Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +
|
|
- Roman Patryk Cichoń
- 7 lat temu
- Przeglądów:
Transkrypt
1 Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1
2 Podobieństwo figur informatyka + 2
3 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich możemy otrzymać tę drugą. informatyka + 3
4 Figury podobne informatyka + 4
5 Figury podobne informatyka + 5
6 Figury podobne - zastosowanie Trójkąty mające proporcjonalne boki są podobne Czworokąty mające proporcjonalne boki NIE muszą być podobne informatyka + 6
7 Samopodobieństwo informatyka + 7
8 Odcinek informatyka + 8
9 Trójkąt prostokątny równoramienny informatyka + 9
10 Krzywa Kocha informatyka + 10
11 Trójkąt Sierpińskiego informatyka + 11
12 Zbiór Cantora informatyka + 12
13 Gąbka Megera informatyka + 13
14 Fraktale informatyka + 14
15 Benoit Mandelbrot matematyk urodził się Warszawie pracował we Francji i USA pierwszy badał fraktale wprowadził nazwę informatyka + 15
16 Żuk Mandelbrota informatyka + 16
17 Żuk Mandelbrota (powiększenie) informatyka + 17
18 Wymiar informatyka + 18
19 Jeden wymiar informatyka + 19
20 Dwa wymiary informatyka + 20
21 Trzy wymiary informatyka + 21
22 Pudełka figury płaskie bryły informatyka + 22
23 Wymiar pudełkowy odcinka informatyka + 23
24 Wymiar pudełkowy odcinka Rozmiar pudełka Liczba pudełek Zależność = 1 ½ 2 2 = 2 ¼ 4 4 = 4 informatyka + 24
25 Wymiar pudełkowy kwadratu informatyka + 25
26 Wymiar pudełkowy kwadratu Rozmiar pudełka Liczba pudełek Zależność = 1 2 ½ 4 4 = 2 2 ¼ = 4 2 informatyka + 26
27 Wymiar pudełkowy odcinka Rozmiar pudełka Liczba pudełek WYMIAR ODCINKA = 1 1 ½ 2 2 = 2 1 ¼ 4 4 = 4 1 informatyka + 27
28 Wymiar pudełkowy sześcianu informatyka + 28
29 Trójkąt Sierpińskiego informatyka + 29
30 Trójkąt Sierpińskiego Rozmiar pudełka Liczba pudełek WYMIAR TR. SIERP = 1? ½ 3 3 = 2? ¼ 9 9 = 4? informatyka + 30
31 Dygresja: logarytm Logarytm ma podstawę: a Logarytm obliczamy z jakiejś liczby: b Logarytm to wykładnik potęgi do jakiej trzeba podnieść a aby otrzymać b Oznaczenie: log a b informatyka + 31
32 Dygresja: logarytm (przykłady) log 3 9=2 bo 3 2 =9 log 5 125=3 bo 5 3 =125 log 10 0,1=-1 bo 10-1 =1/10=0,1 log 2 256=8 bo 2 8 =256 informatyka + 32
33 Szukamy log 2 3 =? log 4 9 =? informatyka + 33
34 Obliczenia ,41 = 2,82 1 0,5 2 2 = 2 2 = 2 1,5 1,5 2 2,82 < 3 < 2 2 informatyka + 34
35 Trójkąt Sierpińskiego Rozmiar pudełka Liczba pudełek WYMIAR TR. SIERP = 1 1,585 ½ ,585 ¼ ,585 informatyka + 35
36 Zbiór Cantora informatyka + 36
37 Rozmiar pudełka Zbiór Cantora Liczba pudełek WYMIAR TR. SIERP = 1 0, / , / ,6309 informatyka + 37
38 Jeż (nieskończony) informatyka + 38
39 Fraktale w przyrodzie informatyka + 39
40 Kryształki lodu informatyka + 40
41 Śnieżynki informatyka + 41
42 Śnieżynki informatyka + 42
43 Brokuły informatyka + 43
44 Brokuły informatyka + 44
45 Muszle informatyka + 45
46 Kolonie pleśni informatyka + 46
47 Rzeki informatyka + 47
48 Rzeki Missisipi wymiar pudełkowy 1,2 informatyka + 48
49 Gałęzie drzew informatyka + 49
50 Rośliny informatyka + 50
51 Paprotka (Barnsleya) informatyka + 51
52 Fraktale w technice informatyka + 52
53 U.S. Patent No. 5,354, informatyka + 53
54 U.S. Patent No. 5,354, informatyka + 54
55 Fraktale w kartografii informatyka + 55
56 Płatek Kocha informatyka + 56
57 Linia brzegowa informatyka + 57
58 Fraktale i komputery informatyka + 58
59 4 wymiarowy zbiór Julia informatyka + 59
60 Narysujmy sobie fraktal informatyka + 60
61 Drzewo informatyka + 61
62 Drzewo (binarne) informatyka + 62
63 Drzewo (binarne) informatyka + 63
64 Drzewo (binarne) algorytm oto drzewobin :b jeżeli :b < 4 [ stop ] naprzód :b lewo 43 drzewobin 0,75 * :b prawo 69 drzewobin 0,75 * :b lewo 26 wstecz :b już informatyka + 64
65 Drzewo Pitagorasa informatyka + 65
66 Drzewo Pitagorasa informatyka + 66
67 Zróbmy sobie fraktala informatyka + 67
68 informatyka + 68
69 Smok informatyka + 69
70 Smoki informatyka + 70
71 Smoki w komputerze Poziom 1. L Poziom 2. LLP informatyka + 71
72 Smoki w komputerze Poziom 3. Poziom 4. LLPLLPP LLPLLPPLLLPPLPP informatyka + 72
73 Smoki w komputerze L LLP LLPLLPP LLPLLPPLLLPPLPP LLPLLPPLLLPPLPPLLLPLLPPPLLPPLPP informatyka + 73
74 Wykorzystane materiały I. Białynicki-Birula, I. Białynicka-Birula, Modelowanie rzeczywistości, WNT, Warszawa 2007 II. Ilustracje pochodzą ze stron internetowych: commons.wikimedia.org cs.unm.edu/~joel/paperfoldingfractal/paper.html webecoist.com/2008/09/07/17-amazing-examples-of-fractals-in-nature classes.yale.edu/fractals informatyka + 74
FRAKTALE I SAMOPODOBIEŃSTWO
FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)
Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej
Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria
FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą
Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,
Podręcznik. Przykład 1: Wyborcy
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula
samopodobnym nieskończenie subtelny
Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne
Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych
Sierpiński Carpet Project W ZSTiL Zespół Szkół Technicznych i Licealnych Co to jest fraktal? Fraktale są obiektami matematycznymi, których podstawowa struktura powtarza się przy różnych powiększeniach.
raktale są wśród nas Zuzanna Cyunel klasa 5 Szkoła Podstawowa nr 95 ul. Wileńska Kraków Kraków 2012
F raktale są wśród nas Zuzanna Cyunel klasa 5 Szkoła Podstawowa nr 95 ul. Wileńska 9 31-413 Kraków Abstrakt W swojej pracy definiuję pojęcie fraktal, opisuję jego podział i historię. W pracy zawarłam liczne
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/2016 1 / 43 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje
Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego
Wstęp Rekurencja jest to wywołanie podprogramu (procedury) samej przez siebie. W logo zapis rekurencji będzie wyglądał następująco: oto nazwa_funkcji czynności_wykonywane_przez_procedurę nazwa_funkcji
Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS)
Fraktale Plan prezentacji Wprowadzenie Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D Klasyczne fraktale Iteracyjny system funkcji (IFS) L-system Zbiory Julii i Mandelbrota Ruchy
Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń
Obrazy rekurencyjne Zastosowanie rekurencji w algorytmice AUTOR: Martin Śniegoń Zdolność procedury/funkcji do wywoływania samej siebie Podstawowa i jedna z najważniejszych technik programistycznych Umożliwia
Modele i symulacje - Scratch i Excel
Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki, animacje,
Fraktale. i Rachunek Prawdopodobieństwa
Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej
Symulacje komputerowe w fizyce Fraktale
Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 13 i 15/11/2017
Fraktale w matematyce
Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna Fraktale w matematyce Zeszyt I 009/00r. Spis treści:. Definicja fraktala. Przykłady fraktali 4. Zbiór Cantora.4. Dywan Sierpińskiego.
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
START. Wprowadź (v, t) S:=v*t. Wyprowadź (S) KONIEC
GRUPA I Co to jest algorytm, a czym jest program komputerowy? Algorytm: uporządkowany i uściślony sposób rozwiązywania problemu, zawierający szczegółowy opis wykonywanych czynności. Program komputerowy:
wymagania programowe z matematyki kl. II gimnazjum
wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby
Wykład 4: Fraktale deterministyczne i stochastyczne
Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM
WYMAGANIA EGZAMINACYJNE DLA KLASY III GIMNAZJUM TEMAT WYMAGANIA SZCZEGÓŁOWE 1. LICZBY I WYRAŻENIA ALGEBRAICZNE 2. System dziesiątkowy 1. Liczby wymierne dodatnie. Uczeń: 1) zaokrągla rozwinięcia dziesiętne
Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY
Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
wymagania programowe z matematyki kl. III gimnazjum
wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny
Wymagania edukacyjne klasa trzecia.
TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne
VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI. rok szkolny 2016/2017
1. 30. Tak 3. ----- 4. Równanie nie ma rozwiązania. Lewa strona nie równa się prawej dla żadnej pary liczb, y ponieważ prawa strona jest nieparzysta a prawa parzysta. Należy wykazać parzystości stron równania
Rys.1. Obraz Pollocka. Eyes heat.
Co wspólnego ze sztuką ma reaktor chemiczny? W lutowym numerze Świata Nauki z 2003 roku ukazał się ciekawy artykułu Richarda P. Taylora, profesora fizyki Uniwersytetu Stanu Oregon [1], dotyczący matematyczno
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi
ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu
Wymagania szczegółowe z matematyki klasa 7
Wymagania szczegółowe z matematyki klasa 7 Dział Szczegółowe wymagania Liczby całkowite (liczby dodatnie, ujemne i zero) - wyróżnia wśród liczb wymiernych liczby naturalne i całkowite oraz liczby pierwsze,
Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)
Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka
Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie
Konstrukcja odcinków niewymiernych z wykorzystaniem. Twierdzenia Pitagorasa.
1 Konstrukcja odcinków niewymiernych z wykorzystaniem Twierdzenia Pitagorasa. Czas trwania zajęć: ok. 40 minut + 5 minut na wykład Kontekst w jakim wprowadzono doświadczenie: Doświadczenie warto zrealizować
MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania
MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM
ROZKŁAD MATERIAŁU DLA 3 KLASY GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 3. System rzymski 5-6 WYMAGANIA SZCZEGÓŁOWE
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM
REALIZACJA TREŚCI PODSTAWY PROGRAMOWEJ PRZEZ PROGRAM MATEMATYKA Z PLUSEM Treści nauczania wg podstawy programowej Podręcznik M+ Klasa I Klasa II Klasa III 1. Liczby wymierne dodatnie. Uczeń: 1) odczytuje
METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI
METODOLOGICZNE ASPEKTY FRAKTALNEGO MODELOWANIA RZECZYWISTOŚCI WALDEMAR RATAJCZAK Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej, Uniwersytet im. Adama Mickiewicza, Poznań 1. WSTĘP
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
Z HISTORII MATEMATYKI. Willebrord Snell
Z HISTORII MATEMATYKI Willebrord Snell (1580-1626) Najbardziej znany z prawa które stworzył (prawa Snella) które mówi, że kąty padania promieni światła i ich załamania: spełniają zależność: Jak widać jest
Co wspólnego ze sztuką ma reaktor chemiczny?
28 Co wspólnego ze sztuką ma reaktor chemiczny? Marek Berezowski Politechnika Śląska, Wydział Matematyczno-Fizyczny Instytut Matematyki, Gliwice W lutowym numerze Świata Nauki 2003 roku ukazał się ciekawy
Zbiór Cantora. Diabelskie schody.
Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot
KARTA MONITOROWANIA PODSTAWY PROGRAMOWEJ KSZTAŁCENIA OGÓLNEGO III etap edukacyjny PG im. Tadeusza Kościuszki w Kościerzycach Przedmiot matematyka Klasa......... Rok szkolny Imię i nazwisko nauczyciela
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE
WYMAGANIA EDUKACYJNE DLA KLASY III GIMNAZJUM W ZSPiG W CZARNYM DUNAJCU NA ROK SZKOLNY 2016/2017 ROCZNE Przekształcenia algebraiczne Równania i układy równań Pojęcie funkcji. Własności funkcji. WYRAŻENIA
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka
Przedmiotowy system oceniania Wymagania na poszczególne oceny,,liczy się matematyka I. Potęgi i pierwiastki. Klasa II 1. Zapisuje w postaci potęgi iloczyn tych samych czynników i odwrotnie. 2. Oblicza
Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,
Lista działów i tematów
Lista działów i tematów Gimnazjum. Klasa 1 Liczby i działania Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglenia liczb. Szacowanie wyników Dodawanie i odejmowanie liczb dodatnich Mnożenie i dzielenie
Egzamin gimnazjalny z matematyki 2016 analiza
Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Nawi zanie do gimnazjum Planimetria Trójk Rysujemy Rysujemy Rysujemy Zapisujemy t zewn trzny trójk ta, Trójk ty ze wzgl du na miary k tów Trójk
PLANIMETRIA Lekcja 102-103. Miary kątów w trójkącie str. 222-224 Nawiązanie do gimnazjum Planimetria to., czy planimetria zajmuje się. (Dział geometrii, który zajmuje się badaniem płaskich figur geometrycznych)
PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem. PODSTAWOWE Uczeń zna: LICZBY I WYRAŻENIA ALGEBRAICZNE
Ewa Koralewska PLAN WYNIKOWY Z MATEMATYKI DLA III KL. GIMNAZJUM do podręcznika GWO Matematyka z plusem LP.. 2. 3. 5. OGÓLNA PODST- AWA PROGRA- MOWA a a TEMATYKA LEKCJI LICZBA GODZIN Lekcja organizacyjna.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2017/2018 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M2, GM-M4, GM-M5 KWIECIEŃ 2018 Zadanie 1. (0 1) I. Wykorzystanie i
Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie
Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy oziom: szkoły ponadgimnazjalne, 0 punktów za każde zadanie Zadanie Znajdź dwa dzielniki pierwsze liczby - Można skorzystać z artykułu
Klasa 3 Przewodnik po zadaniach
Klasa 3 Przewodnik po zadaniach www.gimplus.pl 1 Spis treści 1. Liczby i wyrażenia algebraiczne (str. 3) 1.1 System dziesiątkowy 1.2 System rzymski 1.3 Liczby wymierne i niewymierne 1.4 Podstawowe działania
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner
Końcoworoczne kryteria oceniania dla klasy II z matematyki przygotowały mgr Magdalena Murawska i mgr Iwona Śliczner Semestr I Rozdział: Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn tych samych
Rys. 1. Kalafior podzielony na coraz mniejsze bardzo podobne do siebie fragmenty
18 FOTON 111, Zima 2010 Fraktale Studenci: Marcin Figiel, Tomasz Sabała Pod opieką prof. dr. hab. Macieja A. Nowaka Instytut Fizyki UJ 1. Abstrakt i motywacja Fraktale to obiekty matematyczne spotykane
Skrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) A/ B/ C/ D
A B C D 4 4 9 9 4 5 6 2 4 5 4 Zad. 1. (4 pkt.) Dla każdej własności zaznacz litery przyporządkowane trójkątom posiadającym tę własność. (rysunek powyżej) Ma oś symetrii Obwód wynosi 12 Ma środek symetrii
Jezyki i metody programowania
Jezyki i metody programowania WYKŁAD 3 i 4 Logo Dr Bożena Woźna-Szcześniak bwozna@gmail.com Instytut Matematyki i Informatyki Akademia im. Jana Długosza LOGO KOMENIUSZ LOGO KOMENIUSZ jest rozprowadzany
Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019
Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH
OBLICZANIE PÓL I OBWODÓW FIGUR PŁASKICH Zadanie 1 Jeden z boków prostokąta ma 5 cm, a drugi jest 3 razy dłuższy. Oblicz pole prostokąta. Zadanie 2 Oblicz pole kwadratu, którego obwód wynosi 6 dm. Zadanie
Symulacje komputerowe w fizyce Fraktale
Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 15/11/2016 Pasteura,
Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny)
edukacyjne niezbędne do uzyskania poszczególnych śródrocznych ocen klasyfikacyjnych z matematyki klasa 2 (oddział gimnazjalny) Stopień Rozdział 1. Potęgi i pierwiastki zapisuje w postaci potęgi iloczyn
Ułamki i działania 20 h
Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Rekurencja dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 2 1
Filip Piękniewski 10:50:29 1 /56. Fraktale i Chaos Filip Piękniewski 2004
FRAKTALE i CHAOS czyli czemu nie można zmierzyć powierzchni trawnika? Filip Piękniewski 1 /56 10:50:29 Mierzymy trawnik Traktujemy trawnik jako gładką powierzchnię. Mierzymy wzdłuż jednego i drugiego boku.
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie i interpretowanie reprezentacji.
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA
PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) III. Modelowanie matematyczne. 2. Działania na liczbach naturalnych.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25.
1. A 2. A 3. B 4. B 5. C 6. B 7. B 8. D 9. A 10. D 11. C 12. D 13. B 14. D 15. C 16. C 17. C 18. B 19. D 20. C 21. C 22. D 23. D 24. A 25. A Najłatwiejszym sposobem jest rozpatrzenie wszystkich odpowiedzi
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA
7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)
Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x
Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej)
Wymagania programowe z matematyki - Klasa 3 obowiązujące w od roku szkolnego 2013/2014 UWAGA! Podstawą do uzyskania pozytywnego stopnia za I i II półrocze jest wykazanie się ( w formie pisemnej) znajomością
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI wg podstawy programowej z VIII 2008r. Ocena niedostateczna. Zna nazwy argumentów działań Pamięciowo i pisemnie wykonuje każde z czterech działań na liczbach
Fraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM
Fraktale Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Fraktale Funkcje rekurencyjne 1 / 56 Wprowadzenie Plan na dziś:
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY
KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA III FUNKCJE rozumie wykres jako sposób prezentacji informacji umie odczytać informacje z wykresu umie odczytać i porówna ć informacje z kilku wykresów
Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL
Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS
Wymagania na egzamin poprawkowy z matematyki w roku szkolnym 2018/2019 klasa 1 b BS Podstawowa wiedza zawiera się w pisemnych sprawdzianach które odbyły się w ciągu całego roku szkolnego. Umiejętność rozwiązywania
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb
LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku
Katalog wymagań programowych na poszczególne stopnie szkolne
rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M8 KWIECIEŃ 2019 Zadanie 1. (0 1) 2. Liczby wymierne (dodatnie i niedodatnie).
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GM-M7 KWIECIEŃ 2016 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji. 8.
1. LICZBY DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia
L.P. DZIAŁ Z PODRĘCZNIKA NaCoBeZu kryteria sukcesu w języku ucznia 1. LICZBY 1. Znam pojęcie liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Potrafię zaznaczyć
Wymagania edukacyjne z matematyki dla kl. VI
Wymagania edukacyjne z matematyki dla kl. VI Semestr I Wymagane wiadomości i umiejętności (uczeń zna, umie, potrafi) na ocenę: dopuszczającą: nazwy argumentów działań algorytmy czterech działań pisemnych
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE
MATEMATYKA KLASY III gimnazjum LICZBY I WYRAŻENIA ALGEBRAICZNE - pojęcie liczby naturalnej, całkowitej, wymiernej, niewymiernej, - sposób i potrzebę zaokrąglania liczb, - pojęcie wartości bezwzględnej,
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Zad. 1 Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=8
Testy do gimnazjum Jednokładność, podobieństwo, twierdzenie Talesa. Test dla klasy III Przekształcenia geometryczne. Grupa I Zad. Korzystając z rysunku oblicz długość odcinka OA, jeśli CD=4, AB=5, OC=
Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań na ocenę dopuszczającą.
KLASA 7 Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki w roku szkolnego 2018/2019. Oceniane są: praca na lekcji umiejętność współpracy
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia
MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY II (A) zna; (B) rozumie; umie zastosować wiadomości w sytuacjach typowych; (D) umie zastosować wiadomości w sytuacjach problemowych; 1. Pierwiastki i potęgi
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ
EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2018/2019 CZĘŚĆ 2. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-MX4 KWIECIEŃ 2019 Zadanie 1. (0 1) I. Wykorzystanie i tworzenie informacji.
Wymagania edukacyjne z matematyki dla klasy VIII. rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy VIII rok szkolny 2018/2019 Program nauczania Matematyka z plusem realizowany przy pomocy podręcznika Matematyka z plusem LICZBY I DZIAŁANIA używać znaków do
PROPOZYCJA ZASTOSOWANIA WYMIARU PUDEŁKOWEGO DO OCENY ODKSZTAŁCEŃ PRZEBIEGÓW ELEKTROENERGETYCZNYCH
Prace Naukowe Instytutu Maszyn, Napędów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Studia i Materiały Nr 24 2004 Krzysztof PODLEJSKI *, Sławomir KUPRAS wymiar fraktalny, jakość energii