dr inż. Tomasz Krzeszowski
|
|
- Amelia Zawadzka
- 8 lat temu
- Przeglądów:
Transkrypt
1 Metody cyfrowego przetwarzania obrazów dr inż. Tomasz Krzeszowski
2 Spis treści 1 Przygotowanie do laboratorium Cel laboratorium Przetwarzanie obrazów z wykorzystaniem oprogramowania Matlab Wyświetlenie pomocy Zapis, odczyt i wyświetlenie obrazu Reprezentacja obrazu Zmiana reprezentacji obrazu Histogram Zakłócanie i filtracja obrazu Zakłócanie obrazu Filtracja obrazu Operacje morfologiczne Znajdywanie krawędzi, konturów i narożników Zadania do samodzielnego wykonania Literatura
3 1 Przygotowanie do laboratorium Przed zajęciami należy się zapoznać z niniejszą instrukcją, w szczególności ze składnią oraz przeznaczeniem poszczególnych poleceń. 2 Cel laboratorium Celem laboratorium jest zapoznanie studentów z podstawowymi metodami cyfrowego przetwarzania obrazów. Podczas ćwiczeń wykorzystywany będzie pakiet Image Processing Toolbox oprogramowania Matlab. 3 Przetwarzanie obrazów z wykorzystaniem oprogramowania Matlab 3.1 Wyświetlenie pomocy W celu wyświetlenia pomocy dla danego polecenia należy je wpisać w linii poleceń, a następnie wcisnąć przycisk F Zapis, odczyt i wyświetlenie obrazu Do odczytywania, zapisywania oraz wyświetlania obrazu wykorzystuje się odpowiednio funkcje imread, imwrite i imshow. imread - wczytuje plik z dysku, składnia polecenia: I = imread('nazwa_pliku') [X, map] = imread('nazwa_pliku') gdzie X mapa obrazu, map mapa kolorów. imwrite - zapisuje obraz na dysku, składnia polecenia: imwrite(i, 'nazwa_pliku') imwrite(x, map, 'nazwa_pliku') imshow wyświetla obraz, składnia polecenia: imshow(i) imshow(x, map) 3.3 Reprezentacja obrazu W oprogramowaniu MATLAB obraz może być reprezentowany na 4 sposoby: binarnej - obraz jest reprezentowany przez macierz o wartościach 0 lub 1. intensywnościowej - pozwala na przechowywanie obrazów w odcieniach szarości. Każdy element macierzy to liczba określająca intensywność barwy szarej. indeksowej - obraz składa się z dwóch macierzy: macierzy obrazu, której elementy są wskaźnikami do mapy kolorów oraz macierzy z mapą kolorów. RGB - obraz jest reprezentowany przez trzy macierze, z których każda określa intensywność jednej z barw składowych (czerwonej, zielonej i niebieskiej). 3.4 Zmiana reprezentacji obrazu 3
4 ind2rgb - przekształca obraz indeksowy na obraz RGB. Intensywność każdego z kolorów jest reprezentowana przy pomocy jednej macierzy. [R, G, B] = ind2rgb(x, map) rgb2ind - przekształca obraz RGB na obraz indeksowy. [X, map] = rgb2ind(r, G, B) rgb2gray - przekształca obraz RGB na obraz w odcieniach szarości. I = rgb2gray(r, G, B) ind2gray - przekształca obraz indeksowy na obraz w odcieniach szarości. I = ind2gray(x, map) gray2ind - przekształca obraz w odcieniach szarości na obraz indeksowy. [X, map] = gray2ind(i) im2bw - przekształca obraz intensywnościowy, indeksowy lub RGB na obraz czarnobiały. BW = im2bw(i, level) BW = im2bw(r, G, B, level) BW = im2bw(x, map, level) 3.5 Histogram Do wyświetlenia histogramu stosuje się funkcję imhist natomiast operację wyrównania histogramu można wykonać przy pomocy funkcji i histeq. imhist - wyświetla histogram obrazu. imhist(i) imhist(x, map) histeq - wykonanie operacji wyrównania histogramu. J = histeq(i) newmap = histeq(x, map) 3.6 Zakłócanie i filtracja obrazu Zakłócanie obrazu Do zakłócania obrazu służy funkcja imnoise imnoise - funkcja pozwala na wprowadzenie zakłóceń na obrazie. J = imnoise(i, 'type') J = imnoise(i, 'type', arguments) gdzie 'type', określa typ wprowadzanego szumu. Dostępne są następujące opcje: 4
5 3.6.2 Filtracja obrazu gaussian dla białego szumu Gaussa dla stałej wartości średniej i wariancji; localvar dla białego szumu Gaussa z wartością średnią równą zero oraz wariancją zależną od intensywności; salt & pepper dla szumu typu "sól i pieprz"; poisson dla szum Poissona; speckle dla szumu "speckle". natomiast parametr arguments określa parametry danego szumy (patrz dokumentacja). imfilter - splot obrazu z filtrem J = imfilter(i, F) gdzie F to macierz na podstawie której odbywa się filtracja. Przykładowe filtry dolnoprzepustowe: [ ], 10 [ ], 12 [ ], 16 [ 2 4 2] Przykładowe filtry górnoprzepustowe: [ 1 9 1], [ 1 5 1], [ 2 5 2] medfilt2 - filtracja medianowa 5 B = medfilt2(a, [m n]) B = medfilt2(a) 3.7 Operacje morfologiczne Operacje morfologiczne są realizowane na obrazach binarnych. Do utworzenia elementu strukturalnego (SE) należy użyć funkcji strel imdilate - operacja dylatacji morfologicznej J = imdilate(i,se) imerode - operacja erozji morfologicznej J = imerode(i,se) imclose - operacja zamknięcia morfologicznego J = imclose(i,se) imopen - operacja otwarcia morfologicznego
6 J = imopen(i,se) 3.8 Znajdywanie krawędzi, konturów i narożników Do ekstrakcji krawędzi wykorzystuje się funkcję edge. Funkcja działa na obrazach w odcieniach szarości. edge - ekstrakcja krawędzi BW = edge(i, 'method') BW = edge(i, 'method', thresh) BW = edge(i, 'method', thresh, direction) gdzie thresh to próg obcięcia, direction definiuje kierunek wykrywanych krawędzi, a method określa wykorzystywaną metodę. Parametr method może przyjmować następujące wartości: sobel operator Sobela ; prewitt operator Prewitta; roberts operator Robertsa; log operator Laplace'a; canny algorytm Canny'ego. imcontour - wyznaczenie konturów na obrazie (obraz powinien być w odcieniach szarości) imcontour(i) corner - znajdywanie narożników C = corner(i) C = corner(i, 'method') gdzie method określa algorytm wykorzystywany do detekcji narożników i może przyjmować następujące wartości: Harris detektor Harrisa; MinimumEigenvalue metoda Shi & Tomasi's. 4 Zadania do samodzielnego wykonania Z wykonywanych zadań laboratoryjnych należy przygotować sprawozdanie. Sprawozdanie powinno zawierać: a) stronę tytułową; b) wywoływane polecenia wraz z wynikiem ich działania; c) wnioski. Sprawozdanie należy przesłać za pomocą aplikacji internetowej znajdującej się pod adresem: 6
7 Na stronie należy założyć konto i zapisać się na odpowiednie zajęcia. Zadania do wykonania: 1. Wczytać, zapisać oraz wyświetlić przykładowe obrazy. 2. Dokonać konwersji pomiędzy różnymi typami reprezentacji obrazów. 3. Wyświetlić histogram dla przykładowych obrazów i dokonać wyrównania histogramu. 4. Dodać szum do przykładowych obrazów, a następnie przetestować różne metody filtracji (w metodach dodających szum i metodach filtracji należy uwzględnić różne parametry). 5. Przetestować metody morfologiczne na obrazach binarnych. 6. Przebadać dostępne metod ekstrakcji krawędzi, konturu i narożników. 5 Literatura 1. Richard Szeliski: Computer Vision: Algorithms and Applications. Springer, New York, M. Wysocki, J. Marnik, T. Kapuściński, Wizja komputerowa. Materiały pomocnicze. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów,
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Filtracja w domenie przestrzeni
1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Segmentacja przez detekcje brzegów
Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie
zna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych
Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu
Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania
Raport. Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010
Raport Bartosz Paprzycki xed@mat.umk.pl UMK 2009/2010 1. Wykrywanie krawędzi 1.0. Obraz oryginalny 1. 1.1. Sobel. Parametry: domyślne. 1.2. Prewitt. Parametry: domyślne. 1.3. Roberts. Parametry: domyślne.
Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych.
Algorytmy Laplacian of Gaussian i Canny ego detekcji krawędzi w procesie analizy satelitarnych obrazów procesów atmosferycznych. Słowa kluczowe: teledetekcja, filtracja obrazu, segmentacja obrazu, algorytmy
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa IZ06TC01, Zespół 3 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr 5 Temat: Modelowanie koloru, kompresja obrazów,
Analiza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Automatyka i Robotyka II stopień ogólno akademicki
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu
Wizja maszynowa w robotyce i automatyzacji - opis przedmiotu Informacje ogólne Nazwa przedmiotu Wizja maszynowa w robotyce i automatyzacji Kod przedmiotu 11.9-WE-AiRD-WMwRiA Wydział Kierunek Wydział Informatyki,
Rozpoznawanie Twarzy i Systemy Biometryczne
Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu
Elektronika i Telekomunikacja I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Operacje morfologiczne w przetwarzaniu obrazu
Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Diagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie piąte Filtrowanie obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów
Przekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu
Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia
KARTA PRZEDMIOTU. W5/1;W16/1 W5 Zna podstawowe metody przetwarzania wstępnego EP WM K_W9/3; obrazów barwnych.
(pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: PRZETWARZANIE OBRAZÓW CYFROWYCH 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia 5. Forma
Laboratorium przetwarzania obrazów
Laboratorium przetwarzania obrazów Autorzy opracowania: P. Pełczyński, P. Strumiłło, M. Strzelecki Łódź, październik 2000 Spis treści:. Pakiet MATLAB i Biblioteka Przetwarzania Obrazów... 3 (Image Processing
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez
WSTĘP DO PRZETWARZANIA OBRAZÓW. Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński
WSTĘP DO PRZETWARZANIA OBRAZÓW Jak znaleźć ciekawe rzeczy na zdjęciu? mgr Krzysztof Szarzyński Czym jest obraz? Na nasze potrzeby będziemy zajmować się jedynie obrazami w skali szarości. Większość z omawianych
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Przetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Techniki wizualizacji. Ćwiczenie 2. Obraz cyfrowy w komputerze
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 2 Obraz cyfrowy w komputerze Celem ćwiczenia
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX6 Operacje morfologiczne Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami podstawowych
Laboratorium Wizji Komputerowej
Politechnika Rzeszowska Katedra Informatyki i Automatyki Laboratorium Wizji Komputerowej Ćwiczenie 1 HISTOGRAMY I BINARYZACJA Zagadnienia teoretyczne: 1. Zapoznać się z pojęciami histogram i wyrównywanie
PODSTAWY PRZETWARZANIA INFORMACJI OBRAZOWEJ
PODSTAWY PRZETWARZANIA INFORMACJI OBRAZOWEJ OKNA GRAFICZNE Okno graficzne można tworzyć odpowiednimi poleceniami (np. figure) Okna takie są zaś tworzone automatycznie w momencie wykonywania pewnych poleceń,
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 5 Segmentacja Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Inżynieria obrazów cyfrowych. Ćwiczenie 1. Środowisko MATLAB + Image Processing Toolbox - wprowadzenie
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Inżynieria obrazów cyfrowych Ćwiczenie 1 Środowisko MATLAB + Image Processing
Filtracja splotowa obrazu
Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)
Analiza obrazów - sprawozdanie nr 3
Analiza obrazów - sprawozdanie nr 3 Przekształcenia morfologiczne Przekształcenia morfologiczne wywodzą się z morfologii matematycznej, czyli dziedziny, która opiera się na teorii zbiorów, topologii i
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
dr inż. Tomasz Krzeszowski
Microsoft Robotics Developer Studio dr inż. Tomasz Krzeszowski 2017-05-20 Spis treści 1 Przygotowanie do laboratorium... 3 2 Cel laboratorium... 3 3 Microsoft Robotics Developer Studio... 3 3.1 Wprowadzenie...
Projekt 2: Filtracja w domenie przestrzeni
Projekt 2: Filtracja w domenie przestrzeni 1. 2. Wstęp teoretyczny a. Filtracja w domenie przestrzeni b. Krótko o szumie c. Filtracja d. Usuwanie szumu typu Salt and Pepper filtrem medianowym e. Wnioski
Wyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 8 Temat: Operacje sąsiedztwa detekcja krawędzi Wykonali: 1. Mikołaj Janeczek
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU CYFROWE PRZETWARZANIE SYGNAŁÓW
maska 1 maska 2 maska 3 ogólnie
WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie
Grafika komputerowa. Dr inż. Michał Kruk
Grafika komputerowa Dr inż. Michał Kruk Operacje kontekstowe Z reguły filtry używane do analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe Polega to na wyznaczeniu wartości funkcji,
Detekcja punktów zainteresowania
Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów
Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych
ZACNIEWSKI Artur 1 Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych WSTĘP Kod kreskowy (ang. barcode) to graficzna reprezentacja informacji, w postaci
Metody komputerowe w obliczeniach inżynierskich
Metody komputerowe w obliczeniach inżynierskich dr inż. Marcel Luzar m.luzar@issi.uz.zgora.pl p. 325 A-2 www.issi.uz.zgora.pl Przetwarzanie obrazów w MATLABIe Zapis i odczyt obrazów, liczby 8 i 16-bitowe
PRZETWARZANIE SYGNAŁÓW
PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 2 Histogram i arytmetyka obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Komputerowa analiza obrazu Laboratorium 4
Komputerowa analiza obrazu Laboratorium 4 Przykład 1 Palety barw w programie Matlab: Wykreślenie wartości nasycenia składowych RGB dla palety HSV. ('Color','w'); rgbplot (hsv (256)); axis([0 256 0 1]);
Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych
Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 11 Filtracja sygnałów wizyjnych Operacje kontekstowe (filtry) Operacje polegające na modyfikacji poszczególnych elementów obrazu w zależności od stanu
Przetwarzanie obrazu
Przetwarzanie obrazu Przegląd z uwzględnieniem obrazowej bazy danych Tatiana Jaworska Jaworska@ibspan.waw.pl www.ibspan.waw.pl/~jaworska Umiejscowienie przetwarzania obrazu Plan prezentacji Pojęcia podstawowe
TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017
TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ANALIZA I PRZETWARZANIE OBRAZÓW CYFROWYCH Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Programowanie aplikacji internetowych Rodzaj zajęć: wykład, laboratorium
Analiza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje
Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy
MATLAB Obrazowanie medyczne
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE pl. Marii Curie-Skłodowskiej 5, 20-031 Lublin, www.umcs.lublin.pl centrala: +48 81 537 51 00, fax: +48 81 533 36 69, 537 51 02 NIP: 712-010-36-92 REGON:
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 6 Interpolacja i histogram obrazów Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii Biomedycznej
ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt. Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel.
Grupa IZ07IO1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT ALGORYTMY PRZETWARZANIA OBRAZÓW Projekt Aplikacja przetwarzająca obrazy z możliwością eksportu i importu do programu MS Excel. Wykonali:
Diagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie siódme Usuwanie tła i segmentacja Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z metodami usuwania tła z obrazu oraz algorytmami
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych
SYLABUS/KARTA PRZEDMIOTU
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Metody przetwarzania danych graficznych. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek
Odciski palców ekstrakcja cech
Kolasa Natalia Odciski palców ekstrakcja cech Biometria sprawozdanie z laboratorium 4 1. Wstęp Biometria zajmuje się rozpoznawaniem człowieka na podstawie jego cech biometrycznych. Jest to możliwe ponieważ
WYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Przetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
4. Obraz twarzy jako identyfikator biometryczny.
4. Obraz twarzy jako identyfikator biometryczny J. Jakubowski 1 4.1. Powstawanie obrazu cyfrowego Głos sygnał akustyczny jednowymiarowy analogowy, w którym zmienną niezależną jest czas a zależną wartość
LABORATORIUM TELEMONITORINGU OBIEKTÓW I AGLOMERACJI. Temat: Metody anonimizacji obrazu
LABORATORIUM TELEMONITORINGU OBIEKTÓW I AGLOMERACJI Temat: Metody anonimizacji obrazu W programie Watermarker.exe dostępny jest graficzny interfejs udostępniający opcje algorytmów anonimizacji. Funkcjonalności
Jacek Jakubowski tel konsultacje: wtorki, s. 56/100.
Jacek Jakubowski jjakubowski@wat.edu.pl tel. 261-839-082 konsultacje: wtorki, 15.05 16.35 s. 56/100 J. Jakubowski 1 Spis treści [..] Akwizycja obrazu [12,1 4,22 1,15 5,63] [13,7 3,43 2,45 6,47] Mirek Janek
Detekcja twarzy w obrazie
Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów
1.3. Tworzenie obiektów 3D. Rysunek 1.2. Dostępne opcje podręcznego menu dla zaznaczonego obiektu
1. Edytor grafiki Draw 1.1. Okno programu Draw W bezpłatnym pakiecie OpenOffice zawarty jest program graficzny Draw (rysunek 1.1), wyposażony w liczne narzędzia do obróbki obiektów. Program możesz uruchomić,
Implementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Techniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów
Ćwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
Treść wykładu. Przetwarzanie i analiza obrazów w Matlabie Cz.2. Badanie i filtracja szumu. Obraz i jego szum: Profile i histogram obrazu szumu
Treść wykładu Przetwarzanie i analiza obrazów w Matlabie Cz.2 Opracował: dr inż. Z. Rudnicki KKiEM AGH Oprac.: dr inż. Zbigniew Rudnicki, AGH, KKiEM 1 Filtracja szumów Binaryzacja obrazów szarych Przekształcenia
Rozdział ten zawiera informacje na temat zarządzania Modułem Modbus TCP oraz jego konfiguracji.
1 Moduł Modbus TCP Moduł Modbus TCP daje użytkownikowi Systemu Vision możliwość zapisu oraz odczytu rejestrów urządzeń, które obsługują protokół Modbus TCP. Zapewnia on odwzorowanie rejestrów urządzeń
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie siódme Usuwanie tła i segmentacja 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z metodami usuwania tła z obrazu oraz algorytmami
Rozszerzony konspekt wykładu do przedmiotu Systemy wizyjne w robotyce
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt wykładu do przedmiotu Systemy wizyjne w robotyce dr hab. inż. Barbara Putz, prof. PW mgr
6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.
WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne
Instrukcja obsługi Konfigurator MLAN-1000
Instrukcja obsługi Konfigurator MLAN-1000 Strona 2 z 8 SPIS TREŚCI 1. Logowanie... 3 2. Diagnostyka... 4 3. Konfiguracja sterownika... 5 3.1 Konfiguracja sterownika aktualizacja oprogramowania... 5 4.
Diagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie czwarte Przekształcenia morfologiczne obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z definicjami operacji morfologicznych
Grafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Rekonstrukcja obrazu (Image restoration)
Rekonstrukcja obrazu (Image restoration) Celem rekonstrukcji obrazu cyfrowego jest odtworzenie obrazu oryginalnego na podstawie obrazu zdegradowanego. Obejmuje ona identyfikację procesu degradacji i próbę
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka
Wprowadzenie do programowania w języku Visual Basic. Podstawowe instrukcje języka 1. Kompilacja aplikacji konsolowych w środowisku programistycznym Microsoft Visual Basic. Odszukaj w menu startowym systemu
Wersja do wydruku - bez części teoretycznej
Jacek Misiurewicz Krzysztof Kulpa Piotr Samczyński Mateusz Malanowski Piotr Krysik Łukasz Maślikowski Damian Gromek Artur Gromek Marcin K. Bączyk Zakład Teorii Obwodów i Sygnałów Instytut Systemów Elektronicznych
ANALIZA I PRZETWARZANIE OBRAZÓW
ANALIZA I PRZETWARZANIE OBRAZÓW Instalacja pip install opencv-python run pip install opencv-contrib-python Przydatne Potrzebne importy: import cv2 import numpy as np Odczyt, zapis i wyświetlanie obrazu:
ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM)
ANALIZA I INDEKSOWANIE MULTIMEDIÓW (AIM) LABORATORIUM 5 - LOKALIZACJA OBIEKTÓW METODĄ HISTOGRAMU KOLORU 1. WYBÓR LOKALIZOWANEGO OBIEKTU Pierwszy etap laboratorium polega na wybraniu lokalizowanego obiektu.
Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI
AKADEMIA GÓRNICZO HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE Wydział Geologii, Geofizyki i Ochrony Środowiska PROJEKT INŻYNIERSKI IMIĘ i NAZWISKO: Zbigniew Winiarski Nr albumu: 237828 KIERUNEK: Informatyka
Zbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5
5. FILTRY LINIOWE I STATYSTYCZNE. WYRÓWNYWANIE TŁA. Znacznie większe znaczenie w przetwarzaniu obrazu niż operacje punktowe mają takie przekształcenia w których zmiana poziomu szarości piksela zależy nie
Lokalne transformacje obrazów
Laboratorium: Cyfrowe przetwarzanie obrazów i sygnaªów Lokalne transformacje obrazów 1 Cel i zakres wiczenia Celem wiczenia jest zapoznanie si z wªasno±ciami lokalnych transformacji obrazu i ich wykorzystaniem
II. Cel dwiczenia: Zastosowanie oprogramowania ImagePro Plus
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Opracował dr inż. Krzysztof Pałka Laboratorium Technik komputerowych w inżynierii materiałowej ĆWICZENIE TK2-11,12 Akceptował:
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 4 Filtracja sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest realizowane w
Anna Fabijańska. Algorytmy segmentacji w systemach analizy ilościowej obrazów
POLITECHNIKA ŁÓDZKA Wydział Elektrotechniki Elektroniki Informatyki i Automatyki Katedra Informatyki Stosowanej Anna Fabijańska Nr albumu: 109647 Streszczenie pracy magisterskiej nt.: Algorytmy segmentacji
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3)
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (3) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
Komputerowe obrazowanie medyczne
Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi
Zastosowanie zobrazowań SAR w ochronie środowiska. ćwiczenia II
Zastosowanie zobrazowań SAR w ochronie środowiska ćwiczenia II Satelitarna interferometria radarowa Sentinel-1 Toolbox owprowadzenie do programu Sentinel-1 Toolbox. Podczas zajęć wykorzystywane będę obrazy