Filtracja splotowa obrazu
|
|
- Wacława Wysocka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53
2 Proces przetwarzania obrazów Obraz f(x,y) Konwersja obrazu do postaci czytelnej dla komputera Obróbka obrazu Konwersja obrazu do postaci wyjściowej Obraz wyjściowy Wydzielenie cech z obrazu Cechy 2 / 53
3 Zakres wykładu Splot w ujęciu matematycznym; Rodzaje i cechy splotu; Filtracja splotowa 2D Zastosowania splotu: Rozmywanie obrazu, Wyostrzanie obrazu, Detekcja punktów i krawędzi; Przykłady 3 / 53
4 Definicja splotu Pojęcie splotu jest ważnym pojęciem w wielu dziedzinach nauki. W przetwarzaniu obrazów jest punktem wyjścia do definicji filtracji splotowej. Splot dwóch funkcji można zapisać następująco: f g= f x t g t dt 4 / 53
5 Splot - definicja (2) Splot funkcji oznaczany symbolem f * g. Ma on wiele własności analogicznych do zwyczajnego mnożenia funkcji: jest przemienny f * g = g * f, łączny f * (g * h) = (f * g) * h i rozdzielny względem dodawania f * (g + h) = f * g + f * h; Przekształcenie Fouriera F (lub przekształcenie Laplace'a) zmienia splot na iloczyn: F(f * g) = F(f) F(g); 5 / 53
6 Splot - definicja (3) W technice cyfrowej funkcje f i g zastępowane są tablicami wartości dyskretnych, a operacje całkowania zastępuje się przez sumowanie. t=t h[ x]= n f [ x t] g [t ] t =t 1 Realizacja operacji sumowania w granicach od minus nieskończoności do nieskończoności na skończonych tablicach nie jest możliwa stąd możemy wyróżnić trzy rodzaje operacji splotu ze względu na sposób liczenia wartości tablicy splotu: splot liniowy (aperiodyczny) splot cykliczny (periodyczny) splot sektorowy 6 / 53
7 Filtracja RGB Obrazy wielopasmowe/wielokanałowe, np. RGB, YUV, HSV; Filtracja przeprowadzana jest niezależnie dla każdego z kanałów. Obraz (1) RGB Kanał R Kanał G Kanał B FILTRACJA Kanał R Kanał G Kanał B Obraz (2) RGB 7 / 53
8 Splot sektorowy - implementacja Ten rodzaj operacji splotu wykorzystywany jest w przypadkach kiedy liczby elementów tablicy f i g znacznie odbiegają od siebie. Możemy wtedy krótszą tablicę potraktować jako maskę z wpisanymi do niej na stałe wartościami. W rezultacie przeprowadzenia splotu otrzymamy tablicę zmodyfikowanych wartości wejściowych maską g. Proces ten nazywamy filtracją splotową. f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 * * * g 3 g 2 g 1 h 1 h 2 h 3 h 4 h 5 h 6 8 / 53
9 Splot - implementacja Na ogół dla uproszczenia definiowania maski wprowadza się do procesu filtracji specjalną wartość normalizacyjną, przez którą suma mnożonych wartości jest dzielona przed wprowadzeniem do tablicy wyjściowej. f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 * * * g 3 g 2 g 1 norm h 1 h 2 h 3 h 4 h 5 h 6 9 / 53
10 Splot potencjalne problemy Dość istotnym problemem występujący przy filtracji splotowej jest problem obliczania elementów początkowych i końcowych, kiedy to maska jest wysunięta poza sygnał. Najprostszym rozwiązaniem jest pominięcie tych elementów, dzięki czemu uzyskujemy tablicę sygnału wyjściowego krótszą od tablicy wejściowej. Możliwe jest również powielenie elementów początkowych i końcowych tak aby zastąpiły one elementy brakujące. 10 / 53
11 Splot - definicja (4) Splot funkcji odgrywa ważną rolę w teorii prawdopodobieństwa (jeśli f i g są gęstościami prawdopodobieństwa niezależnych zmiennych losowych X i Y, to f*g jest gęstością prawdopodobieństwa zmiennej losowej X + Y), w teorii równań różniczkowych, teorii aproksymacji i in. Istnieją liczne uogólnienia pojęcia splotu funkcji, np. dla funkcji określonych na grupie, dystrybucji. [ 11 / 53
12 Zastosowanie i implementacja filtracji splotowej odszumianie, wykrywanie krawędzi, wyostrzanie (np. unsharp masking ), wygładzanie (filtr uśredniający, filtr Gaussa), efekty typu motion blur i in. Metody tradycyjne (programowanie sekwencyjne); Metody równoległe (wykorzystanie wielu procesorów, GPU: stencil computing ). 12 / 53
13 Splot potencjalne problemy Dość istotnym problemem występujący przy filtracji splotowej jest problem obliczania elementów początkowych i końcowych, kiedy to maska jest wysunięta poza sygnał. Najprostszym rozwiązaniem jest pominięcie tych elementów, dzięki czemu uzyskujemy tablicę sygnału wyjściowego krótszą od tablicy wejściowej. Możliwe jest również powielenie elementów początkowych i końcowych tak aby zastąpiły one elementy brakujące. 13 / 53
14 Splot filtracja obrazu 14 / 53
15 Splot filtracja obrazu???? X? 15 / 53
16 Splot filtracja obrazu X' 16 / 53
17 Splot filtracja obrazu S (okno.*maska) norm 17 / 53
18 Splot filtracja obrazu S (okno.*maska) norm 18 / 53
19 Splot filtracja obrazu S (okno.*maska) norm 19 / 53
20 Splot filtracja obrazu S (okno.*maska) norm 20 / 53
21 Splot filtracja obrazu S (okno.*maska) norm 21 / 53
22 Ekstrapolacja elementów brzegowych Obraz źródłowy Powielenie pikseli brzegowych Odbicie lustrzane Interpolacja pomiędzy pikselami brzegowymi 22 / 53
23 Splot filtracja elementów brzegowych 23 / 53
24 Splot filtracja elementów brzegowych 24 / 53
25 Splot filtracja elementów brzegowych 25 / 53
26 Splot filtracja elementów brzegowych 26 / 53
27 Zastosowanie wygładzanie obrazu Filtracja obrazu mająca na celu jego rozmycie lub odszumienie jest realizowana za pomocą następujących metod: filtracji uśredniającej, filtracji Gaussa, / 53
28 Filtr uśredniający przykłady (1) Norm= Norm= Maski filtrów uśredniających Norm=25 Norm=11 Norm=3 28 / 53
29 Filtr uśredniający przykłady (2) Norm= Norm= Maski filtrów uśredniających Norm=24 Norm=21 29 / 53
30 Filtracja Gaussa Proces f. Gaussa dokonuje się przez wykonanie operacji splotu funkcji obrazowej f z maską g σ będąca dyskretną aproksymacja dwuwymiarowej funkcji Gaussa: Wagi maski filtru zależą od parametru σ zwanego odchyleniem standardowym. Jest on odpowiedzialny za stopień rozmycia obrazu. Im większa jego wartość, tym większy efekt wygładzenia i większa redukcja zakłóceń 30 / 53
31 Zastosowanie wyostrzanie obrazu Filtracja obrazu mająca na celu jego wyostrzenie lub podkreślenie krawędzi jest realizowana za pomocą następujących metod: filtracji górnoprzepustowej, filtracji różnicowej Gaussa, nieostrego maskowania. 31 / 53
32 High boost 32 / 53
33 Zastosowanie detekcja brzegów obszarów Lokalne zmiany jasności obrazu niosą informację często wykorzystywaną w zadaniach przetwarzania i analizy obrazów informację o granicach obszarów (obiektów) w obrazie. Metody wykrywania dużych, lokalnych zmian jasności w obrazie (np. brzegów, konturów) należą do podstawowych technik segmentacji obrazu. Do lokalnych zmian jasności zalicza się punkty, linie i brzegi. 33 / 53
34 Definicja i model krawędzi Dla obrazów monochromatycznych krawędź definiuje się zazwyczaj jako fizyczne, fotometryczne i geometryczne nieciągłości funkcji obrazowej. Fizycznie krawędzie często pokrywają się z miejscami występowania znacznych zmian oświetlenia, orientacji, współczynnika odbicia czy głębi obiektów sceny obrazu. Zazwyczaj wyrazistość obrazu jest proporcjonalna do jasności sceny, dlatego tez krawędzie zwykło się definiować w miejscu wystąpienia zmian intensywności funkcji obrazowej. 34 / 53
35 Definicja i model krawędzi Krawędź powstaje na granicy obszarów o różnych wartościach funkcji obrazowej (różnych poziomach szarości) i ma charakter krzywoliniowy. Z punktu widzenia powierzchni funkcji obrazowej, krawędzie można scharakteryzować rozpatrując ich przekrój poprzeczny: 35 / 53
36 Detekcja punktów i linii Najprostszym sposobem detekcji prostych kształtów w obrazie (np. punktów, linii) jest wyznaczanie korelacji obrazu z maską detekcyjną (najczęściej stosuje się maski kwadratowe o wymiarach 3x3 i 5x5). Wielkość maski i wartości jej współczynników zależą od rodzaju kształtu podlegającego detekcji. 36 / 53
37 / 53
38 Detekcja brzegów Brzegiem nazywamy granicę pomiędzy dwoma obszarami o różnych jasnościach. Detekcja brzegów obszarów pozwala na identyfikację położenia obiektów w obrazie. Z tego też względu metody detekcji brzegów należą do najważniejszych narzędzi w przetwarzaniu i analizie obrazów. W większości metody detekcji brzegów bazują na wyznaczaniu lokalnych pochodnych obrazu (tzw. operatorów gradientowych). 38 / 53
39 Detekcja brzegów Podstawowe własności operatorów gradientowych: Pierwsza pochodna obrazu może być wykorzystywana do detekcji brzegu oraz jego kierunku Punkt zmiany znaku drugiej pochodnej, tj. jej miejsce zerowe (zero crossing), obrazu może służyć do wyznaczania miejsca wystąpienia brzegu Wadą operatorów gradientowych jest uwypuklenie zakłóceń impulsowych w obrazach (może to powodować pogorszenie jakości obrazu lub detekcję fałszywych brzegów) 39 / 53
40 Detekcja granic obszarów operatorami gradienowymi 40 / 53
41 Gradient obrazu Dla obrazów dyskretnych gradient jest aproksymowany różnicami jasności obrazu dla kierunku poziomego i pionowego lub kierunków ukośnych 41 / 53
42 Przykładowe filtry krawędziowe Filtr Robertsa, Filtr Sobela, Filtr Prewitta, Filtr Laplace'a, Filtr Kirscha, 42 / 53
43 F. Robertsa o(j,k) Krawędzie poziome / pionowe 0 Krawędzie ukośne o w j, k = [o j, k o j 1,k 1 ] 2 [o j,k 1 o j 1, k ] 2 43 / 53
44 Filtr Sobela (1) A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 ow j,k = X 2 Y 2 X = A 2 2 A 3 A 4 A 0 2 A 7 A 6 Y = A 0 2 A 1 A 2 A 6 2 A 5 A 4 44 / 53
45 Filtr Sobela (2) Pionowe / poziome ukośne 45 / 53
46 Filtr Prewitta Pionowe / poziome ukośne 46 / 53
47 Filtr Laplace'a Laplasjan obrazu zdefiniowany jest jako druga pochodna obrazu f w punkcie (x,y) Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 Z 7 Z 8 Z 9 47 / 53
48 Filtr Laplace'a 48 / 53
49 Filtr Kirscha (1) o w ( j, k)=max { 1, max i 0 ;7 5 S i 3 T i } S i =A i + A i+1 + A i +2 T i = A i+3 + A i+ 4 + A i+ 5 + A i+6 + A i+7 gdzie i 0 ;7 indeksy składników zmieniają się modulo 8 49 / 53
50 Filtr Kirscha (2) 50 / 53
51 Filtr Canny'ego Detektor Canny ego jest znacznie bardziej rozbudowanym operatorem w stosunku do omówionych wcześniej. Nie wykorzystuje on tylko informacji o natężeniu zmian funkcji obrazowej (gradiencie) ale także usiłuje w jak największym stopniu zmniejszyć wpływ zakłóceń, oraz poprawić jakość otrzymanego obrazu krawędzi. W roku 1986 John Canny określił wymogi jakie powinien spełniać optymalny detektor krawędzi Zawierają sie one w trzech kryteriach / 53
52 Filtr Canny'ego -kryteria 1. optymalizacja kryterium stosunku sygnału do szumu - skuteczność detektora, który powinien znajdować tylko krawędzie i żadna krawędź nie powinna być pominięta; 2. dokładność lokalizacji - błąd położenia, rozumiany jako odległość pomiędzy rzeczywistą krawędzią a pikselem brzegowym znalezionym przez detektor, powinien być jak najmniejszy; 3. błąd odpowiedzi - wymaga sie od detektora pojedynczej odpowiedzi na pojedynczą krawędź, kryterium to wywodzi się z definicja modelu idealnej krawędzi skokowej, dla której odpowiedzią detektora powinna być linia o szerokości jednego piksela; 52 / 53
53 Filtr Canny'ego - algorytm 1. Wygładzenie funkcji obrazowej za pomocą filtru Gaussa. Ma to na celu redukcje ewentualnych zakłóceń występujących w obrazie. 2. Różniczkowanie obrazu przy użyciu pary ortogonalnych operatorów różniczkowych dla obliczenia modułu gradientu i jego kierunku. Operacje różniczkowania przeprowadza się, podobnie jak we wcześniejszych detektorach, przez dokonanie splotu masek aproksymujacych składowe gradientu z wygładzona funkcja obrazowa. Jako składowe gradientu, pozwalające wyznaczyć moduł gradientu, wykorzystuje się najprostsze operatory: [-1 0 1] i [-10 1]'. Informacja o module gradientu uzyskiwana jest przez obliczenie pierwiastka kwadratowego z sumy kwadratów wartości składowych gradientu otrzymanych wcześniej, a jego kierunek jako arcustangens stosunku tych składowych. Bezwzględna wartość modułu gradientu wygładzonej funkcji obrazowej nie umożliwia jednak jednoznacznej lokalizacji punktów krawędzi. 53 / 53
54 Filtr Canny'ego - algorytm 3. Znalezienie lokalnych maksimów modułu gradientu funkcji obrazowej. Realizowane jest to poprzez przeglądanie mapy gradientowej, badanie otoczenia każdego punktu na kierunku prostopadłym do kierunku gradientu w tym punkcie i usuwanie tych punktów, w których moduł gradientu nie jest większy od modułu sąsiadów. W wyniku zastosowania powyższej operacji szerokie, rozmyte krawędzie zostają pocienione, gdyż pozostają punkty krawędzi o lokalnie największym module gradientu. 4. Progowanie z histerezą 54 / 53
Segmentacja przez detekcje brzegów
Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie
Bardziej szczegółowoFiltracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu
Bardziej szczegółowoParametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Bardziej szczegółowoFiltracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoPrzetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Bardziej szczegółowoAnaliza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Bardziej szczegółowoPrzekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu
Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia
Bardziej szczegółowoPrzetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Bardziej szczegółowoSpośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
Bardziej szczegółowoImplementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Bardziej szczegółowoAnaliza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje
Bardziej szczegółowoLaboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych
Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 11 Filtracja sygnałów wizyjnych Operacje kontekstowe (filtry) Operacje polegające na modyfikacji poszczególnych elementów obrazu w zależności od stanu
Bardziej szczegółowoPrzetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
Bardziej szczegółowoFiltracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):
WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych
Bardziej szczegółowoRozpoznawanie Twarzy i Systemy Biometryczne
Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu
Bardziej szczegółowoWSTĘP DO PRZETWARZANIA OBRAZÓW. Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński
WSTĘP DO PRZETWARZANIA OBRAZÓW Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński Czym jest obraz? Na nasze potrzeby będziemy zajmować się jedynie obrazami w skali szarości. Większość z omawianych
Bardziej szczegółowoFiltracja w domenie przestrzeni
1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie piąte Filtrowanie obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów
Bardziej szczegółowoBIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez
Bardziej szczegółowoDyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Bardziej szczegółowoPRZETWARZANIE SYGNAŁÓW
PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)
Bardziej szczegółowoGrafika komputerowa. Dr inż. Michał Kruk
Grafika komputerowa Dr inż. Michał Kruk Operacje kontekstowe Z reguły filtry używane do analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe Polega to na wyznaczeniu wartości funkcji,
Bardziej szczegółowoDetekcja punktów zainteresowania
Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów
Bardziej szczegółowomaska 1 maska 2 maska 3 ogólnie
WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie
Bardziej szczegółowoFiltracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej
Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)
Bardziej szczegółowoPolitechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek
Bardziej szczegółowoPOB Odpowiedzi na pytania
POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej
Bardziej szczegółowoPrzetwarzanie i Kompresja Obrazów. Filtracja
Przetwarzanie i Kompresja Obrazów. acja Aleksander Denisiuk(denisjuk@pja.edu.pl) Polsko-Japońska Akademia Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55, 80-045 Gdańsk 7 kwietnia 206
Bardziej szczegółowoProste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Bardziej szczegółowoZygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Bardziej szczegółowoKomputerowe obrazowanie medyczne
Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi
Bardziej szczegółowoAlgorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.
Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy
Bardziej szczegółowoObliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński
Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa
Bardziej szczegółowoPolitechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów.
Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 5 Filtracja kontekstowa obrazów. Cel ćwiczenia Celem ćwiczenia jest zdobucie umiejętności tworzenia funkcji realizujących
Bardziej szczegółowoAutomatyczne nastawianie ostrości
Automatyczne nastawianie ostrości Systemy automatycznego nastawiania ostrości (AF) - budowa, działanie, zalety, wady, zastosowanie, algorytmy wyostrzania - przykłady Jakub Skalak http://www.fis.agh.edu.pl/~4skalak/
Bardziej szczegółowoMetoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa IZ06TC01, Zespół 3 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat: Modelowanie koloru, kompresja obrazów,
Bardziej szczegółowoPrzetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe
Przetwarzanie obrazów Ogólna definicja Algorytm przetwarzający obraz to algorytm który, otrzymując na wejściu obraz wejściowy f, na wyjściu zwraca takŝe obraz (g). Grupy metod przetwarzania obrazu Przekształcenia
Bardziej szczegółowoWYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Bardziej szczegółowoAnaliza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze
Bardziej szczegółowoGrafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III
1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania
Bardziej szczegółowoOperacje przetwarzania obrazów monochromatycznych
Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych
Bardziej szczegółowoOptymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Bardziej szczegółowoOperacje morfologiczne w przetwarzaniu obrazu
Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy
Bardziej szczegółowoLaboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
Bardziej szczegółowoPrzetwarzanie obrazów wykład 7. Adam Wojciechowski
Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoZbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5
5. FILTRY LINIOWE I STATYSTYCZNE. WYRÓWNYWANIE TŁA. Znacznie większe znaczenie w przetwarzaniu obrazu niż operacje punktowe mają takie przekształcenia w których zmiana poziomu szarości piksela zależy nie
Bardziej szczegółowoFiltracja nieliniowa obrazu
Informatyka, S1 sem. letni, 2014/2015, wykład#4 Filtracja nieliniowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów Obraz
Bardziej szczegółowoPrzetwarzanie obrazów wykład 3
Przetwarzanie obrazów wykład 3 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Operacje kontekstowe (filtry) Operacje polegają
Bardziej szczegółowoWOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Bardziej szczegółowoAKWIZYCJA I PRZETWARZANIE WSTĘPNE
WYKŁAD 2 AKWIZYCJA I PRZETWARZANIE WSTĘPNE Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x,y)) do postaci zbioru danych dyskretnych (obraz cyfrowy) nadających
Bardziej szczegółowoPodstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Bardziej szczegółowoPlan wykładu. Własności statyczne i dynamiczne elementów automatyki:
Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu
Bardziej szczegółowoAnaliza obrazów. Segmentacja i indeksacja obiektów
Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu
Bardziej szczegółowoDetekcja twarzy w obrazie
Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów
Bardziej szczegółowoFILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI
FILTRACJE W DZIEDZINIE CZĘSTOTLIWOŚCI ( frequency domain filters) Każdy człon F(u,v) zawiera wszystkie wartości f(x,y) modyfikowane przez wartości członów wykładniczych Za wyjątkiem trywialnych przypadków
Bardziej szczegółowoJeśli X jest przestrzenią o nieskończonej liczbie elementów:
Logika rozmyta 2 Zbiór rozmyty może być formalnie zapisany na dwa sposoby w zależności od tego z jakim typem przestrzeni elementów mamy do czynienia: Jeśli X jest przestrzenią o skończonej liczbie elementów
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoElementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa
Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący
Bardziej szczegółowozna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych
Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w
Bardziej szczegółowoMetody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Bardziej szczegółowoWYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Bardziej szczegółowoRaport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010
Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.
Bardziej szczegółowoAkademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Bardziej szczegółowoFFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Bardziej szczegółowoPodstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Bardziej szczegółowoMetody komputerowego przekształcania obrazów
Metody komputerowego przekształcania obrazów Przypomnienie usystematyzowanie informacji z przedmiotu Przetwarzanie obrazów w kontekście zastosowań w widzeniu komputerowym Wykorzystane materiały: R. Tadeusiewicz,
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 8 Temat: Operacje sąsiedztwa detekcja krawędzi Wykonali: 1. Mikołaj Janeczek
Bardziej szczegółowoTechniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów
Bardziej szczegółowoW naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.
1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoRekonstrukcja obrazu (Image restoration)
Rekonstrukcja obrazu (Image restoration) Celem rekonstrukcji obrazu cyfrowego jest odtworzenie obrazu oryginalnego na podstawie obrazu zdegradowanego. Obejmuje ona identyfikację procesu degradacji i próbę
Bardziej szczegółowoAKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU
AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU WYKŁAD 2 Marek Doros Przetwarzanie obrazów Wykład 2 2 Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x, y)) do postaci
Bardziej szczegółowoKARTA PRZEDMIOTU. W5/1;W16/1 W5 Zna podstawowe metody przetwarzania wstępnego EP WM K_W9/3; obrazów barwnych.
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PRZETWARZANIE OBRAZÓW CYFROWYCH 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia 5. Forma
Bardziej szczegółowoCyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk
Cyfrowe przetwarzanie obrazów Dr inż. Michał Kruk Przekształcenia morfologiczne Morfologia matematyczna została stworzona w latach sześddziesiątych w Wyższej Szkole Górniczej w Paryżu (Ecole de Mines de
Bardziej szczegółowoPODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Bardziej szczegółowoReprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność
Bardziej szczegółowoSzybka transformacja Fouriera (FFT Fast Fourier Transform)
Szybka transformacja Fouriera (FFT Fast Fourier Transform) Plan wykładu: 1. Transformacja Fouriera, iloczyn skalarny 2. DFT - dyskretna transformacja Fouriera 3. FFT szybka transformacja Fouriera a) algorytm
Bardziej szczegółowo6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.
WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne
Bardziej szczegółowoWykład 2. Transformata Fouriera
Wykład 2. Transformata Fouriera Transformata Fouriera jest podstawowym narzędziem analizy harmonicznej i teorii analizy i przetwarzania sygnału. Z punktu widzenia teorii matematycznej transformata Fouriera
Bardziej szczegółowoZał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)
Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność
Bardziej szczegółowoKARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,
Bardziej szczegółowo0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie czwarte Przekształcenia morfologiczne obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych
Bardziej szczegółowoAproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1
Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi
Bardziej szczegółowoZ52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Bardziej szczegółowodr inż. Tomasz Krzeszowski
Metody cyfrowego przetwarzania obrazów dr inż. Tomasz Krzeszowski 2017-05-20 Spis treści 1 Przygotowanie do laboratorium... 3 2 Cel laboratorium... 3 3 Przetwarzanie obrazów z wykorzystaniem oprogramowania
Bardziej szczegółowoMet Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
Bardziej szczegółowoWykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe
Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i
Bardziej szczegółowoInformatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Bardziej szczegółowoCyfrowe Przetwarzanie Obrazów. Karol Czapnik
Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja
Bardziej szczegółowoAdam Korzeniewski p Katedra Systemów Multimedialnych
Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Operacja na dwóch funkcjach dająca w wyniku modyfikację oryginalnych funkcji (wynikiem jest iloczyn splotowy). Jest
Bardziej szczegółowoAnaliza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Bardziej szczegółowo