Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III
|
|
- Elżbieta Kowalewska
- 7 lat temu
- Przeglądów:
Transkrypt
1 1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może być kopiowany wyłącznie w całości, razem ze stroną tytułową. Cyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III Joanna Ratajczak KCiR (W4/K7) Copyright c 2015 Joanna Ratajczak 1
2 Aproksymacja krawędzi Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej cechy (edge). Różne podejścia: szukanie w pobliżu wstępnej aproksymacji, transformacja Hougha. Wiedza o obiektach: globalna forma brzegów linie proste, łuki, krzywe stożkowe, ogólne założenia co do treści obrazu możliwie krótka droga pomiędzy dwoma punktami, ograniczona krzywizna linii. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 1 / 30
3 Metoda strojenia krawędzi znanych a priori Założenie: znamy przybliżenie krawędzi (np. z obrazu o małej rozdzielczości). Wzdłuż wstępnej aproksymacji krawędzi szukamy najbliższych lokalnych elementów krawędzi o podobnej orientacji (kierunku gradientu). Jeśli jest ich dostatecznie dużo, to przeprowadzamy aproksymację odpowiednim wielomianem w celu uzyskania ostatecznej krawędzi. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 2 / 30
4 Metoda korelacji w przestrzeni krawędzi Założenie: mamy wzorzec (szablon) krawędzi. Badamy zgodność lokalnych elementów krawędzi z szablonem: czy kierunek gradientu otrzymanego z lokalnego operatora jest prostopadły do modelowej krawędzi czy moduł gradientu przekracza zadany próg. Liczba dopasowanych punktów decyduje o zgodności ze wzorcem bieżącego fragmentu krawędzi. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 3 / 30
5 Metoda kolejnych podziałów Założenie: Krzywizna krawędzi jest mała. Postępowanie rekurencyjne: Wzdłuż symetralnej odcinka łączącego dwa punkty należące do aktualnego przybliżenia krawędzi szukamy lokalnego elementu krawędzi. Jeżeli jest dostatecznie blisko, to dołączamy go do nowego przybliżenia. Warunek stopu: wielkość odchylenia otrzymanych punktów od prostej lub długość otrzymanych odcinków. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 4 / 30
6 Transformacja Hougha U.S. Patent 3,069,654: "Method and means for recognizing complex patterns" (1962) Założenia: Zalety: mamy informacje (lub czynimy założenia) o kształcie krawędzi, możliwe jest dokonanie prostej parametryzacji krzywej opisującej kształt krawędzi (w ogólnym przypadku linii). mała wrażliwość na nieciągłości obrazu linii, mała wrażliwość na zaszumienie obrazu, prosta realizacja programowa. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 5 / 30
7 Transformacja Hougha Metoda detekcji kształtów w obrazie poprzez stopniowe kumulowanie wiarygodności. Na wejściu podawany jest obraz z wykrytymi punktami konturów poprzez zastosowanie detekcji krawędzi. Następnie poddawany jest transformacie. W oryginale służy do wykrywania prostych, później uogólniono na wykrywanie kształtów dających się opisać analitycznie, np. okręgów, dowolnych kształtów. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 6 / 30
8 Wykrywanie prostych y = ax + b y y = a 0x + b 0 b y 2 p1 p 2 y 1 b 0 b = x 2a + y 2 b = x 1a + y 1 x a x 1 x 2 a 0 p 1 (x 1, y 1 ) y 1 = ax 1 + b b = x 1 a + y 1 p 2 (x 2, y 2 ) y 2 = ax 2 + b b = x 2 a + y 2 (a 0, b 0 ) y = a 0 x + b 0 { y1 =a 0 x 1 +b 0 y 2 =a 0 x 2 +b 0 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 7 / 30
9 Wykrywanie prostych Równanie kierunkowe pozwala na przedstawienie dowolnej prostej. Problem dla prostych pionowych lub niemalże pionowych współczynnik kierunkowy przyjmuje nieskończoną wartość. Nieznane są zakresy wartości jakie mogą przyjmować zarówno współczynnik kierunkowy jak i przesunięcie. Rozwiązanie: reprezentacja prostej przy pomocy równania kierunkowego. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 8 / 30
10 Lepsza parametryzacja prostej ρ = x sin Θ + y cos Θ y y 0 y ρ Θ x x 0 (x, y) (ρ, Θ) x J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 9 / 30
11 Lepsza parametryzacja prostej ρ = x sin Θ + y cos Θ y y 0 y ρ Θ x x 0 (x, y) (ρ, Θ) Ważna cecha: dla obrazu o ograniczonych rozmiarach współrzędne ρ i Θ są ograniczone. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 9 / 30 x
12 Wykrywanie linii opiera się o głosowanie. Piksel oddaje głos dodaje jednostkową liczbę do wartości punktów w zbiorze prostych, które reprezentują proste przechodzące przez ten piksel. Wynikowy zbiór zawiera maksima, reprezentujący wykryte proste w oryginalnym obrazie. y ρ 1 ρ a Θ a 2 3 x ρ a Θ Θ a J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 10 / 30
13 Algorytm transformaty Hougha linia prosta 1 Wyznacz zakres parametrów ρ min, ρ max, ρ oraz Θ min, Θ max, Θ. 2 Dla każdej wartości Θ min < Θ i < Θ max co Θ wyznacz ρ ρ = x cos Θ i + y sin Θ i i inkrementuj odpowiednią komórkę histogramu H(ρ, Θ i ) = H(ρ, Θ i ) Wyznacz elementy transformaty o największych wartościach. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 11 / 30
14 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 12 / 30
15 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 12 / 30
16 Wykrywanie okręgów Okrąg o promieniu r i środku (x s, y s ) (x x s ) 2 + (y y s ) 2 = r 2 zwiększane będą w przestrzeni parametrów punkty (x s, y s, r) leżące na powierzchni stożka. Dla ustalonego r w przestrzeni parametrów (x s, y s ) otrzymamy okrąg. y y (x1, y1, r) (xs, ys) (x2, y2, r) x x J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 13 / 30
17 Wykrywanie okręgów 1 Wyznacz obraz krawędziowy. 2 Dla każdego punktu krawędziowego inkrementacja komórki (x s, y s ) transformaty Hougha na podstawie (x, y), ustalonego r oraz dla wszystkich wartości kąta Θ (0, 360). 3 Wyznacz elementy transformaty o największych wartościach. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 14 / 30
18 Wykrywanie okręgów Okrąg o promieniu r i środku (x s, y s ) (x x s ) 2 + (y y s ) 2 = r 2. Wykorzystanie kierunku gradientu: zwiększane będą tylko punkty leżące w kierunku zgodnym z kierunkiem gradientu Φ w odległości r od punktu (x, y) y { xs = x r cos Φ y s = y r sin Φ (x, y) r Φ (x s, y s ) x J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 15 / 30
19 Wykrywanie okręgów wersja 2 1 Wyznacz obraz krawędziowy wraz z kierunkami gradientów krawędzi. 2 Dla każdego punktu krawędziowego wiedząc, że prosta prostopadła do kierunku krawędzi koła przechodzi przez środek okręgu o zadanym promieniu r wyznaczamy środek (x s, y s ) inkrementacja komórki (x s, y s ) transformaty Hougha na podstawie (x, y), ustalonego r oraz dla kierunku zgodnego z kierunkiem gradientu Phi. 3 Wyznacz elementy transformaty o największych wartościach. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 16 / 30
20 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 17 / 30
21 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 17 / 30
22 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 17 / 30
23 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 17 / 30
24 J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 17 / 30
25 Uogólnienie dla dowolnego kształtu Wymaga stworzenia odpowiedniego modelu wykrywanego obiektu. Ψ(X, A) = 0, gdzie X jest wektorem na obrazie (x, y) a A jest wektorem w przesrzeni parametrów. Przykład: linia prosta o parametrach ρ, Θ ρ = x sin Θ + y cos Θ; X = (x, y), A = (ρ, Θ) okrąg o trzech parametrach x s, y s, r (x x s ) 2 + (y y s ) 2 = r 2 ; X = (x, y), A = (x s, y s, r) J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 18 / 30
26 Uogólnienie dla dowolnego kształtu Parametryzacja kształtu krawędzi przy pomocy R tablicy opisującej promień wodzący i kąt biegunowy funkcji kierunku gradientu (x s, y s ) r Φ α (x, y) J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 19 / 30
27 Przykład Faza I Konstruowanie R tablicy Określenie współrzędnych środka sylwetki. (x s, y s) J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 20 / 30
28 Przykład Faza I Konstruowanie R tablicy Wybranie pikseli na krawędzi obiektu J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 21 / 30
29 Przykład Faza I Konstruowanie R tablicy Dla punktu (x, y) wyznaczyć kierunek gradientu Φ, r i oraz α i. (x, y) Φ α i y r i (x s, y s) x J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 22 / 30
30 Przykład Faza I Konstruowanie R tablicy Na podstawie wyznaczonych parametrów zbudować R tablicę. Φ 1 (r 1 1, α1 1 ), (r1 2, α1 2 ), (r1 3, α1 3 ),... Φ 2 (r 2 1, α2 1 ), (r2 2, α2 2 ), (r2 3, α2 3 ),.... Φ n (r n 1, αn 1 ), (rn 2, αn 2 ), (rn 3, αn 3 ),... Φ = 0 (r 2, α 2 ), (r 3, α 3 ) Φ = 45 (r 4, α 4 ) Φ = 90 (r 5, α 5 ), (r 6, α 6 ) Φ = 135 (r 7, α 7 ) Φ = 210 (r 8, α 8 ) Φ = 240 (r 9, α 9 ) Φ = 315 (r 1, α 1 ) J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 23 / 30
31 Faza II Detekcja Przykład 1 Dla punktu (x, y) w obrazie krawędzi wyznaczyć kierunek gradientu Φ. 2 Przy pomocy R tablicy wyznaczyć możliwe położenia środka sylwetki. { xs = x + r i (Φ) cos(α i (Φ)) y s = y + r i (Φ) sin(α i (Φ)) A = (x s, y s ) 3 Inkrementacja komórki (x s, y s ) transformaty Hougha. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 24 / 30
32 Faza II Detekcja Przykład J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 25 / 30
33 R tablica dla dowolnej orientacji i skali Dla czterowymiarowej przestrzeni parametrów A = (x s, y s, S, Θ), gdzie S oznacza współczynnik skali, a Θ kąt obrotu sylwetki względem położenia wzorcowego (w R tablicy) { xs = x + r i (Φ)S cos(α i (Φ) + Θ) y s = y + r i (Φ)S sin(α i (Φ) + Θ) J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 26 / 30
34 Detektor Hougha w środowisku harpia Wyjście bloku typu IMG zawiera obraz wejściowy z wykrytymi obiektami (naniesionymi kolorem czerwonym). Wyjście typu DB podaje informację o fakcie wykrycia obiektów spełniających kryteriach. J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 27 / 30
35 Parametry dla detektora linii J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 28 / 30
36 Parametry dla detektora okręgów J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 29 / 30
37 Parametry dla detektora okręgów J. Ratajczak Cyfrowe przetwarzanie obrazów i sygnałów wykład 9 30 / 30
Aproksymacja kraw. Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej. epnej aproksymacji
Aproksymacja kraw edzi Od wielu lokalnych cech (edge elements) do spójnej, jednowymiarowej cechy (edge). Różne podejścia: szukanie w pobliżu wst epnej aproksymacji transformacja Hough a. Wiedza o obiektach:
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoKrzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych
Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą
Bardziej szczegółowoImplementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Bardziej szczegółowoODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Bardziej szczegółowoReprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność
Bardziej szczegółowoFiltracja nieliniowa obrazu
Informatyka, S1 sem. letni, 2014/2015, wykład#4 Filtracja nieliniowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów Obraz
Bardziej szczegółowoi = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Bardziej szczegółowoGEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoRozpoznawanie obrazów na przykładzie rozpoznawania twarzy
Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Wykorzystane materiały: Zadanie W dalszej części prezentacji będzie omawiane zagadnienie rozpoznawania twarzy Problem ten można jednak uogólnić
Bardziej szczegółowoGrafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 12 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoRównania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 3 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoSpośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
Bardziej szczegółowoMECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
Bardziej szczegółowoZagadnienia brzegowe dla równań eliptycznych
Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta
Bardziej szczegółowoFiltracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):
WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych
Bardziej szczegółowoGeometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
Bardziej szczegółowoKORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
Bardziej szczegółowoROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
Bardziej szczegółowoZakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/
Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt
Bardziej szczegółowoGrafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
Bardziej szczegółowostr 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Bardziej szczegółowoZadania optymalizacyjne
Zadania optymalizacyjne Zadania optymalizacyjne, to zadania, w których należy obliczyć, jakie warunki muszą być spełnione, aby pewna wielkość osiągała największą lub najmniejszą wartość Żeby żądane warunki
Bardziej szczegółowoReprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność
Bardziej szczegółowoROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS.
Anna BŁACH, Piotr DUDZIK, Anita PAWLAK Politechnika Śląska Ośrodek Geometrii i Grafiki Inżynierskiej ul. Krzywoustego 7 44-100 Gliwice tel./ fax: 0-32 237 26 58, e-mail: anna.blach@polsl.pl, piotr.dudzik@polsl.pl,
Bardziej szczegółowoPRÓBNA MATURA ZADANIA PRZYKŁADOWE
ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba
Bardziej szczegółowoSzacowanie wartości monet na obrazach.
Marcin Nieściur projekt AiPO Szacowanie wartości monet na obrazach. 1. Wstęp. Celem projektu było stworzenie pluginu do programu ImageJ pozwalającego na szacowanie wartości monet znajdujących się na obrazach
Bardziej szczegółowoFIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Bardziej szczegółowoParametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Bardziej szczegółowoGeometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Bardziej szczegółowoĆwiczenia nr 7. TEMATYKA: Krzywe Bézier a
TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji
Bardziej szczegółowo0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 14
RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 Wybrane przykłady krzywych płaskich Wybrane przykłady krzywych Cykloida Okrąg o promieniu a toczy sie bez poslizgu po prostej. Ustalony punkt tego okręgu porusza się po krzywej
Bardziej szczegółowoWymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
Bardziej szczegółowoTechnikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Bardziej szczegółowoKrzywe stożkowe Lekcja VI: Parabola
Krzywe stożkowe Lekcja VI: Parabola Wydział Matematyki Politechniki Wrocławskiej Czym jest parabola? Parabola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem β = α (gdzie α
Bardziej szczegółowoklasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności
I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -
Bardziej szczegółowoZagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony
Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres
Bardziej szczegółowoDetekcja kształtów i wybrane cechy obrazów konturowych
Informatyka, S2 sem. Letni, 2013/2014, wykład#7 Detekcja kształtów i wybrane cechy obrazów konturowych dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces
Bardziej szczegółowoPODSTAWOWE KONSTRUKCJE GEOMETRYCZNE
PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta
Bardziej szczegółowoArkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Bardziej szczegółowoWYKŁAD 10. kodem pierwotnym krzywej jest ciąg par współrzędnych x, y kolejnych punktów krzywej: (x 1, y 1 ), (x 2, y 2 ),...
WYKŁAD 10 Kompresja krzywych dyskretnych Kompresja krzywych dyskretnych KP SK = KW SK - stopień kompresji krzywej. KP [bajt] - obszar pamięci zajmowany przez kod pierwotny krzywej. KW [bajt] - obszar pamięci
Bardziej szczegółowoZestaw VI. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. (x + 1) 2 > 18 B. (x 1) 2 < 5 C. (x + 4) 2 < 50 D.
Zestaw VI Zadanie. ( pkt) Wskaż nierówność, którą spełnia liczba π A. (x + ) 2 > 8 B. (x ) 2 < C. (x + 4) 2 < 0 D. (x 2 )2 8 Zadanie 2. ( pkt) Pierwsza rata, która stanowi 8% ceny roweru, jest równa 92
Bardziej szczegółowoZadania do samodzielnego rozwiązania zestaw 11
Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4
Bardziej szczegółowo11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Bardziej szczegółowoWYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła.
WYKŁAD 7 Elementy segmentacji Obraz z wykrytymi krawędziami: Detektory wzrostu (DTW); badanie pewnego otoczenia piksla Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć
Bardziej szczegółowoDział I FUNKCJE TRYGONOMETRYCZNE
MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:
Bardziej szczegółowoZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II
ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności
Bardziej szczegółowoMATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne
Bardziej szczegółowoWYMAGANIA WSTĘPNE Z MATEMATYKI
WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między
Bardziej szczegółowoALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami
ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści 1 Wyrażenia algebraiczne indukcja matematyczna 1 Geometria analityczna w R 3 3 Liczby zespolone
Bardziej szczegółowoLUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut
MATEMATYKA LUTY 04 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane 4 odpowiedzi: A, B,
Bardziej szczegółowoWYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów
WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania
Bardziej szczegółowostr 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 2c: wpisy oznaczone jako: (PI) PLANIMETRIA I, (SA) SUMY ALGEBRAICZNE, (FW) FUNKCJE WYMIERNE, (FWL) FUNKCJE
Bardziej szczegółowoTYCZENIE OSI TRASY W 2 R 2 SŁ KŁ W 1 W 3
TYCZENIE TRAS W procesie projektowania i realizacji inwestycji liniowych (autostrad, linii kolejowych, kanałów itp.) materiałem źródłowym jest mapa sytuacyjno-wysokościowa w skalach 1:5 000; 1:10 000 lub
Bardziej szczegółowomaska 1 maska 2 maska 3 ogólnie
WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie
Bardziej szczegółowoCyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk
Cyfrowe przetwarzanie obrazów Dr inż. Michał Kruk Przekształcenia morfologiczne Morfologia matematyczna została stworzona w latach sześddziesiątych w Wyższej Szkole Górniczej w Paryżu (Ecole de Mines de
Bardziej szczegółowoZakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY
MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania
Bardziej szczegółowoWykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Bardziej szczegółowoProste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Bardziej szczegółowoTransformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Bardziej szczegółowoMATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.
MATURA 2012 Powtórka do matury z matematyki Część VIII: Geometria analityczna ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już ósmą z dziesięciu części materiałów powtórkowych
Bardziej szczegółowoMatura 2011 maj. Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x D. x 1 3 3
Matura 2011 maj Zadanie 1. (1 pkt) Wskaż nierówność, którą spełnia liczba π A. x + 1 > 5 B. x 1 < 2 C. x + 2 3 4 D. x 1 3 3 Zadanie 2. (1 pkt) Pierwsza rata, która stanowi 9% ceny roweru, jest równa 189
Bardziej szczegółowoWYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy
Bardziej szczegółowo1 Geometria analityczna
1 Geometria analityczna 1.1 Wektory na płaszczyźnie Wektor to uporządkowana para punktów, z których pierwszy nazywa się początkiem, a drugi końcem wektora. Jeżeli wprowadzimy prostokątny układ współrzędnych,
Bardziej szczegółowoBIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Bardziej szczegółowoGEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Bardziej szczegółowoEkoenergetyka Matematyka 1. Wykład 6.
Ekoenergetyka Matematyka. Wykład 6. RÓWNANIA PŁASZCZYZN Fakt (równanie normalne płaszczyzny) Równanie płaszczyzny przechodzącej przez punkt P0 ( x0, y0, z0) o wektorze wodzącym r [ x, y, z ] i prostopadłej
Bardziej szczegółowoAnaliza obrazu. wykład 5. Marek Jan Kasprowicz Uniwersytet Rolniczy 2008
Analiza obrazu komputerowego wykład 5 Marek Jan Kasprowicz Uniwersytet Rolniczy 2008 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze
Bardziej szczegółowoAnimowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
Bardziej szczegółowo= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Bardziej szczegółowoW. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 21. krąg o środku S = (3, 2) leży wewnątrz okręgu o równaniu (x 6) 2 + (y 8) 2 = 100 i jest do niego styczny. Wyznacz równanie
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 8, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 8, 09.03.0 wykład: pokazy: ćwiczenia: zesław Radzewicz Radosław hrapkiewicz, Filip Ozimek Ernest Grodner Wykład 7 - przypomnienie eikonał
Bardziej szczegółowoBadanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +
Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale
Bardziej szczegółowoRepetytorium z matematyki ćwiczenia
Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa
Bardziej szczegółowo1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Bardziej szczegółowoKształcenie w zakresie podstawowym. Klasa 3
Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Bardziej szczegółowo1 Funkcje dwóch zmiennych podstawowe pojęcia
1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej
Bardziej szczegółowoROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 23 VIII 2007 R.
ROZKŁAD MATERIAŁU Z MATEMATYKI, ZGODNY Z PODSTAWĄ PROGRAMOWĄ OGŁOSZONĄ PRZEZ MINISTRA EDUKACJI NARODOWEJ DNIA 3 VIII 007 R. Przedstawione poniżej treści obejmujące zakres rozszerzony wyróżnione są pogrubioną
Bardziej szczegółowow najprostszych przypadkach, np. dla trójkątów równobocznych
MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu
Bardziej szczegółowona postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.
Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.
Bardziej szczegółowoFiltracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
Bardziej szczegółowoMatematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 8 Interpolacja Interpolacja polega na budowaniu tzw. funkcji interpolujących ϕ(x) na podstawie zadanych
Bardziej szczegółowoKADD Minimalizacja funkcji
Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE WYKŁAD 15
RÓWNANIA RÓŻNICZKOWE WYKŁAD 15 Niech r ( t ) [ x( t), y( t), z( t)], t I ( r ( t ) x( t) i y( t) j z( t) k, t I ) będzie równaniem wektorowym krzywej w R 3. Definicja Krzywą o równaniu r ( t ) [ a cost,
Bardziej szczegółowoZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna
Arkusz A06 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Wartość wyrażenia 1 3 + 1 + 3
Bardziej szczegółowoGeometria Struny Kosmicznej
Spis treści 1 Wstęp 2 Struny kosmiczne geneza 3 Czasoprzestrzeń struny kosmicznej 4 Metryka czasoprzestrzeni struny kosmicznej 5 Wyznaczanie geodezyjnych 6 Wykresy geodezyjnych 7 Wnioski 8 Pytania Wstęp
Bardziej szczegółowoWymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
Bardziej szczegółowoPLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Bardziej szczegółowoBlok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
Bardziej szczegółowoZestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
Bardziej szczegółowoKURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale
Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy
Bardziej szczegółowoedzi (local edge detectors) Lokalne operatory wykrywania kraw
Lokalne operatory wykrywania kraw edzi (local edge detectors) Jeśli dwie reprezentacje sa zbyt odleg le, by można by lo latwo określić transformacje miedzy nimi, to u latwić zadanie można przez wprowadzenie
Bardziej szczegółowo