DWUMIANOWY MODEL WYCENY OPCJI W WARUNKACH ROZMYTYCH INFORMACJI
|
|
- Arkadiusz Mazurek
- 10 lat temu
- Przeglądów:
Transkrypt
1 Zygmunt Przybycin DWUMIANOWY MODEL WYCENY OPCJI W WARUNKACH ROZMYTYCH INFORMACJI Wprowadzenie Inwestowanie na rynku kapitałowym jest sztuką i wyzwaniem dla osób pragnących osiągać ponadprzeciętne zyski. Sztuka polega na takim zarządzaniu inwestycjami kapitałowymi, które zapewnia osiągnięcie założonego celu. Tym celem może być minimalizacja ryzyka inwestycyjnego. Zarówno w literaturze, jak i w praktyce spotyka się wiele narzędzi i metod wspomagających proces zarządzania ryzykiem inwestycyjnym. Jedną z metod zarządzania ryzykiem inwestycyjnym jest przenoszenie ryzyka na inne podmioty. Narzędziem umożliwiającym przenoszenie ryzyka są kontrakty terminowe, a w szczególności opcje. Opcje w początkowym okresie były stosowane jako instrument finansowy, który zabezpieczał inwestycję przed ryzykiem, lecz bardzo szybko zorientowano się, że możliwości tego instrumentu są o wiele wieksze. Opcje zaczęto również stosować jako instrument finansowy generujący ponadprzeciętne zyski przy relatywnie niskim zaangażowaniu kapitału. To szerokie zastosowanie opcji spowodowało, iż stały się przedmiotem zainteresowania inwestorów. W historii inwestowania są znane spektakularne sukcesy stosowania tego instrumentu, a także liczne porażki inwestycji z wykorzystaniem opcji. Wydaje się, że dużego znaczenia w inwestycjach z zastosowaniem opcji nabiera problem oszacowania wartości opcji. Chodzi mianowicie o określenie tzw. wartości sprawiedliwej. W literaturze są znane rożne modele wyceny opcji. W tym artykule podjęto próbę modyfikacji dwumianowego modelu wyceny opcji. Celem jest zaadoptowanie dwumianowego modelu wyceny opcji w warunkach rozmytych informacji rynkowych. 1. Opcje wybrane pojęcia Ważną grupą instrumentów finansowych rynku kapitałowego są instrumenty pochodne, które zostały wymyślone w celu zarządzania wartością oraz ryzykiem inwestycji kapitałowych. Instrumenty te z uwagi na funkcje, jakie speł-
2 Dwumianowy model wyceny opcji w warunkach rozmytych informacji 81 niają, podlegają ciągłemu rozwojowi i licznym modyfikacjom. Instrumentem pochodnym, który cieszy się dużym zainteresowaniem inwestorów, są opcje finansowe. Opcja jest instrumentem finansowym, który daje jego posiadaczowi prawo do wykonania opcji, natomiast na wystawcę opcji nakłada obowiązek jej zrealizowania, tj. dostarczenia instrumentu bazowego posiadaczowi opcji w sytuacji, gdy zechce on ją zrealizować. Ze względu na sposób realizacji opcji wyróżnia się opcje kupna oraz sprzedaży. Opcja kupna daje jej posiadaczowi prawo do zakupu instrumentu bazowego po określonej cenie w określonym czasie, natomiast opcja sprzedaży daje takie same prawo, ale w odniesieniu do sprzedaży instrumentu bazowego. W kontrakcie opcyjnym występuje również wystawca opcji, który przyjmuje na siebie obowiązek dostarczenia instrumentu bazowego w przypadku, gdy opcja zostanie wykonana. Podstawowymi charakterystykami opcji są: cena wykonania (X) cena, po jakiej opcja jest wykonana; jest ustalona w momencie wystawienia opcji i nie zmienia się w czasie ważności opcji, cena instrumentu bazowego ( ) wartość rynkowa instrumentu bazowego, na który jest wstawiona opcja, cena opcji (inaczej premia) (C) cena prawa, które nabywa posiadacz opcji; cena ta jest kształtowana przez rynek, termin wygaśnięcia opcji (T) termin ważności opcji, po upływie którego opcja traci ważność i nie może być wykonana, termin wykonania opcji ( ) termin, w którym opcja jest wykonana. W zależności od możliwości wykonania opcji wyróżnia się opcję amerykańską oraz opcję europejską. Opcję amerykańską można wykonać w dowolnym momencie od chwili nabycia do momentu wygaśnięcia ( T), natomiast opcję europejską można wykonać tylko w momencie wygaśnięcia ( = T). W dalszej części artykułu będą omawiane tylko opcje europejskie. Posiadacz opcji, jak wspomniano, ma prawo do jej wykonania i wykona opcję tylko wówczas, gdy będzie to opłacalne decyduje relacja pomiędzy ceną wykonania a ceną instrumentu bazowego. Wyróżnia się tutaj następujące sytuacje: opcję opłaca się wykonać opcja jest w cenie, opcji nie opłaca się wykonać opcja nie jest w cenie, opcja jest neutralna opcja jest po cenie. Dla opcji kupna: opcja jest w cenie, gdy cena wykonania jest niższa od ceny instrumentu bazowego, w przeciwnym wypadku opcja nie jest w cenie, jeżeli natomiast cena wykonania opcji jest równa cenie instrumentu bazowego, to mówi się, że opcja jest neutralna. Dla opcji sprzedaży zachodzi odwrotna relacja pomiędzy ceną wykonania a ceną instrumentu bazowego.
3 82 Zygmunt Przybycin Innym ważnym parametrem charakteryzującym opcje bez względu na rodzaj instrumentu bazowego jest wartość opcji, czyli wypłata, jaką otrzyma posiadacz opcji w chwili jej wykonania. Wartość opcji jest sumą dwóch składowych: wartości wewnętrznej oraz wartości czasowej zwanej również wartością zewnętrzną. Wartość opcji można więc zapisać następująco: W = W w + W t (1) gdzie: W w wartość wewnętrzna opcji, W t wartość czasowa opcji. Opcja ma dodatnią wartość wewnętrzną, gdy jest w cenie, w przeciwnym wypadku wartość ta jest równa zero. W szczególności dla opcji kupna wartość wewnętrzna opcji wyraża się wzorem: natomiast dla opcji sprzedaży wzorem: = max {S t X, 0} (2) = max {X S t, 0} (3) Z zależności (1) wynika, że wartość czasowa opcji maleje do zera wraz ze zbliżaniem się terminu wykonania do terminu wygaśnięcia. Wypada również zauważyć, iż na wartość opcji mają wpływ następujące czynniki: cena wykonania opcji, cena instrumentu bazowego, długość okresu ważności opcji, zmienność stopy zwrotu instrumentu bazowego, stopa wolna od ryzyka. W przypadku opcji kupna cena wykonania jest destymulantą, natomiast pozostałe czynniki są stymulantami wartości opcji. W przypadku opcji sprzedaży destymulantami są: cena instrumentu pierwotnego oraz stopa wolna od ryzyka, zaś pozostałe czynniki są stymulantami. Wartość opcji, zwana również ceną sprawiedliwą jako wypadkowa czynników rynkowych, zmienia się w czasie ważności opcji i pokrywa się z ceną opcji tylko w przypadku, gdy rynek jest efektywny. Dlatego też ważne z punktu widzenia praktyki jest w miarę precyzyjne oszacowanie wartości opcji. Wartość sprawiedliwą opcji szacuje się wykorzystując różne modele wyceny. W artykule tym ograniczono się do modelu dwumianowego wyceny wartości opcji przy założeniu nieostrych informacji kształtowania się cen instrumentu bazowego.
4 Dwumianowy model wyceny opcji w warunkach rozmytych informacji Logika rozmyta i jej zastosowanie w modelu wyceny opcji Proces szacowania prawdziwej wartości opcji z uwagi na stosunkowo dużą ilość informacji jest procesem złożonym. Ponadto część informacji ma charakter prognostyczny, a więc nie są to informacje w pełni precyzyjne. Oznacza to, że w procesie szacowania wartości opcji występuje tzw. zasada niespójności, według której w modelowaniu złożonych systemów stosuje się obok informacji precyzyjnych również informacje nieprecyzyjne (nieostre). Dalej informacje nieprecyzyjne występujące w modelu wyceny opcji będą traktowane w kategoriach liczb rozmytych. Liczbą rozmytą nazywa się zbiór rozmyty określony na przestrzeni liczb rzeczywistych. Formalnie liczbę rozmytą A określa się następująco: {( U x x) } x R A = A( ), (4) gdzie U A (x) jest funkcją przynależności zbioru rozmytego, która każdej liczbie x R przypisuje stopień jej przynależności do zbioru A, przy czym U A (x) <0,1>. Liczbę rozmytą jednoznacznie określa funkcja przynależności, którą wyznacza się na podstawie wiedzy historycznej lub/i eksperckiej. Ograniczono się tu tylko do trójkątnych liczb rozmytych L-R. Funkcję przynależności rozmytej trójkątnej liczby L-R określa się wzorem: gdzie: L(x) funkcja niemalejąca, R(x) funkcja nierosnąca. L(x) dla x (M A α A,, M a ) U A (x) = R(x) dla x (M A, M A + β A ) (5) 1 dla x = M A 0 dla x pozostałych
5 84 Zygmunt Przybycin U A (x) R(x) L(x) M A α A m A M A +β A Rys. 1. Rozmyta liczba trójkątna L-R Przyjęto, że rozmyta liczba trójkątna L-R będzie zapisywana w postaci: A = (M A, α A, β A ) (6) Postać (6) nazywa się reprezentacjąą L-R liczby rozmytej. Przykładowo A = (2; 0,5; 0,8) oznacza rozmytą liczbę trójkątną około 2. W szczególności jeżeli = = 0, wówczas liczbę rozmytą (6) traktuje się jak liczbę ostrą. Używając zapisu (6), definiuje się liczbę przeciwną do liczby rozmytej A: oraz liczbę odwrotną: - A = (,, ) A -1 = ( 1/, / ( + ), / ( - ) ) przy założeniu 0. Wprowadzono pojęcie przekroju liczby rozmytej: ε przekrojem liczby rozmytej (4) nazywa się zbiór ostry określony następująco: = { x R : U A (x ) ε}, ε > 0,1 > (7) z Zbiór ten będzie również oznaczany symbolemm < a z, a + >, gdzie: = min { x : U A (x ) ε }, = max { x : U A (x ) ε }. (8) (9)
6 Dwumianowy model wycenyy opcji w warunkach rozmytych informacji 85 U(X) 1 ε a ε M a +ε X Rys. 2. Liczba rozmyta i jej ε przekrój Używając operacji ε przekroju, można dokonać dekompozycji funkcji przynależności liczby rozmytej zgodnie ze wzorem (zasadaa dekompozycji): ( x) U A A (x) = sup [ ε ^ I A ε ( x) ], x R, ε < 0, 1 > (10) gdzie I A ε jest funkcją charakterystyczną zbioru, natomiast ^ algebra- iczną operacją minimum. Zasada dekompozycji wyraża więc funkcję przynależ- Na ności liczby rozmytej poprzez funkcje charakterystycznee zbiorów ostrych. liczbach rozmytych definiuje się działania arytmetyczne. Ograniczonoo się tu do zdefiniowania dodawania i mnożenia rozmytych liczb trójkątnych typu L-R. [4]. Jeżeli liczby rozmyte A i B sąą liczbami typu L-R: A= (M A, α A A, β A ), B = ( M B, α B, β B ) to sumę liczb rozmytych A, B określa się następująco: A+B = (M A+B, αa+b, β A+B ) (11) (12) gdzie: MA+B = M A + M B, α A+B = (α A + α B ), β A+B = (β A + βb).
7 86 Zygmunt Przybycin Iloczyn dwóch liczb rozmytych A, B dla A > 0 oraz B > 0 określa wzór: A B = (M A B, α A B, β A B ) (13) gdzie: M A B = M A M B, α A B = +, β A B = + +. Z przyjętych definicji sumy i iloczynu liczb rozmytych wynika, że własno- na licz- ści dla tych działań sąą identyczne z własnościami analogicznych działań bach ostrych. Funkcjęę przynależności dla tak zdefiniowanej sumy oraz iloczynu liczb rozmytych wyznacza się stosując zasadęę dekompozycji [3]. W przypadku gdy funkcje L(.) oraz R(.) są funkcjami liniowymi, funkcje przynależności wy- bazo- znacza sięę analitycznie. Należy zwrócić uwagę na fakt, że prognozowane ceny instrumentu wego w modelu wyceny opcji różnią się od ceny rzeczywistej nawet wtedy, gdy są sporządzone według założeń, które są bliskie faktycznym wielkościom osiąbazowego gniętym w przeszłości. Dlatego też prognozowana cena instrumentu powinna uwzględniaćć przynajmniej trzy warianty: pesymistyczny, najbardziej realny oraz optymistyczny. Warianty pesymistyczny oraz optymistyczny powinw przyszło- ny obejmować takie wartości, które nie powinny być przekroczone ści, stąd będą one reprezentowaćć planowane wartości nieprzekraczalne. Jeżeli prognozowana cena instrumentu bazowego jest określona w kategoriach liczb rozmytych, a w szczególności w postaci trójkątnej liczby rozmytej (6), to para- M A wariant najbardziej realny, metry występujące w zapisie rozmytej liczby A traktuje sięę odpowiednio: M A α A wariant pesymistyczny, M A +β A wariant optymistyczny. Przyjęta interpretacja parametrów liczby rozmytej umożliwia również okre- opcji jest wyrażona w postaci liczby rozmytej (6), to ryzyko rozmyte wyceny ślenie rozmytego ryzyka wyceny opcji. Jeżeli założy się, że cena sprawiedliwa wartości opcji mierzy się następująco [5]: S = (α A + β A ) / 2 A (14) Przedział < M A -α A, M A + β A > jest ε przekrojem liczby rozmytej (6) (ε = 0). Przyjmując różne poziomy przekrojów (ε 0,1>), można rozważać różne ε przekroje tej samej liczby rozmytej, a w szczególności różne scenariusze wyce- ny opcji.
8 Dwumianowy model wyceny opcji w warunkach rozmytych informacji Dwumianowy model wyceny opcji w warunkach rozmytych informacji Zagadnienie wyceny instrumentów pochodnych jest zagadnieniem ważnym z punktu widzenia teorii i praktyki i trzeba dodać, że nadal aktualnym. Pierwsze prace z zakresu metodologii wyceny instrumentów pochodnych pokazały się w 1973 roku i były to prace: F. Blacka i M. Scholesa (The Pricing of Options annd Corporate Liabilities) oraz R.C. Mertona (Theory of Rational Option Pricing). W pracach tych przedstawiono koncepcję arbitrażowej wyceny instrumentów pochodnych. Arbitrażowa koncepcja wyceny jest na ogół realizowana w konwencji portfela bez ryzyka lub w konwencji replikacji. Model wyceny opcji realizowany w konwencji portfela bez ryzyka został zaproponowany w 1972 roku przez J. Coxa, M. Rubinsteina i S. Rossa [1]. Koncepcja wyceny opcji w konwencji portfela bez ryzyka polega na takiej konstrukcji portfela posiadającego określoną ilość instrumentów bazowych oraz wystawionej opcji na ten instrument, aby był to portfel bez ryzyka. Koncepcję portfela bez ryzyka prześledzono na przykładzie europejskiej opcji kupna na akcję bez dywidendy. Rozważono portfel, który składa się z h akcji oraz wystawionej na te akcje opcji kupna, przy czym wymaga się, aby inwestycja ta była bez ryzyka. Wartość portfela w chwili początkowej jest równa: h S 0 C 0 gdzie : S 0 cena akcji w momencie początkowym inwestycji, C 0 wartość europejskiej opcji kupna w momencie początkowym inwestycji. Założono dalej, że do terminu wygaśnięcia opcji pozostał jeden okres. Na koniec tego okresu cena akcji może wzrosnąć do poziomu S u lub spaść do poziomu. Zatem w terminie wykonania opcji wartość inwestycji jest odpowiednio równa: = h, gdy cena akcji wzrośnie = h, gdy cena akcji spadnie przy czym wartość opcji, gdy cena akcji wzrośnie = max{ X, 0}, natomiast wartość opcji, gdy cena akcji spadnie = max{ X, 0}, gdzie X oznacza cenę wykonania opcji. Ponieważ założono, że inwestycja jest bez ryzyka, więc musi zachodzić równość: =
9 88 Zygmunt Przybycin Z równości tej wyznacza się współczynnik hedgingowy h: h = (C u C d ) / (S u S d ) Współczynnik hedgingowy określa liczbę akcji w portfelu, która zabezpiecza wystawioną opcję kupna. Jeżeli ponadto założy się, że mechanizm kształtowania ceny akcji w górę i w dół jest następujący: = u i = d przy czym u > 1 + > d ( stopa zwrotu wolna od ryzyka), co wyklucza możliwość transakcji arbitrażowej, wówczas współczynnik hedgingowy wyraża się wzorem: h = (C u C) / S 0 (u d) (15) Inwestycja bez ryzyka powinna generować stopę zwrotu równą stopie zwrotu wolnej od ryzyka, zatem zachodzi następująca równość: (h ) / ( h ) = 1 + Wstawiając do powyższej równości współczynnik hedgingowy (15), otrzymano wartość euorepejskiej opcji kupna na akcję bez dywidendy: gdzie: = [g + (1 g) ] / (1 + ) (16) g = (1 + d) / (u d) (17) Wobec wcześniejszego założenia g ε (0, 1), tak więc para (g, 1 g) jest tzw. miarą arbitrażową [6]. Wzór (16) określa wartość europejskiej opcji kupna w przypadku jednego okresu, jaki pozostał do terminu wygaśnięcia opcji. Wzór ten można uogólnić na przypadek n okresów, jakie pozostały do terminu wygaśnięcia opcji (n > 1). Zakładając, że wielkości ruchu ceny akcji w górę (u) oraz w dół (d) są znane i nie zmieniają się w okresie ważności opcji, wówczas wartość sprawiedliwa opcji wyraża się wzorem [2]: = ) g k (1 g ) n-k max { u k d n-k X, 0}/(1 + ) n (18) gdzie g jest określone wzorem (15), natomiast n k oznacza symbol Newtona. Równość (18) określająca wartość europejskiej opcji kupna w literaturze jest nazywana dwumianowym modelem wyceny opcji. Zupełnie analogicznie wyprowadza się model europejskiej opcji sprzedaży. W dwumianowym modelu
10 Dwumianowy model wyceny opcji w warunkach rozmytych informacji 89 wyceny opcji kupna zmienność ceny akcji jest zdeterminowana parametrami u oraz d. Parametry te określają zmienność ceny instrumentu bazowego w przyszłości, a więc mają charakter prognostyczny. Oznacza to, że nie są w pełni precyzyjne, stąd w modelu wyceny opcji ingeruje wspomniana wcześniej zasada niespójności. Zgodnie z tą zasadą w modelu wyceny opcji obok informacji precyzyjnych występują również informacje nieprecyzyjne rozmyte. Założono więc, że parametry określające ruchy ceny instrumentu bazowego są liczbami rozmytymi, dla ułatwienia przyjęto, że są trójkątnymi liczbami rozmytymi typu L-R, ponadto założono znajomość funkcji przynależności tych liczb. Konsekwencją przyjętego założenia jest to, że wartość opcji w momencie wygaśnięcia jest również liczbą rozmytą. Wstawiając do modelu dwumianowego wyceny opcji kupna w miejsce parametrów określających ruchy ceny instrumentu bazowego ich wersje rozmyte, otrzymano model wyceny opcji w warunkach rozmytych informacji. Uwzględniając fakt, iż działania arytmetyczne na liczbach rozmytych mają podobne własności, jak działania na liczbach ostrych, otrzymano następujący model wyceny opcji kupna: ( n W0 = k = 0 n k g ( k (1- g ( ) n-k max {S u ( k d ( n-k X, 0}/( 1 + r f ) n (19) gdzie symbol oznacza liczbę rozmytą. Funkcję przynależności rozmytej wartości opcji kupna wyznacza się zgodnie z zasadą dekompozycji lub jej przybliżoną postać korzystając z reprezentacji L-R. Podsumowanie Zaproponowana w artykule modyfikacja modelu wyceny opcji powinna poprawić skuteczność wyznaczenia ceny sprawiedliwej. Stwierdzenie to można uzasadnić tym, że w naukach ekonomicznych bardziej realne i często wystarczające jest stwierdzenie, że np. cena instrumentu finansowego przyjmie wartość równą pewnej liczbie rozmytej, niż stwierdzenie, że wartość ta będzie określona liczbą ostrą. Należy wyraźnie zaznaczyć, iż parametry określające liczbę rozmytą wyznacza się na podstawie danych historycznych oraz wiedzy eksperckiej, dotyczy to zwłaszcza funkcji przynależności. Fakt ten pozwala mieć nadzieję na to, że w prognozach określających przyszłe wartości parametrów występujących w modelu wyceny opcji zostanie uwzględniona psychologia rynku. W zaprezentowanej modyfikacji modelu dwumianowego założono rozmytość parametrów określających ruchy ceny instrumentu bazowego, nic nie stoi więc na przeszkodzie, aby stopę wolną od ryzyka również traktować jako liczbę rozmytą. Ponadto przy stosowaniu logiki rozmytej istnieje możliwość oceny ryzyka oszacowanej sprawiedliwej wartości opcji.
11 90 Zygmunt Przybycin Literatura 1. Cox J., Rubinstein M., Ross S.: Option Pricing: A Simplified Approach. The Journal of Financial Economics 1979, No Jajuga K., Jajuga T.: Inwestycje. Wydawnictwo Naukowe PWN, Warszawa Łachwa A.: Rozmyty świat zbiorów, liczb, relacji, faktów, reguł i decyzji. Exit, Warszawa Piegat A.: Modelowanie i sterowanie rozmyte. EXIT, Warszawa Przybycin Z.: Zastosowanie logiki rozmytej w ekonomii wybrane modele decyzyjne. Akademia Ekonomiczna, Katowice Weron A., Weron R.: Inżynieria finansowa. WNT, Warszawa THE BINOMIAL OPTION PRICING MODEL IN CASE OF A FUZZY INFORMATION Summary In the article presents the modification of the binomial model of European option pricing. Adopted namely, that it is appropriate to the weakening of the assumptions about the mechanism of price formation on the underlying instrument. In the proposed option pricing model, mechanism of option pricing formation is described in terms of fuzzy numbers. In the article, also posted selected messages from the scope of fuzzy numbers and options.
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 ANALIZA WŁASNOŚCI OPCJI SUPERSHARE
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 5 212 EWA DZIAWGO ANALIZA WŁASNOŚCI OPCJI SUPERSHARE Wprowadzenie Proces globalizacji rynków finansowych stwarza
ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 31 Ewa Dziawgo Uniwersytet Mikołaja Kopernika w Toruniu ANALIZA WRAŻLIWOŚCI CENY OPCJI O UWARUNKOWANEJ PREMII Streszczenie W artykule przedstawiono
Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.
Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.
Opcje na GPW (I) Możemy wyróżnić dwa rodzaje opcji: opcje kupna (ang. call options), opcje sprzedaży (ang. put options).
Opcje na GPW (I) Opcje (ang. options) to podobnie jak kontrakty terminowe bardzo popularny instrument notowany na rynkach giełdowych. Ich konstrukcja jest nieco bardziej złożona od kontraktów. Opcje można
EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ Ewa Dziawgo WYCENA POTĘGOWEJ ASYMETRYCZNEJ OPCJI KUPNA
ACTA UNIVERSITATIS NICOLAI COPERNICI EKONOMIA XL NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZYT 391 TORUŃ 2009 Uniwersytet Mikołaja Kopernika w Toruniu Katedra Ekonometrii i Statystyki Ewa Dziawgo WYCENA POTĘGOWEJ
Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI
Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE
Uniwersytet Ekonomiczny we Wrocławiu Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki
Wydział Ekonomii, Zarządzania i Turystyki Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Analiza ryzyka transakcji wykład ćwiczenia Literatura Literatura podstawowa: 1. Kaczmarek T. (2005), Ryzyko
INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE
INSTRUMENTY POCHODNE OPCJE EUROPEJSKIE OPCJE AMERYKAŃSKIE OPCJE EGZOTYCZNE OPCJE / DEFINICJA Opcja jest prawem do zakupu lub sprzedaży określonej ilości wyspecyfikowanego przedmiotu (tzw. instrumentu bazowego)
Technologie i systemy oparte na logice rozmytej
Zagadnienia I Technologie i systemy oparte na logice rozmytej Mają zastosowania w sytuacjach kiedy nie posiadamy wystarczającej wiedzy o modelu matematycznym rządzącym danym zjawiskiem oraz tam gdzie zbudowanie
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR WŁASNOŚCI OPCJI CAPPED.
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 768 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 63 213 EWA DZIAWGO Uniwersytet Mikołaja Kopernika w Toruniu WŁASNOŚCI OPCJI CAPPED Streszczenie W artykule
1) jednostka posiada wystarczające środki aby zakupić walutę w dniu podpisania kontraktu
Przykład 1 Przedsiębiorca będący importerem podpisał kontrakt na zakup materiałów (surowców) o wartości 1 000 000 euro z datą płatności za 3 miesiące. Bieżący kurs 3,7750. Pozostałe koszty produkcji (wynagrodzenia,
Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995.
Bibliografia Dobija M., Smaga E.; Podstawy matematyki finansowej i ubezpieczeniowej, PWN Warszawa- -Kraków 1995. Elton E.J., Gruber M.J., Nowoczesna teoria portfelowa i analiza papierów wartościowych,
INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI
INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe
OPCJE MIESIĘCZNE NA INDEKS WIG20
OPCJE MIESIĘCZNE NA INDEKS WIG20 1 TROCHĘ HISTORII 1973 Fisher Black i Myron Scholes opracowują precyzyjną metodę obliczania wartości opcji słynny MODEL BLACK/SCHOLES 2 TROCHĘ HISTORII 26 kwietnia 1973
Opcje giełdowe i zabezpieczenie inwestycji. Filip Duszczyk Dział Rynku Terminowego
Opcje giełdowe i zabezpieczenie inwestycji Filip Duszczyk Dział Rynku Terminowego Agenda: Analiza Portfela współczynnik Beta (β) Opcje giełdowe wprowadzenie Podstawowe strategie opcyjne Strategia Protective
Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut
Matematyka finansowa w pakiecie Matlab
Matematyka finansowa w pakiecie Matlab Wykład 5. Wycena opcji modele dyskretne Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na kierunku Matematyka
Opcje podstawowe własności.
Opcje podstawowe własności. Opcja jest to rodzaj umowy między dwoma podmiotami i jednocześnie instrument finansowy. Opcje kupna (call) dają posiadaczowi prawo do kupienia określonego w umowie aktywa (bazowego)
Strategie inwestowania w opcje. Filip Duszczyk Dział Rynku Terminowego
Strategie inwestowania w opcje Filip Duszczyk Dział Rynku Terminowego Agenda: Opcje giełdowe Zabezpieczenie portfela Spekulacja Strategie opcyjne 2 Opcje giełdowe 3 Co to jest opcja? OPCJA JAK POLISA Zabezpieczenie
OPCJE NA GPW. Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004
OPCJE NA GPW Zespół Rekomendacji i Analiz Giełdowych Departament Klientów Detalicznych Katowice, luty 2004 CO TO JEST OPCJA, RODZAJE OPCJI Opcja - prawo do kupna, lub sprzedaży instrumentu bazowego po
OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój
Warszawa, 31 lipca 2013 r. OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój Niniejszym Towarzystwo Funduszy Inwestycyjnych AGRO Spółka Akcyjna z siedzibą w Warszawie ogłasza poniższe zmiany statutu
R NKI K I F I F N N NSOW OPCJE
RYNKI FINANSOWE OPCJE Wymagania dotyczące opcji Standard opcji Interpretacja nazw Sposoby ustalania ostatecznej ceny rozliczeniowej dla opcji na GPW OPCJE - definicja Kontrakt finansowy, w którym kupujący
1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)
II Etap Maj 2013 Zadanie 1 II Etap Maj 2013 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/podaj definicję składnika
Wycena opcji. Dr inż. Bożena Mielczarek
Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,
Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym. Opcje Strategie opcyjne
Ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Opcje Strategie opcyjne 1 Współczynniki greckie Współczynniki greckie określają o ile zmieni się kurs opcji w wyniku zmiany wartości poszczególnych
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy XLIX Egzamin dla Aktuariuszy z 6 kwietnia 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy
Instrumenty pochodne 2014 Wycena equity derivatives notowanych na GPW w obliczu wysokiego ryzyka dywidendy Jerzy Dzieża, WMS, AGH Kraków 28 maja 2014 (Instrumenty pochodne 2014 ) Wycena equity derivatives
OPCJE. Slide 1. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.
OPCJE Slide 1 Informacje ogólne definicje opcji: kupna (call)/sprzedaŝy (put) terminologia typy opcji krzywe zysk/strata Slide 2 Czym jest opcja KUPNA (CALL)? Opcja KUPNA (CALL) jest PRAWEM - nie zobowiązaniem
Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu
Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej
Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ
Marcin Bartkowiak Krzysztof Echaust INSTRUMENTY POCHODNE WPROWADZENIE DO INŻYNIERII FINANSOWEJ Spis treści Przedmowa... 7 1. Rynek instrumentów pochodnych... 9 1.1. Instrumenty pochodne... 9 1.2. Rynek
Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r.
Ogłoszenie o zmianach statutu KBC OMEGA Funduszu Inwestycyjnego Zamkniętego z dnia 13 czerwca 2014 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC OMEGA Funduszu Inwestycyjnego
Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W E, 2L PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z podstawowymi metodami i technikami analizy finansowej na podstawie nowoczesnych instrumentów finansowych
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.
Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.
Zarządzanie ryzykiem projektów inwestycyjnych
351 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa we Wrocławiu Zarządzanie ryzykiem projektów inwestycyjnych Streszczenie. Inwestycje to główny czynnik kreowania
ANALIZA WRAŻLIWOŚCI CENY OPCJI FLOORED
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Ewa Dziawgo * Uniwersytet Mikołaja Kopernika w Toruniu ANALIZA WRAŻLIWOŚCI CENY OPCJI FLOORED STRESZCZENIE W artykule przedstawiono charakterystykę
Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do:
Jesteś tu: Bossa.pl Opcje na WIG20 - wprowadzenie Opcja jest to prawo przysługujące nabywcy opcji wobec jej wystawcy do: żądania w ustalonym terminie dostawy instrumentu bazowego po określonej cenie wykonania
OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój. I. Poniższe zmiany Statutu wchodzą w życie z dniem ogłoszenia.
Warszawa, 25 czerwca 2012 r. OGŁOSZENIE O ZMIANACH STATUTU SFIO AGRO Kapitał na Rozwój Niniejszym Towarzystwo Funduszy Inwestycyjnych AGRO Spółka Akcyjna z siedzibą w Warszawie ogłasza poniższe zmiany
Komisja Egzaminacyjna dla Aktuariuszy. XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XXXII Egzamin dla Aktuariuszy z 7 czerwca 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Trzy osoby biorą
Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym
Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka finansowa (MFI222) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1
TRANSAKCJE ARBITRAŻOWE PODSTAWY TEORETYCZNE cz. 1 Podstawowym pojęciem dotyczącym transakcji arbitrażowych jest wartość teoretyczna kontraktu FV. Na powyższym diagramie przedstawiono wykres oraz wzór,
Warszawska Giełda Towarowa S.A.
OPCJE Opcja jest prawem do kupna lub sprzedaży określonego towaru po określonej cenie oraz w z góry określonym terminie. Stanowią formę zabezpieczenia ekonomicznego dotyczącego ryzyka niekorzystnej zmiany
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.
Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy
Zmienność. Co z niej wynika?
Zmienność. Co z niej wynika? Dla inwestora bardzo ważnym aspektem systemu inwestycyjnego jest moment wejścia na rynek (moment dokonania transakcji) oraz moment wyjścia z rynku (moment zamknięcia pozycji).
Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.
Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1
ANALIZA OPCJI ANALIZA OPCJI - WYCENA. Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu
Krzysztof Jajuga Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Uniwersytet Ekonomiczny we Wrocławiu Podstawowe pojęcia Opcja: in-the-money (ITM call: wartość instrumentu podstawowego > cena wykonania
OPCJE WALUTOWE. kurs realizacji > kurs terminowy OTM ATM kurs realizacji = kurs terminowy ITM ITM kurs realizacji < kurs terminowy ATM OTM
OPCJE WALUTOWE Opcja walutowa jako instrument finansowy zdobył ogromną popularność dzięki wielu możliwości jego wykorzystania. Minimalizacja ryzyka walutowego gdziekolwiek pojawiają się waluty to niewątpliwie
ZARZĄDZANIE RYZYKIEM PRZEDSIĘBIORSTWA NA PRZYKŁADZIE PRZEDSIĘBIORSTW Z BRANŻY ODZIEŻOWEJ. Working paper JEL Classification: A10
Dawid Chmielewski Uniwersytet Ekonomiczny we Wrocławiu Marcin Gawron Uniwersytet Ekonomiczny we Wrocławiu ZARZĄDZANIE RYZYKIEM PRZEDSIĘBIORSTWA NA PRZYKŁADZIE PRZEDSIĘBIORSTW Z BRANŻY ODZIEŻOWEJ Working
Komisja Egzaminacyjna dla Aktuariuszy. XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I. Matematyka finansowa
Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rachunki oszczędnościowe
Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);
Ciała i wielomiany 1 Ciała i wielomiany 1 Definicja ciała Niech F będzie zbiorem, i niech + ( dodawanie ) oraz ( mnożenie ) będą działaniami na zbiorze F. Definicja. Zbiór F wraz z działaniami + i nazywamy
Opcje. Dr hab Renata Karkowska; Wydział Zarządzania UW
Opcje 1 Opcje Narysuj: Profil wypłaty dla nabywcy opcji kupna. Profil wypłaty dla nabywcy opcji sprzedaży. Profil wypłaty dla wystawcy opcji kupna. Profil wypłaty dla wystawcy opcji sprzedaży. 2 Przykład
Inwestor musi wybrać następujące parametry: instrument bazowy, rodzaj opcji (kupna lub sprzedaży, kurs wykonania i termin wygaśnięcia.
Opcje na GPW (II) Wbrew ogólnej opinii, inwestowanie w opcje nie musi być trudne. Na rynku tym można tworzyć strategie dla doświadczonych inwestorów, ale również dla początkujących. Najprostszym sposobem
Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań
Raport 1/2015 Optymalizacja parametrów w strategiach inwestycyjnych dla event-driven tradingu - metodologia badań autor: Michał Osmoła INIME Instytut nauk informatycznych i matematycznych z zastosowaniem
Aleksandra Rabczyńska. Uniwersytet Ekonomiczny we Wrocławiu. Zarządzanie ryzykiem w tworzeniu wartości na przykładzie
Aleksandra Rabczyńska Uniwersytet Ekonomiczny we Wrocławiu Zarządzanie ryzykiem w tworzeniu wartości na przykładzie przedsiębiorstwa z branży wydobywczej Working paper JEL Classification: A10 Słowa kluczowe:
Rodzaje opcji potęgowych i ich ryzyko delty
A N N A L E S U N I V E R S I TAT I S M A R I A E C U R I E - S K O D O W S K A LUBLIN POLONIA VOL. XLIV, 2 SECTIO H 21 EWA DZIAWGO Rodzaje opcji potęgowych i ich ryzyko delty Types of power options and
Zarządzanie portfelem inwestycyjnym
Zarządzanie portfelem inwestycyjnym Dr hab. Renata Karkowska Strategie opcyjne Opcje egzotyczne 2 Współczynniki greckie Współczynniki greckie określają, o ile zmieni się kurs opcji w wyniku zmiany wartości
OGŁOSZENIE Z DNIA 05 lipca 2016 r. O ZMIANIE STATUTU UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO
OGŁOSZENIE Z DNIA 05 lipca 2016 r. O ZMIANIE STATUTU UNIFUNDUSZE SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Niniejszym, Union Investment Towarzystwo Funduszy Inwestycyjnych S.A. ogłasza o zmianie
Opcje - wprowadzenie. Mała powtórka: instrumenty liniowe. Anna Chmielewska, SGH,
Opcje - wprowadzenie Mała powtórka: instrumenty liniowe Punkt odniesienia dla rozliczania transakcji terminowej forward: ustalony wcześniej kurs terminowy. W dniu rozliczenia transakcji terminowej forward:
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr 4 do Uchwały Senatu nr 430/01/015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Instrumenty finansowe Kod
Podstawy inwestowania na rynku Forex, rynku towarowym oraz kontraktów CFD
Podstawy inwestowania na rynku Forex, rynku towarowym oraz Poradnik Inwestora Numer 3 Admiral Markets Sp. z o.o. ul. Aleje Jerozolimskie 133 lok.34 02-304 Warszawa e-mail: Info@admiralmarkets.pl Tel. +48
Wycena klienta i aktywów niematerialnych
Wycena klienta i aktywów niematerialnych Istota wpływu klienta na wartość spółki Strategie marketingowe i zarządzanie nimi Metryki zorientowane na klienta Podatność i zmienność klientów Łączna wartość
- w art. 8 ust. 3 Statutu otrzymuje nowe, następujące brzmienie:
KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające, jako organ KBC Alfa Specjalistycznego Funduszu Inwestycyjnego Otwartego, uprzejmie informuje o dokonaniu zmian statutu dotyczących polityki inwestycyjnej
Beata Stolorz. Słowa kluczowe: opcje, miary wrażliwości, gamma, zomma, model wyceny opcji Blacka Scholesa.
Zomma współczynnik wrażliwości opcji Beata Stolorz Zomma współczynnik wrażliwości opcji Streszczenie: Jednym z najlepszych narzędzi pomiaru ryzyka opcji są miary wrażliwości. Odzwierciedlają one wpływ
Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan
Metody niedyskontowe. Metody dyskontowe
Metody oceny projektów inwestycyjnych TEORIA DECYZJE DŁUGOOKRESOWE Budżetowanie kapitałów to proces, który ma za zadanie określenie potrzeb inwestycyjnych przedsiębiorstwa. Jest to proces identyfikacji
OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK
OPCJE FINANSOWE, W TYM OPCJE EGZOTYCZNE, ZBYWALNE STRATEGIE OPCYJNE I ICH ZASTOSOWANIA DARIA LITEWKA I ALEKSANDRA KOŁODZIEJCZYK OPCJE Opcja jest umową, która daje posiadaczowi prawo do kupna lub sprzedaży
Ocena kondycji finansowej organizacji
Ocena kondycji finansowej organizacji 1 2 3 4 5 6 7 8 Analiza płynności Analiza rentowności Analiza zadłużenia Analiza sprawności działania Analiza majątku i źródeł finansowania Ocena efektywności projektów
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA SYSTEMY ROZMYTE Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra Automatyki i Inżynierii Biomedycznej Laboratorium
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
OPCJE W to też możesz inwestować na giełdzie
OPCJE NA WIG 20 W to też możesz inwestować na giełdzie GIEŁDAPAPIERÓW WARTOŚCIOWYCH WARSZAWIE OPCJE NA WIG 20 Opcje na WIG20 to popularny instrument, którego obrót systematycznie rośnie. Opcje dają ogromne
Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.
Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
DWUMIANOWY MODEL WYCENY OPCJI FINANSOWEJ. К. РЕ RA Wyższa Szkoła Bankowości i Finansów, Akademia Ekonomiczna, Katowice, Polska, pera@ae.katowice.
УДК 069.64 DWUMIANOWY MODEL WYCENY OPCJI FINANSOWEJ К. РЕ RA Wyższa Szkoła Bankowości i Finansów, Akademia Ekonomiczna, Katowice, Polska, pera@ae.katowice.pl WSTĘP Inwestowanie na rynku kapitałowym realizuje
Matematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Wykorzystanie opcji w zarządzaniu ryzykiem finansowym
Prof. UJ dr hab. Andrzej Szopa Instytut Spraw Publicznych Uniwersytet Jagielloński Wykorzystanie opcji w zarządzaniu ryzykiem finansowym Ryzyko finansowe rozumiane jest na ogół jako zjawisko rozmijania
Teoria miary. WPPT/Matematyka, rok II. Wykład 5
Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F
ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR Beata Bieszk-Stolorz Uniwersytet Szczeciński ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA Streszczenie
Zatem, jest wartością portfela (wealth) w chwili,. j=1
Model Rynku z czasem dyskretnym n = 0,1,2, S 1 (n), S 2,, S m (n) - czas - ceny m aktywów obciążanych ryzykiem (akcji) w momencie : dodatnie zmienne losowe. - cena aktywa wolnego od ryzyka (obligacji)
Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy
Finanse behawioralne. Finanse 110630-1165
behawioralne Plan wykładu klasyczne a behawioralne Kiedy są przydatne narzędzia finansów behawioralnych? Przykłady modeli finansów behawioralnych klasyczne a behawioralne klasyczne opierają się dwóch założeniach:
Opcje na akcje Zasady obrotu
Giełda Papierów Wartościowych w Warszawie S.A. Opcje na akcje Zasady obrotu Krzysztof Mejszutowicz Zespół Instrumentów Pochodnych Dział Notowań i Rozwoju Rynku Zasady obrotu (1) Instrumenty bazowe (akcje
CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków
36/3 Archives of Foundry, Year 004, Volume 4, 3 Archiwum Odlewnictwa, Rok 004, Rocznik 4, Nr 3 PAN Katowice PL ISSN 64-5308 CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ E. ZIÓŁKOWSKI
Część IV wartość opcji na zmiennym rynku - greki. Filip Duszczyk Dział Rynku Terminowego
Część IV wartość opcji na zmiennym rynku - greki Filip Duszczyk Dział Rynku Terminowego 1. Wprowadzenie 2. Greki - Delta - Gamma - Theta - Vega - Rho 3. Stopa Dywidendy 4. Podsumowanie Agenda 2 Wprowadzenie
Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I
Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.
Model Blacka-Scholesa
WYCENA OPCJI EUROPEJSKIEJ I AMERYKAŃSKIEJ W MODELACH DWUMIANOWYCH I TRÓJMIANOWYCH COXA-ROSSA-RUBINSTEINA I JARROWA-RUDDA Joanna Karska W modelach dyskretnych wyceny opcji losowość wyrażana jest poprzez
Wycena opcji rzeczywistych zgodnie z teorią perspektywy
mgr Marek Jarzęcki Uniwersytet Ekonomiczny w Poznaniu Wycena opcji rzeczywistych zgodnie z teorią perspektywy Seminarium ROS 2014: Opcje realne teoria dla praktyki Szczecin, 30. listopada 2014 roku Agenda
MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Inżynieria Finansowa na kierunku Zarządzanie
Poznań, 01.10.2015 r. Dr Eliza Buszkowska Adiunkt w Katedrze Nauk Ekonomicznych MODUŁ KSZTAŁCENIA (SYLABUS) dla przedmiotu Inżynieria Finansowa na kierunku Zarządzanie I. Informacje ogólne 1. Nazwa modułu
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR
ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 689 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 50 2012 BARTŁOMIEJ JABŁOŃSKI ZASTOSOWANIE LOGIKI ROZMYTEJ W POLITYCE DYWIDENDOWEJ PRZEDSIĘBIORSTW NOTOWANYCH
O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH
O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH A. KARPIO KATEDRA EKONOMETRII I STATYSTYKI SGGW W WARSZAWIE Krzywa dochodowości Obligacja jest papierem wartościowym, którego wycena opiera się na oczekiwanych
Streszczenia referatów
Streszczenia referatów mgr Marcin Krzywda Jak estymować zmienność na rynku akcji? Do praktycznego zastosowania modeli matematyki finansowej musimy potrafić wyznaczyć parametry zmiennych rynkowych. Jednym
Rynek instrumentów pochodnych w listopadzie 2011 r. INFORMACJA PRASOWA
Warszawa, 5 grudnia 2011 r. Rynek instrumentów pochodnych w listopadzie 2011 r. INFORMACJA PRASOWA W listopadzie 2011 roku wolumen obrotu wszystkimi instrumentami pochodnymi wyniósł 1,27 mln sztuk, wobec
Teoria portfelowa H. Markowitza
Aleksandra Szymura szymura.aleksandra@yahoo.com Teoria portfelowa H. Markowitza Za datę powstania teorii portfelowej uznaje się rok 95. Wtedy to H. Markowitz opublikował artykuł zawierający szczegółowe
Poradnik Inwestora część 3. Podstawy inwestowania na rynku Forex, rynku towarowym oraz kontraktach indeksowych
Poradnik Inwestora część 3 Podstawy inwestowania na rynku Forex, rynku towarowym oraz kontraktach Rodzaje zleceń 1/ Egzekucja Natychmiastowa oznacza złożenie zlecenia po cenie rynkowej, po aktualnych cenach
ABC opcji giełdowych. Krzysztof Mejszutowicz Dział Rynku Terminowego GPW
ABC opcji giełdowych Krzysztof Mejszutowicz Dział Rynku Terminowego GPW Warszawa, kwiecień 2015 Czym są opcje indeksowe (1) Kupno opcji Koszt nabycia Zysk Strata Możliwość inwestowania na wzrost i spadek
Opcje giełdowe. Wprowadzenie teoretyczne oraz zasady obrotu
Opcje giełdowe Wprowadzenie teoretyczne oraz zasady obrotu NAJWAŻNIEJSZE CECHY OPCJI Instrument pochodny (kontrakt opcyjny), Asymetryczny profil wypłaty, Możliwość budowania portfeli o różnych profilach
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
Do końca 2003 roku Giełda wprowadziła promocyjne opłaty transakcyjne obniżone o 50% od ustalonych regulaminem.
Opcje na GPW 22 września 2003 r. Giełda Papierów Wartościowych rozpoczęła obrót opcjami kupna oraz opcjami sprzedaży na indeks WIG20. Wprowadzenie tego instrumentu stanowi uzupełnienie oferty instrumentów
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
NAJWAŻNIEJSZE CECHY OPCJI
ABC opcji NAJWAŻNIEJSZE CECHY OPCJI Instrument pochodny, Asymetryczny profil wypłaty, Możliwość budowania portfeli o różnych profilach wypłaty, Dla nabywcy opcji z góry znana maksymalna strata, Nabywca
Zarządzanie ryzykiem. Wykład 3 Instrumenty pochodne
Zarządzanie ryzykiem Wykład 3 Instrumenty pochodne Definicja instrumenty pochodne to: prawa majątkowe, których cena rynkowa zależy bezpośrednio lub pośrednio od ceny lub wartości papierów wartościowych,