ROZUMIENIE OBRAZÓW I SYGNAŁÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZUMIENIE OBRAZÓW I SYGNAŁÓW"

Transkrypt

1 ROZUMIENIE OBRAZÓW I SYGNAŁÓW DETEKCJA PROSTYCH OBIEKTÓW Krzysztof Ślot Instytut Informatyk Stosowane Blok Intelgentne Systemy Autonomczne

2 Wprowadzene Cel przetwarzana obrazów z perspektywy systemów ntelgentnych (autonomcznych) Rozpoznawane treśc obrazu (zawartość obrazu ake obekty ake relace mędzy obektam) Etapy przetwarzana Pobrane obrazu Przygotowane do analzy Analza (detekca rozpoznane) Decyza akca

3 Wprowadzene Scenarusze rozważane w kurse Śledzene prostego obektu Prosty stały regularny kształt ednorodny kolor (znany /neznany) Śledzene ln (wyznaczaące trasę) Kolor ln znany / neznany Podłoże sztuczne / naturalne Śledzene obektu rzeczywstego o stałe geometr Kształt obektu sę ne zmena

4 Narzędza Sprzęt Raspberry P 3 Kamera do RPI (dedykowana / nternetowa) Poazd kontrolowany przez Arduno Oprogramowane System operacyny Raspban Środowsko Qt dla ęzyka C++ Bbloteka OpenCV (wersa 3.x) Moduły: core hghgu (GUI) mgcodecs (odczyt/zaps) mgproc (analza) features (detekca/rozpoznawane)

5 Obrazy OpenCV Reprezentaca obrazów: macerz Obekt typu cv::mat (tablca) o rozmarze obrazu Elementy tablcy namespace ( moduł ) cv :: - element 1B B 4B/pksel (monochromatyczne): CV_8U (charuchar) CV_3F (float) CV_3S (nt) 3B/pksel (kolorowe): CV_8UC3 (cv::vec3b) 4B/p (kolor + przezroczystość): CV_8U4 Typ - szablon klasy: wymaga specyfkac typu elementów cv::mat m1(640480cv_8u); cv::mat m(104104cv_3f); cv::mat m3(100100cv_8uc3); // obraz monochromatyczny uchar // monochromatyczny float // kolorowy 3 kanały

6 Obrazy OpenCV Manpulaca elementam obrazu Zaps odczyt poedynczych elementów: metody wymagaą specyfkac typu elementów (szablon) Typy wpsywanych danych proste (np. nt gdy macerz ma eden kanał) wektory (wele kanałów) cv::vec{346}{bwsfd} cv::mat o(5656cv_8u)); o.at<unsgned char>(1010) = 00; // wpsane wartośc cv::mat o(00100cv_8uc3)); o.at<unsgned char>(1010) = cv::vec3b(10030); // wpsane wektora cv::mat o(5656cv_8uc3)); for(nt =0; <o.rows; ++) // zapełnane macerzy for(nt =0; <o.cols; ++) o.at<cv::vec3b>()=cv::vec3b(0);

7 Obrazy OpenCV Wczytywane obrazów do programu Źródło: plk / kamera Wczytywane z plku: mread(..) (moduł Imgcodecs) Różne formaty obrazów (różne kodek) png pg Automatyczna alokaca pamęc dla obrazu Domyślna (kolor - BGR) lub narzucona reprezentaca pksel Wyśwetlene obrazu: mshow(..) moduł hghgu cv::mat obraz; // tworzene pustego obektu cv::mread(obraz.../baboon.pg); cv::mshow( Obraz obraz);

8 Obrazy OpenCV Reprezentaca obrazów kolorowych B = Bpp 4Bpp: różne permutace komponentów Podstawa: reprezentaca BGR (BgEndan - RGB) BGRA (ARGB ) nne: przestrzene kolorów HSV Lab Konwerse cvtcolor(..) Kolorowy monochromatyczny (obraz mono to podstawa dla wększośc analz!) Kolor wypadkowy G = 196 R = cv::mat m = mread( ) gs hsv; cv::cvtcolor(mgscv::color_bgrgray); cv::cvtcolor(mgscv::color_bgrhsv); // wczytane obrazu // konwersa do obrazu mono // konwersa do przestrzene HSV

9 Przestrzene kolorów Ops pksela kolorowego: wektor Przestrzeń RGB: replkaca właścwośc oka HSV: barwa (H) nasycene (S) asność (V) S ) max( ) mn( ) max( B G R B G R B G R S V ) max( B G R V wzór eksperymentalny H H S V

10 Analza obrazów z OpenCV Gotowe mplementace wększośc znanych procedur przetwarzana obrazów Program to sekwenca wywołań odpowednch funkc Koneczne twórcze rozwane tego schematu OpenCV bbloteka obektowa (ale ) Typowa postać funkc: vod fun(src dst par1 ) Automatyczna alokaca zmenne wynkowe Smart ponters : a=b vs. a=b.clone() cv::mat out; cv::resze(n out Sze(100100)); // n: źródło ( wcześne cv::cvtcolor(n outcv::color_bgrgray); //zdefnowane out: wynk cv::canny(n out );

11 Cel kursu: detekca obektów Obekty proste : kula ednolty kolor Możlwy scenarusz Wydzel obekty o zblżonym kolorze Problem: może być ch klka Rozbudowany scenarusz Dodatkowo określ kształt Zadana Segmentaca obrazu względem koloru Analza kształtu obektu Metodyka: segmentaca rozpoznawane kształtu

12 Procedura analzy: detekca kul Cel: detekca kul o ednorodnym kolorze Segmentaca obrazu w funkc koloru Przedzały [H l.. H u ] Zakres: komproms (zmenność selektywność) Detekca konturów obektów kolenych pasm Dane: obraz bnarny (obekty tło) Kontur punkty brzegowe: ekstrakca Istotne tylko kontury zewnętrzne obektów Analza kształtu (cel: znalezene okręgów) Dane: zbór punktów (krzywa) Cel: porównane podobeństwa do okręgu Modele okręgu Parametry: szerokość pasma wartośc progów Wydzel pasmo H Znadź kontury obektów Analza kształtu wydzelene kół Wszystke pasma? Konec

13 Segmentaca względem koloru Nawygodnesza przestrzeń: HSV Segmentaca Podzał obrazu na kategore o spónych właścwoścach Kryterum: kolor Algorytm postępowana Wczytane obrazu przekształcene do HSV Wydzelene zakresu barw cv::mat mg = cv::mread( ); cv::mat hsv Seg; cv::cvtcolor(mghsccv::color_bgrhsv); cv::nrange(hsv cv::scalar(l ) cv::scalar(u5555) Seg);

14 Detekca krawędz konturów Krawędze: wyrazste gradenty asnośc / barwy Kluczowe znaczene dla analzy obrazu: grance obektów wygląd obektu Detekca: poszukwane lokalnych maksmów zmennośc Pochodna (zmenność) + progowane modułu pochodne f (x) df ( x) dx Numeryczna aproksymaca pochodne Krawędź df ( x) f ( x h) f ( x h) dx h h 1 f ( x 1) f ( x 1)

15 Detekca krawędz konturów Lnowe przekształcena funkc Splot funkc f H Obemue wyznaczane pochodne H [ H n... H n] Przekształcane funkc w celu uwypuklena / redukc lokalnych właścwośc: fltraca Detekca krawędz: uwypuklene zmennośc Wygładzane: redukca zmennośc g( k) n n g( k) f k f H H f [ f a... fb] H [101] H [ ] Dzedzna D Pochodna gradent f f ( x y) f x y) x ( x y) y ( [101 ] H H H V f f f x y

16 Detekca krawędz konturów Obrazy rzeczywste Typowy przebeg ln obrazu (błędy akwzyc zakłócena) Próg? Pochodna Koneczna elmnaca/redukca lokalne zmennośc Powązane wygładzana (uśrednana) z różnczkowanem f h DIFF Próg f h AVG Operace lnowe realzaca obydwu operac w ednym etape

17 Wygładzane Gradent Detekca krawędz konturów Detekca krawędz: mask Sobela cv::sobel Dwuwymarowy operator H: wygładzane + krawędze Uśrednene L [11] H [101] Pochodna Maska pozoma Maska ponowa S H = H L T Gradent S V = L H T Wygładzane Detekca krawędz: metoda Canny ego Rozwnęce fltrac Sobela Dodany mechanzm śledzena konturów

18 Detekca konturów Kontury cv::fndcontours Argument to obraz bnarny (np. wydzelony w wynku operac lub zaweraący wynk detekc krawędz) Wynk to lsta konturów z których każdy zawera lstę należących do nego punktów) Istotne opce cv::fndcontours Możlwe uzyskane konturu zewnętrznego obektu lub wszystkch (wewnętrznych z nformacą o relac wzaemnego zawerana) Możlwe kodowane konturu lub brak kodowana (wynk to wszystke punkty konturu)

19 Procedura analzy: detekca kul Parametry: szerokość pasma wartośc progów Wydzel pasmo H Znadź kontury obektów H: [5-30] [75-85] [ ] Analza kształtu wydzelene kół Wszystke pasma? Konec

20 Analza kształtu Rozpoznane porównane z modelem - ocena Model: analtyczny lub zbudowany na baze przykładów Porównane: procedura generuąca loścowy wynk ocenaący dopasowane Wynk podlega ocene próg podobeństwa Możlwe modele kształtu obektu Specyfczne bazuące na wedzy o kształce fgury Analtyczny model okręgu Ogólne statystyczne z parametram Momenty obektu: zwykłe centralne unormowane Ogólne bazuące na cechach lokalnych

21 Modele analtyczne Analtyczne defnce obektu Okrąg zbór punktów ednakowo odległych od środka Okrąg krzywa parametryczna ) ( ) ( : r b y a x K P ) / cos( ) / sn( : r r y r r x K P Ocena zgodnośc konturu z modelem #1 Kryterum: średn błąd odstępstw punktów konturu od modelu (kontur wycentrowany : a=b=0) Koneczne oszacowane optymalnego promena okręgu 1 0 ) ( 1 n r y x n E 1 0 ) ( 1 0 n x y n r r E

22 Modele analtyczne Procedura detekc Próg detekc: wartość błędu uznana za akceptowalną Wynk: lsta ostateczna lub lsta kandydatów do dalszego sprawdzena Dalsze sprawdzene: użyce nnego kryterum (np. #) Oszacu r dla konturu K Wyznacz błąd dopasowana E E <? Doda wykryty kontur Wszystke kontury? =+1 Konec

23 Modele statystyczne Statystyczne właścwośc fgury (konturu) Momenty zwykłe (I(xy) asność w punkce (xy)) Momenty centralne (względem wartośc średne) Możlwe statystyczne kryterum detekc pq n 1 0 m pq n 1 0 I( x y)( x x) Momenty centralne 0 0 pownny być podobne Brak lnowe zależnośc współrzędnych okręgu: 11 =0 I( x y) x p p ( y y q y) q J ( 0 / 1)

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

Prawdziwa ortofotomapa

Prawdziwa ortofotomapa Prawdzwa ortofotomapa klasyczna a prawdzwa ortofotomapa mnmalzacja przesunęć obektów wystających martwych pól na klasycznej ortofotomape wpływ rodzaju modelu na wynk ortorektyfkacj budynków stratege opracowana

Bardziej szczegółowo

nauczyciel Media społecznościowe i praca w chmurze oraz przygotowanie na ich potrzeby materiałów graficznych i zdjęciowych Artur Kurkiewicz

nauczyciel Media społecznościowe i praca w chmurze oraz przygotowanie na ich potrzeby materiałów graficznych i zdjęciowych Artur Kurkiewicz 2 S Ł O W O - G R A F I K A - F I L M Meda społecznoścowe praca w chmurze oraz przygotowane na ch potrzeby materałów grafcznych zdjęcowych Artur Kurkewcz część druga - grafka WPROWADZENIE C Cyan M Magenta

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Wykład 2: Uczenie nadzorowane sieci neuronowych - I

Wykład 2: Uczenie nadzorowane sieci neuronowych - I Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za

Bardziej szczegółowo

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT

Bardziej szczegółowo

Wyższa Szkoła Informatyki Stosowanej i Zarządzania

Wyższa Szkoła Informatyki Stosowanej i Zarządzania Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa IZ06TC01, Zespół 3 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat: Modelowanie koloru, kompresja obrazów,

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH

u u u( x) u, x METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH i METODA ELEMENTÓW SKOŃCZONYCH METODA RÓŻNIC SKOŃCZONYCH, METODA ELEMENTÓW BRZEGOWYCH METODA ELEMENTÓW SKOŃCZONYCH Szkc rozwązana równana Possona w przestrzen dwuwymarowe. Równane Possona to równae różnczkowe cząstkowe opsuące wele

Bardziej szczegółowo

Rozpoznawanie Twarzy i Systemy Biometryczne

Rozpoznawanie Twarzy i Systemy Biometryczne Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III 1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania

Bardziej szczegółowo

4.1. Komputer i grafika komputerowa

4.1. Komputer i grafika komputerowa 4. 4.1. Komputer grafka komputerowa Ucz 2 3 4 5 6 komputera; zestawu komputerowego; w podstawowym zakrese; zastosowana komputera, acy defnuje komputer jako zestaw omawa zastosowane komputera nauk gospodark;

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Implementacja filtru Canny ego

Implementacja filtru Canny ego ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Sztuczne sieci neuronowe

Sztuczne sieci neuronowe Sztuczne sec neuronowe Jerzy Stefanowsk Plan wykładu 1. Wprowadzene 2. Model sztucznego neuronu. 3. Topologe sec neuronowych 4. Reguły uczena sec neuronowych. 5. Klasyfkaca sec neuronowych. 6. Sec warstwowe

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

Sortowanie szybkie Quick Sort

Sortowanie szybkie Quick Sort Sortowane szybke Quck Sort Algorytm sortowana szybkego opera sę na strateg "dzel zwycęża" (ang. dvde and conquer), którą możemy krótko scharakteryzować w trzech punktach: 1. DZIEL - problem główny zostae

Bardziej szczegółowo

Dobór zmiennych objaśniających

Dobór zmiennych objaśniających Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.

Bardziej szczegółowo

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE 5. CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Oprócz transmtancj operatorowej, do opsu członów układów automatyk stosuje sę tzw. transmtancję wdmową. Transmtancję wdmową G(j wyznaczyć moŝna dzęk podstawenu do wzoru

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej

Bardziej szczegółowo

Grupowanie. Wprowadzenie. Metody hierarchiczne. Modele mieszane (mixture models) Metody najmniejszych kwadratów. Zastosowania

Grupowanie. Wprowadzenie. Metody hierarchiczne. Modele mieszane (mixture models) Metody najmniejszych kwadratów. Zastosowania Grupowane Wprowadzene Metody herarchczne Modele meszane (mxture models) Metoda Expectaton-maxmzaton (EM) Metody namneszych kwadratów Krytera akośc grupowana Algorytm k-średnch Zastosowana Statstcal Pattern

Bardziej szczegółowo

Sterowanie pracą maszyn z wykorzystaniem analizy obrazów.

Sterowanie pracą maszyn z wykorzystaniem analizy obrazów. Sterowanie pracą maszyn z wykorzystaniem analizy obrazów. Krzysztof Ślot 15 listopada 2018 1 Wprowadzenie Podstawową cechą maszyn autonomicznych jest zdolność pozyskiwania i samodzielnej analizy informacji

Bardziej szczegółowo

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem

Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

Pattern Classification

Pattern Classification attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter

Bardziej szczegółowo

ZESTAW ZADAŃ Z INFORMATYKI

ZESTAW ZADAŃ Z INFORMATYKI (Wpsue zdaąc przed rozpoczęcem prac) KOD ZDAJĄCEGO ZESTAW ZADAŃ Z INFORMATYKI CZĘŚĆ II (dla pozomu rozszerzonego) GRUDZIEŃ ROK 004 Czas prac 50 mnut Instrukca dla zdaącego. Proszę sprawdzć, cz zestaw zadań

Bardziej szczegółowo

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III

Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III 1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może

Bardziej szczegółowo

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda

BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp

Bardziej szczegółowo

Antyaliasing w 1 milisekundę. Krzysztof Kluczek

Antyaliasing w 1 milisekundę. Krzysztof Kluczek Antyaliasing w 1 milisekundę Krzysztof Kluczek Zasada działania Założenia: Metoda bazująca na Morphological Antialiasing (MLAA) wejście: obraz wyrenderowanej sceny wyjście: zantyaliasowany obraz Krótki

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

1 Temat: Wprowadzenie do biblioteki OpenCV

1 Temat: Wprowadzenie do biblioteki OpenCV Instrukcja Zaawansowane przetwarzanie obrazów 1 Temat: Wprowadzenie do biblioteki OpenCV Przygotował: mgr inż. Tomasz Michno 1 Wstęp 1.1 OpenCV - krótki wstęp OpenCV (Open Source Computer Vision) jest

Bardziej szczegółowo

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych

Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach

n liczba zmiennych decyzyjnych c współczynniki funkcji celu a współczynniki przy zmienych decyzyjnych w warunkach Problem decyzyny cel różne sposoby dzałana (decyze) warunk ogranczaące (determnuą zbór decyz dopuszczalnych) kryterum wyboru: umożlwa porównane efektywnośc różnych decyz dopuszczalnych z punktu wdzena

Bardziej szczegółowo

zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych

zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w

Bardziej szczegółowo

Komputerowe obrazowanie medyczne

Komputerowe obrazowanie medyczne Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi

Bardziej szczegółowo

Natalia Nehrebecka. Wykład 2

Natalia Nehrebecka. Wykład 2 Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad

Bardziej szczegółowo

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University.

Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Ćwiczenia z grafiki komputerowej 4 PRACA NA WARSTWACH Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 14 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadania

Bardziej szczegółowo

Filtracja splotowa obrazu

Filtracja splotowa obrazu Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 18. ALGORYTMY EWOLUCYJNE - ZASTOSOWANIA Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska ZADANIE ZAŁADUNKU Zadane załadunku plecakowe

Bardziej szczegółowo

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.

Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny. Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy

Bardziej szczegółowo

Grupowanie dokumentów XML ze względu na ich strukturę, z wykorzystaniem XQuery

Grupowanie dokumentów XML ze względu na ich strukturę, z wykorzystaniem XQuery Rozdzał 44 Grupowane dokumentów XML ze względu na ch strukturę, z wykorzystanem XQuery Streszczene. Popularność ęzyka XML oraz ego powszechne użyce spowodowały rozwó systemów przechowuących dokumenty XML.

Bardziej szczegółowo

Filtracja obrazu operacje kontekstowe

Filtracja obrazu operacje kontekstowe Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja

Bardziej szczegółowo

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010

Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.

Bardziej szczegółowo

Wykrywanie twarzy ludzkich na kolorowych obrazach ze złożonym tłem

Wykrywanie twarzy ludzkich na kolorowych obrazach ze złożonym tłem Wykrywanie ludzkich na kolorowych obrazach ze złożonym tłem Lech Baczyński www.baczynski.com Na podstawie artykułu panów: Yanjiang Wang, Baozong Yuan i in. Do czego przydatne jest wykrywanie (detekcja)?

Bardziej szczegółowo

Badania operacyjne w logistyce i zarządzaniu produkcją

Badania operacyjne w logistyce i zarządzaniu produkcją Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Badana operacyne w logstyce zarządzanu produkcą cz. I Andrze Woźnak Nowy Sącz Komtet Redakcyny doc. dr Zdzsława Zacłona przewodncząca, prof. dr hab. nż. Jarosław

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k

Różniczkowalność, pochodne, ekstremum funkcji. x 2 1 x x 2 k Różnczkowalność, pochodne, ekstremum funkcj Ćwczene 1 Polczyć pochodn a kerunkow a funkcj: 1 1 1 x 1 x 2 x k ϕ(x 1,, x k ) x 2 1 x 2 2 x 2 k x k 1 1 x k 1 2 x k 1 w dowolnym punkce p [x 1, x 2,, x k T

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

Obraz jako funkcja Przekształcenia geometryczne

Obraz jako funkcja Przekształcenia geometryczne Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych

Bardziej szczegółowo

Interpretacja gestów dłoni w sekwencji obrazów cyfrowych. autor: Karol Czapnik opiekun: prof. dr hab. Włodzimierz Kasprzak

Interpretacja gestów dłoni w sekwencji obrazów cyfrowych. autor: Karol Czapnik opiekun: prof. dr hab. Włodzimierz Kasprzak Interpretacja gestów dłoni w sekwencji obrazów cyfrowych autor: Karol Czapnik opiekun: prof. dr hab. Włodzimierz Kasprzak Plan prezentacji Cel pracy magisterskiej Zastosowanie pracy Założenia projektowe

Bardziej szczegółowo

dr inż. Tomasz Krzeszowski

dr inż. Tomasz Krzeszowski Metody cyfrowego przetwarzania obrazów dr inż. Tomasz Krzeszowski 2017-05-20 Spis treści 1 Przygotowanie do laboratorium... 3 2 Cel laboratorium... 3 3 Przetwarzanie obrazów z wykorzystaniem oprogramowania

Bardziej szczegółowo

Algorytmy. i podstawy programowania. eci. Proste algorytmy sortowania tablic. 4. Wskaźniki i dynamiczna alokacja pami

Algorytmy. i podstawy programowania. eci. Proste algorytmy sortowania tablic. 4. Wskaźniki i dynamiczna alokacja pami MAREK GAGOLEWSKI INSTYTUT BADAŃ SYSTEMOWYCH PAN Algorytmy podstawy programowana 4. Wskaźnk dynamczna alokaca pam ec. Proste algorytmy sortowana tablc Matera ly dydaktyczne dla studentów matematyk na Wydzale

Bardziej szczegółowo

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.

Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni. Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła Zakład Wydzałowy Inżyner Bomedycznej Pomarowej Laboratorum Pomarów Automatyk w Inżyner Chemcznej Regulacja Cągła Wrocław 2005 . Mary jakośc regulacj automatycznej. Regulacja automatyczna polega na oddzaływanu

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Zastosowania grafiki komputerowej Światło widzialne Fizjologia narządu wzroku Metody powstawania barw Modele barw

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

Segmentacja obrazu. Segmentacja obrazu

Segmentacja obrazu. Segmentacja obrazu Cel segmentacji Podział obrazu na obszary odpowiadające poszczególnym, widocznym na obrazie obiektom. Towarzyszy temu zwykle indeksacja (etykietowanie) obiektów, czyli przypisanie każdemu obiektowi innej

Bardziej szczegółowo

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego

Bardziej szczegółowo

Przetwarzanie obrazu

Przetwarzanie obrazu Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe

Bardziej szczegółowo

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w

WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TURBULENCJI PRZY UŻYCIU PRAWA -5/3. E c = E k + E p + E w Metrologa... - "W y z n ac z an e d y s y p ac z p raw a -5 / " WYZNACZENIE DYSYPACJI KINETYCZNEJ ENERGII TRBLENCJI PRZY ŻYCI PRAWA -5/. WPROWADZENIE Energa przepływaącego płyn E c dem E p dem E c E k

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Segmentacja przez detekcje brzegów

Segmentacja przez detekcje brzegów Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie

Bardziej szczegółowo

Zastosowanie techniki Motion Capture

Zastosowanie techniki Motion Capture Zastosowanie techniki Motion Capture Michał Grędziak mgredzia@mion.elka.pw.edu.pl Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska ul. Nowowiejska 15/19 00-665 Warszawa, Polska 13 czerwca

Bardziej szczegółowo

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer Statystyka Opsowa 2014 część 1 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.

Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń. Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno

Bardziej szczegółowo

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy

(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy (MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek

Bardziej szczegółowo

Pojęcia. 1. pole powierzchni (object specific area) [F] Suma pól pikseli w wyróżnionym obiekcie/profilu.

Pojęcia. 1. pole powierzchni (object specific area) [F] Suma pól pikseli w wyróżnionym obiekcie/profilu. Pojęca 1. pole poerzchn (object specfc area) [] uma pól pksel yróżnonym obekce/proflu.. pole poerzchn całego obektu (total object specfc area) [ t ] uma pół pksel yróżnonym obekce po ypełnenu dzur. 3.

Bardziej szczegółowo

LOKALIZACJA OBIEKTÓW NA OBRAZACH CYFROWYCH Z WIDEOREJESTRATORA RUCHU DROGOWEGO OBJECT LOCATION IN DIGITAL IMAGES FROM A ROAD TRAFFIC VIDEORECORDER

LOKALIZACJA OBIEKTÓW NA OBRAZACH CYFROWYCH Z WIDEOREJESTRATORA RUCHU DROGOWEGO OBJECT LOCATION IN DIGITAL IMAGES FROM A ROAD TRAFFIC VIDEORECORDER ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 11 Sera TANSPOT z. 71 Nr kol. 1836 Zbgnew CZAPLA, Wesław PAMUŁA LOKALIZACJA OIEKTÓW NA OAZACH CYFOWYCH Z WIDEOEJESTATOA UCHU DOGOWEGO Streszczene. Artykuł przedstawa

Bardziej szczegółowo

Natalia Nehrebecka. Dariusz Szymański

Natalia Nehrebecka. Dariusz Szymański Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl

Bardziej szczegółowo

2012-10-11. Definicje ogólne

2012-10-11. Definicje ogólne 0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010

EKONOMETRIA I Spotkanie 1, dn. 05.10.2010 EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo