wykreślnej i Perspektywy Malarskiej Praca doktorska Struktury fraktalne jako źródło inspiracji w kształtowaniu formy architektonicznej Piotr

Bardziej szczegółowo

Geometria Lista 0 Zadanie 1

Geometria Lista 0 Zadanie 1 Geometria Lista 0 Zadanie 1. Wyznaczyć wzór na pole równoległoboku rozpiętego na wektorach u, v: (a) nie odwołując się do współrzędnych tych wektorów; (b) odwołując się do współrzędnych względem odpowiednio

Bardziej szczegółowo

Wprowadzenie do struktur o-minimalnych

Wprowadzenie do struktur o-minimalnych Wprowadzenie do struktur o-minimalnych Piotr Pokora 22.02.2009 1 Wprowadzenie do struktur o-minimalnych i pojęcia wstępne Na początku lat 80-tych Pillay i Steinhorn wprowadzili pojęcie o-minimalności bazując

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo