Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny.
|
|
- Marek Szewczyk
- 7 lat temu
- Przeglądów:
Transkrypt
1 Filtracja nieliniowa może być bardzo skuteczną metodą polepszania jakości obrazów Filtry nieliniowe Filtr medianowy Spośród licznych filtrów nieliniowych najlepszymi właściwościami odznacza się filtr medianowy prosty i skuteczny Szeregowanie Wybór elementu w porządku środkowego rosnącym Pewne własności filtru medianowego można przybliżyć posługując się jednowymiarowym modelem filtrowanego sygnału (wysokości słupków odpowiadają poziomowi jasności pikseli). Przed filtracją mediana uśrednianie mediana 16 uśrednianie Po filtracji Reakcja filtrów na pojedyncze zakłócenie Wpływ filtrów na brzegi obiektu Efekty filtracji medianowej Efekty usuwania szumów za pomocą filtracji medianowej na obrazie medycznym Obraz zaszumiony Filtracja konwolucyjna Filtracja medianowa Obraz rentgenowski Efekt filtracji medianowej 1
2 Kości wysegmentowane metodą progową z danych niefiltrowanych (a) i po działaniu filtrem medianowym (c) oraz różnica pomiędzy a i c (b). Wady filtracji medianowej Jakość filtracji medianowej silnie zależy od wielkości używanego okna: Obraz oryginalny 3x3 5x5 7x7 9x9 Obraz oryginalny 3x3 5x5 7x7 9x9 Modyfikacje mediany Filtr minimalny i maksymalny 1) Zmniejszanie ilości punktów w oknie. a b c d e f g h i b d e f h Filtr minimalny Szeregowanie Wybór elementu w porządku minimalnego rosnącym Okno dziewięciopunktowe Okno pięciopunktowe Filtr maksymalny. 2) Wyznaczanie wartości mediany bez sortowania elementów. MED (b, d, e, f, h) = MAX [ MIN (b, d, e), MIN (b, d, f), MIN (b, d, h), MIN (b, e, f), MIN (b, e, h), MIN (b, f, h), MIN (d, e, f), MIN (d, e, h), MIN (d, f, h), MIN (e, d, h) ] Szeregowanie Wybór elementu w porządku maksymalnego rosnącym Filtry kombinowane wykrywające krawędzie Działanie filtru kombinowanego Idea filtrów kombinowanych polega na kolejnym zastosowaniu dwóch gradientów w prostopadłych do siebie kierunkach, a następnie na dokonaniu nieliniowej kombinacji wyników tych gradientów. Dzięki nieliniowej kombinacji rezultatów liniowych transformacji obrazu tworzy się w ten sposób obraz wynikowy o wyjątkowo dobrze podkreślonych konturach niezależnie od kierunku ich przebiegu. Do połączenia (kombinowania) obrazów można użyć formuły Euklidesowej: Używane są tu gradienty Sobela Obraz z wydobytymi konturami poziomymi L' 2 m, n L m, n L m n 2 1 2, Obraz wejściowy Obraz wynikowy L (m,n) - punkt obrazu wynikowego L 1 (m,n), L 2 (m,n) - punkty na obrazach powstałych po zastosowaniu gradientów Obraz z wydobytymi konturami pionowymi 2
3 Filtry kombinowane - uproszczenie obliczeń W celu uproszczenia obliczeń do łączenia obrazów stosuje się uproszczoną formułę modułową pozwalającą na uzyskiwanie praktycznie równie dobrych wyników. m, n L m, n L m n L, ' 1 2 Filtry adaptacyjne Filtry adaptacyjne zmieniają charakterystykę działania w zależności od cech analizowanego obszaru. Filtry te działają dwuetapowo: W pierwszym etapie wyznaczany jest parametr klasyfikujący dany punkt do krawędzi. Jako kryterium można przyjąć wariancję stopni szarości w jego otoczeniu. W drugim etapie dokonuje się filtracji filtrem uśredniającym, ale tylko tych punktów, które nie zostały zakwalifikowane do krawędzi. Punkty należące do krawędzi pozostają bez zmian. Obraz wynikowy przy zastosowaniu formuły modułowej Obraz wynikowy przy zastosowaniu formuły Euklidesowej Obraz wejściowy Obraz wynikowy Przykładowy wynik filtracji obrazu filtrem adaptacyjnym Detekcja krawędzi Obraz konturowy, który powstaje w następstwie automatycznej detekcji krawędzi, niesie często wystarczająco dużo informacji, żeby w pełni scharakteryzować istotne cechy obrazu (na przykład kształt obiektów), przy czym obraz konturowy zawiera znacznie mniej informacji, co ułatwia jego przechowywanie, przesyłanie, porównywanie ze wzorcami itp. Obraz konturowy jest też dogodnym punktem wyjścia do procesu wektoryzacji obrazu rastrowego. Najskuteczniejszy (chyba) jest algorytm Canny Gradienty wyznacza się za pomocą typowej maski poziomej i pionowej Kolejne operacje będą omówione na następnych slajdach Omówienia nie wymaga konwolucja jest to typowa filtracja dolnoprzepustowa, dobrze już znana 3
4 Mając dla każdego piksela wartość gradientu poziomego dx i gradientu pionowego dy można obliczyć moduł i fazę (kąt) gradientu wypadkowego. Dokładne wzory podane są obok. W praktyce wykorzystuje się uproszczony wzór na moduł i metodę wyznaczania fazy na podstawie tabelki nazywanej kołem gradientowym. W trakcie tego samego etapu dokonywany jest proces wyostrzania krawędzi (ang. thinning). Zakłada się, że teoretyczna krawędź przebiega tak, jak zaznaczono to na rysunku Piksele leżące na krawędzi obiektu spełniają warunki: gdzie algorytm Canny s: 0.60 l: 0.30 h: 0.90 algorytm Canny s: 1.20 l: 0.40 h:
5 algorytm Nalwa b: 0.60 l: 0.10 h: 0.60 algorytm Nalwa b: 1.50 l: 0.10 h: 0.60 algorytm Bergholm S: 2.0 s: 1.5 t: 15.0 algorytm Bergholm S: 3.0 s: 2.0 t: 5.0 Wydobywanie konturów na obrazach medycznych Technika FINE (Filtered Image for Noise reduction and Edge enhancement) 5
6 Matoda CAFE (Compound Artifact Flash Elimination) szum Adaptacyjne filtry nieliniowe znajdują zastosowanie przy filtracji obrazów barwnych Efekt filtracji liniowej Efekt filtracji nieliniowej A Kontekstowe operatory logiczne Wartości piksela po przetwarzaniu logicznym, można uzyskać korzystając z jednej z poniższych formuł: do kontrastowania obrazów medycznych (1) B X C D A gdy A D A B gdy B C gdy A B C D Wady kręgosłupa Analogicznie można zdefiniować tę operację dla obrazów w pełnej skali szarości: A gdy A D do kontrastowania obrazów medycznych (2) do kontrastowania obrazów medycznych (3) Miedniczki nerkowe Przekrój mózgu 6
7 do kontrastowania obrazów medycznych (4) Jama brzuszna 7
Przetwarzanie obrazów wykład 4
Przetwarzanie obrazów wykład 4 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Filtry nieliniowe Filtry nieliniowe (kombinowane)
Bardziej szczegółowoPrzekształcenia kontekstowe. Filtry nieliniowe Typowy przykład usuwania zakłóceń z obrazu
Definicja Przekształcenia kontekstowe są to przekształcenia które dla wyznaczenia wartości jednego punktu obrazu wynikowego trzeba dokonać określonych obliczeń na wielu punktach obrazu źródłowego. Przekształcenia
Bardziej szczegółowoPrzetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Bardziej szczegółowoFiltracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Podział metod filtracji obrazu Metody przestrzenne i częstotliwościowe Metody liniowe i nieliniowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu
Bardziej szczegółowoAnaliza obrazu. wykład 4. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 4 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Filtry górnoprzepustowe - gradienty Gradient - definicje Intuicyjnie, gradient jest wektorem, którego zwrot wskazuje
Bardziej szczegółowoFiltracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
Bardziej szczegółowoPrzetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia kontekstowe Liniowe Nieliniowe - filtry Przekształcenia kontekstowe dokonują transformacji poziomów jasności pikseli analizując za każdym razem nie tylko jasność danego
Bardziej szczegółowoGrafika komputerowa. Dr inż. Michał Kruk
Grafika komputerowa Dr inż. Michał Kruk Operacje kontekstowe Z reguły filtry używane do analizy obrazów zakładają, że wykonywane na obrazie operacje będą kontekstowe Polega to na wyznaczeniu wartości funkcji,
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 8 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoParametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
Bardziej szczegółowoPolitechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 8. Filtracja uśredniająca i statystyczna.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 8 Filtracja uśredniająca i statystyczna. Cel ćwiczenia Celem ćwiczenia jest zdobycie umiejętności tworzenia i wykorzystywania
Bardziej szczegółowoImplementacja filtru Canny ego
ANALIZA I PRZETWARZANIE OBRAZÓW Implementacja filtru Canny ego Autor: Katarzyna Piotrowicz Kraków,2015-06-11 Spis treści 1. Wstęp... 1 2. Implementacja... 2 3. Przykłady... 3 Porównanie wykrytych krawędzi
Bardziej szczegółowoAnaliza obrazu. wykład 3. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 3 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Binaryzacja Binaryzacja jest jedną z ważniejszych ż czynności punktowego przetwarzania obrazów. Poprzedza prawie zawsze
Bardziej szczegółowoAnaliza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Bardziej szczegółowoPrzetwarzanie obrazów wykład 3
Przetwarzanie obrazów wykład 3 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Operacje kontekstowe (filtry) Operacje polegają
Bardziej szczegółowoWYKŁAD 3. Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego
WYKŁAD 3 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego 1 Przykłady zmian w obrazie po zastosowaniu Uniwersalnego Operatora Punktowego (c.d.) 2 Zestawienie zbiorcze - Regulacje
Bardziej szczegółowoLaboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 11. Filtracja sygnałów wizyjnych
Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 11 Filtracja sygnałów wizyjnych Operacje kontekstowe (filtry) Operacje polegające na modyfikacji poszczególnych elementów obrazu w zależności od stanu
Bardziej szczegółowoFiltracja nieliniowa obrazu
Informatyka, S1 sem. letni, 2014/2015, wykład#4 Filtracja nieliniowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów Obraz
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 7 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoMetody komputerowego przekształcania obrazów
Metody komputerowego przekształcania obrazów Przypomnienie usystematyzowanie informacji z przedmiotu Przetwarzanie obrazów w kontekście zastosowań w widzeniu komputerowym Wykorzystane materiały: R. Tadeusiewicz,
Bardziej szczegółowoFiltracja liniowa (metody konwolucyjne, tzn. uwzględniające pewne otoczenie przetwarzanego piksla):
WYKŁAD 3 Operacje sąsiedztwa Są to operacje, w których na wartość zadanego piksla obrazu wynikowego q o współrz. (i,j) mają wpływ wartości piksli pewnego otoczenia piksla obrazu pierwotnego p o współrzędnych
Bardziej szczegółowoZbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 5
5. FILTRY LINIOWE I STATYSTYCZNE. WYRÓWNYWANIE TŁA. Znacznie większe znaczenie w przetwarzaniu obrazu niż operacje punktowe mają takie przekształcenia w których zmiana poziomu szarości piksela zależy nie
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie piąte Filtrowanie obrazu Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów
Bardziej szczegółowoProjekt 2: Filtracja w domenie przestrzeni
Projekt 2: Filtracja w domenie przestrzeni 1. 2. Wstęp teoretyczny a. Filtracja w domenie przestrzeni b. Krótko o szumie c. Filtracja d. Usuwanie szumu typu Salt and Pepper filtrem medianowym e. Wnioski
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 10 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie piate Filtrowanie obrazu Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z pojęciami szumu na obrazie oraz metodami redukcji szumów przez
Bardziej szczegółowoLaboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Bardziej szczegółowoRozpoznawanie Twarzy i Systemy Biometryczne
Filtry Plan wykładu Przegląd dostępnych filtrów Zastosowanie filtrów na różnych etapach pracy systemu Dalsze badania Kontrast i ostrość Kontrast różnica w kolorze i świetle między częściami ś i obrazu
Bardziej szczegółowoRekonstrukcja obrazu (Image restoration)
Rekonstrukcja obrazu (Image restoration) Celem rekonstrukcji obrazu cyfrowego jest odtworzenie obrazu oryginalnego na podstawie obrazu zdegradowanego. Obejmuje ona identyfikację procesu degradacji i próbę
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 6 Temat: Operacje sąsiedztwa wyostrzanie obrazu Wykonali: 1. Mikołaj Janeczek
Bardziej szczegółowoFiltracja w domenie przestrzeni
1 Filtracja Filtracja w domenie przestrzeni Filtracja liniowa jest procesem splotu (konwolucji) obrazu z maską (filtrem). Dla dwuwymiarowej i dyskretnej funkcji filtracja dana jest wzorem: L2(m, n) = (w
Bardziej szczegółowoPrzetwarzanie obrazów. Grupy metod przetwarzania obrazu. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe. Przetwarzanie jednopunktowe
Przetwarzanie obrazów Ogólna definicja Algorytm przetwarzający obraz to algorytm który, otrzymując na wejściu obraz wejściowy f, na wyjściu zwraca takŝe obraz (g). Grupy metod przetwarzania obrazu Przekształcenia
Bardziej szczegółowoCyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX6 Operacje morfologiczne Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami podstawowych
Bardziej szczegółowoSegmentacja przez detekcje brzegów
Segmentacja przez detekcje brzegów Lokalne zmiany jasności obrazu niosą istotną informację o granicach obszarów (obiektów) występujących w obrazie. Metody detekcji dużych, lokalnych zmian jasności w obrazie
Bardziej szczegółowoFiltracja splotowa obrazu
Informatyka, S1 sem. letni, 2012/2013, wykład#3 Filtracja splotowa obrazu dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 53 Proces przetwarzania obrazów Obraz f(x,y)
Bardziej szczegółowoKomputerowe obrazowanie medyczne
Komputerowe obrazowanie medyczne Część II Przetwarzanie i analiza obrazów medycznych Grafika rastrowa i wektorowa W grafice wektorowej obrazy i rysunki składają się z szeregu punktów, przez które prowadzi
Bardziej szczegółowoPolitechnika Świętokrzyska. Laboratorium. Przetwarzanie obrazów medycznych. Ćwiczenie 5. Filtracja kontekstowa obrazów.
Politechnika Świętokrzyska Laboratorium Przetwarzanie obrazów medycznych Ćwiczenie 5 Filtracja kontekstowa obrazów. Cel ćwiczenia Celem ćwiczenia jest zdobucie umiejętności tworzenia funkcji realizujących
Bardziej szczegółowoOperacje przetwarzania obrazów monochromatycznych
Operacje przetwarzania obrazów monochromatycznych Obraz pobrany z kamery lub aparatu często wymaga dalszej obróbki. Jej celem jest poprawienie jego jakości lub uzyskaniem na jego podstawie określonych
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania
Wyższa Szkoła Informatyki Stosowanej i Zarządzania Grupa ID308, Zespół 11 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń Ćwiczenie 8 Temat: Operacje sąsiedztwa detekcja krawędzi Wykonali: 1. Mikołaj Janeczek
Bardziej szczegółowoĆwiczenia z grafiki komputerowej 5 FILTRY. Miłosz Michalski. Institute of Physics Nicolaus Copernicus University. Październik 2015
Ćwiczenia z grafiki komputerowej 5 FILTRY Miłosz Michalski Institute of Physics Nicolaus Copernicus University Październik 2015 1 / 12 Wykorzystanie warstw Opis zadania Obrazy do ćwiczeń Zadanie ilustruje
Bardziej szczegółowoWOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Bardziej szczegółowoPrzetwarzanie obrazów
Przetwarzanie obrazów Zajęcia 11 Filtracje przestrzenne obrazów rastrowych (2). Zasady wykonania ćwiczenia Obrazy wynikowe do zadań zapisujemy w pliku nazwiskonr.rvc (bieżące nr 1) a komentarze do wyników
Bardziej szczegółowoAnaliza obrazu. wykład 6. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 6 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, oraz materiałów ze
Bardziej szczegółowoBIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Bardziej szczegółowoCyfrowe przetwarzanie obrazów i sygnałów Wykład 9 AiR III
1 Na podstawie materiałów autorstwa dra inż. Marka Wnuka. Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania
Bardziej szczegółowoCyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Bardziej szczegółowoAnaliza obrazów. Segmentacja i indeksacja obiektów
Analiza obrazów. Segmentacja i indeksacja obiektów Wykorzystane materiały: R. Tadeusiewicz, P. Korohoda, Komputerowa analiza i przetwarzanie obrazów, Wyd. FPT, Kraków, 1997 Analiza obrazu Analiza obrazu
Bardziej szczegółowoPrzetwarzanie obrazów wykład 7. Adam Wojciechowski
Przetwarzanie obrazów wykład 7 Adam Wojciechowski Przekształcenia morfologiczne Przekształcenia podobne do filtrów, z tym że element obrazu nie jest modyfikowany zawsze lecz tylko jeśli spełniony jest
Bardziej szczegółowoDetekcja twarzy w obrazie
Detekcja twarzy w obrazie Metoda na kanałach RGB 1. Należy utworzyć nowy obrazek o wymiarach analizowanego obrazka. 2. Dla każdego piksela oryginalnego obrazka pobiera się informację o wartości kanałów
Bardziej szczegółowoAlgorytmy decyzyjne będące alternatywą dla sieci neuronowych
Algorytmy decyzyjne będące alternatywą dla sieci neuronowych Piotr Dalka Przykładowe algorytmy decyzyjne Sztuczne sieci neuronowe Algorytm k najbliższych sąsiadów Kaskada klasyfikatorów AdaBoost Naiwny
Bardziej szczegółowoFiltracja obrazów. w dziedzinie częstotliwości. w dziedzinie przestrzennej
Filtracja obrazów w dziedzinie częstotliwości w dziedzinie przestrzennej filtry liniowe filtry nieliniowe Filtracja w dziedzinie częstotliwości Obraz oryginalny FFT2 IFFT2 Obraz po filtracji f(x,y) H(u,v)
Bardziej szczegółowoZbigniew Sołtys - Komputerowa Analiza Obrazu Mikroskopowego 2016 część 7
7. NORMALIZACJA I BINARYZACJA ADAPTATYWNA 7.1. Normalizacja lokalna Zwykłe konwolucje działają w jednakowy sposób na całym obrazie. Plugin Local Normalization przeprowadza filtrowanie Gaussa w zależności
Bardziej szczegółowoRozpoznawanie obrazów na przykładzie rozpoznawania twarzy
Rozpoznawanie obrazów na przykładzie rozpoznawania twarzy Wykorzystane materiały: Zadanie W dalszej części prezentacji będzie omawiane zagadnienie rozpoznawania twarzy Problem ten można jednak uogólnić
Bardziej szczegółowoPOB Odpowiedzi na pytania
POB Odpowiedzi na pytania 1.) Na czym polega próbkowanie a na czym kwantyzacja w procesie akwizycji obrazu, jakiemu rodzajowi rozdzielczości odpowiada próbkowanie a jakiemu kwantyzacja Próbkowanie inaczej
Bardziej szczegółowoPRZETWARZANIE SYGNAŁÓW
PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)
Bardziej szczegółowoPrzetwarzanie obrazu
Przetwarzanie obrazu Przekształcenia geometryczne Obroty Przesunięcia Odbicia Rozciągnięcia itp Przekształcenia geometryczne Obroty Wielokrotność 90 stopni Inne Przekształcenia geometryczne Obroty Wielokrotność
Bardziej szczegółowoOperacje morfologiczne w przetwarzaniu obrazu
Przekształcenia morfologiczne obrazu wywodzą się z morfologii matematycznej działu matematyki opartego na teorii zbiorów Wykorzystuje się do filtracji morfologicznej, wyszukiwania informacji i analizy
Bardziej szczegółowo6. Algorytmy ochrony przed zagłodzeniem dla systemów Linux i Windows NT.
WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: INFORMATYKA STOSOWANA RODZAJ STUDIÓW: STACJONARNE I STOPNIA ROK AKADEMICKI 2014/2015 WYKAZ PRZEDMIOTÓW EGZAMINACYJNYCH: I. Systemy operacyjne
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie drugie Podstawowe przekształcenia obrazu 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami obrazu wykonywanymi
Bardziej szczegółowoWYKŁAD 7. Obraz z wykrytymi krawędziami: gdzie 1 - wartość konturu, 0 - wartość tła.
WYKŁAD 7 Elementy segmentacji Obraz z wykrytymi krawędziami: Detektory wzrostu (DTW); badanie pewnego otoczenia piksla Lokalizacja krawędzi metodami: - liczenie różnicy bezpośredniej, - liczenie różnicy
Bardziej szczegółowoAlgorytmy graficzne. Nieliniowa filtracja obrazów monochromatycznych
Algorytmy graficzne Nieliniowa filtracja orazów monochromatycznych Metody oceny efektywności filtracji Analizując filtry redukujące zakłócenia w orazie cyfrowym konieczne jest określenie ścisłych miar
Bardziej szczegółowoZygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
Bardziej szczegółowoPrzekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Bardziej szczegółowoTransformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
Bardziej szczegółowoCyfrowe przetwarzanie obrazów. Dr inż. Michał Kruk
Cyfrowe przetwarzanie obrazów Dr inż. Michał Kruk Przekształcenia morfologiczne Morfologia matematyczna została stworzona w latach sześddziesiątych w Wyższej Szkole Górniczej w Paryżu (Ecole de Mines de
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
Bardziej szczegółowoSegmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp. autor: Łukasz Chlebda
Segmentacja obrazów cyfrowych Segmentacja obrazów cyfrowych z zastosowaniem teorii grafów - wstęp autor: Łukasz Chlebda 1 Segmentacja obrazów cyfrowych - temat pracy Temat pracy: Aplikacja do segmentacji
Bardziej szczegółowoGrafika Komputerowa Wykład 2. Przetwarzanie obrazów. mgr inż. Michał Chwesiuk 1/38
Wykład 2 Przetwarzanie obrazów mgr inż. 1/38 Przetwarzanie obrazów rastrowych Jedna z dziedzin cyfrowego obrazów rastrowych. Celem przetworzenia obrazów rastrowych jest użycie edytujących piksele w celu
Bardziej szczegółowo9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie
9. OBRAZY i FILTRY BINARNE 9.1 Erozja, dylatacja, zamykanie, otwieranie Obrazy binarne to takie, które mają tylko dwa poziomy szarości: 0 i 1 lub 0 i 255. ImageJ wykorzystuje to drugie rozwiązanie - obrazy
Bardziej szczegółowoReprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność
Bardziej szczegółowoDetekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych
ZACNIEWSKI Artur 1 Detekcja kodów kreskowych w obrazach za pomocą filtrów gradientowych i transformacji morfologicznych WSTĘP Kod kreskowy (ang. barcode) to graficzna reprezentacja informacji, w postaci
Bardziej szczegółowomaska 1 maska 2 maska 3 ogólnie
WYKŁAD 4 Detekcja krawędzi, operacje morfologiczne Detekcja (wykrywanie) krawędzi (edge detection) jest to technika segmentacji obrazu, polegająca na znajdowaniu piksli krawędziowych przez sprawdzanie
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa 1. Cel ćwiczenia Ćwiczenie siódme Usuwanie tła i segmentacja Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z metodami usuwania tła z obrazu oraz algorytmami
Bardziej szczegółowoPrzetwarzanie obrazów wykład 2
Przetwarzanie obrazów wykład 2 Adam Wojciechowski Wykład opracowany na podstawie Komputerowa analiza i przetwarzanie obrazów R. Tadeusiewicz, P. Korohoda Etapy obróbki pozyskanego obrazu Obróbka wstępna
Bardziej szczegółowoReprezentacja i analiza obszarów
Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek ciężkości ułożenie przestrzenne momenty wyższych rzędów promienie max-min centryczność
Bardziej szczegółowoWYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Bardziej szczegółowoPrzekształcenia punktowe
Przekształcenia punktowe Przekształcenia punktowe realizowane sa w taki sposób, że wymagane operacje wykonuje sie na poszczególnych pojedynczych punktach źródłowego obrazu, otrzymujac w efekcie pojedyncze
Bardziej szczegółowoWyższa Szkoła Informatyki Stosowanej i Zarządzania WIT
3-1 Wyższa Szkoła Informatyki Stosowanej i Zarządzania WIT Grupa BD2,TC1, Zespół 2 PRZETWARZANIE OBRAZÓW Sprawozdanie z ćwiczeń laboratoryjnych Ćwiczenie nr3 Temat: Operacje sąsiedztwa wygładzanie i wyostrzanie
Bardziej szczegółowoĆwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Bardziej szczegółowoInformatyka, studia dzienne, mgr II st. Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30
Informatyka, studia dzienne, mgr II st. semestr I Przetwarzanie obrazu i dźwięku 2011/2012 Prowadzący: dr inż. Bartłomiej Stasiak czwartek, 8:30 Data oddania: Ocena: Grzegorz Graczyk 178717 Andrzej Stasiak
Bardziej szczegółowoDiagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
Bardziej szczegółowoPodstawy Informatyki Wykład V
Nie wytaczaj armaty by zabić komara Podstawy Informatyki Wykład V Grafika rastrowa Paint Copyright by Arkadiusz Rzucidło 1 Wprowadzenie - grafika rastrowa Grafika komputerowa tworzenie i przetwarzanie
Bardziej szczegółowo3. OPERACJE BEZKONTEKSTOWE
3. OPERACJE BEZKONTEKSTOWE 3.1. Tablice korekcji (LUT) Przekształcenia bezkontekstowe (punktowe) to takie przekształcenia obrazu, w których zmiana poziomu szarości danego piksela zależy wyłącznie od jego
Bardziej szczegółowoAUTOMATYCZNE ROZPOZNAWANIE PUNKTÓW KONTROLNYCH GŁOWY SŁUŻĄCYCH DO 3D MODELOWANIA JEJ ANATOMII I DYNAMIKI
AUTOMATYCZNE ROZPOZNAWANIE PUNKTÓW KONTROLNYCH GŁOWY SŁUŻĄCYCH DO 3D MODELOWANIA JEJ ANATOMII I DYNAMIKI Tomasz Huczek Promotor: dr Adrian Horzyk Cel pracy Zasadniczym celem pracy było stworzenie systemu
Bardziej szczegółowoOperator rozciągania. Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości
Operator rozciągania q = 15 ( p p1 ) ( p p ) 0 2 1 dla p < p p 1 2 dla p p, p > p 1 2 Obliczyć obraz q i jego histogram dla p 1 =4, p 2 =8; Operator redukcji poziomów szarości q = 0 dla p p1 q2 dla p1
Bardziej szczegółowoAKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU
AKWIZYCJA I PRZETWARZANIE WSTĘPNE OBRAZU WYKŁAD 2 Marek Doros Przetwarzanie obrazów Wykład 2 2 Akwizycja (pozyskiwanie) obrazu Akwizycja obrazu - przetworzenie obrazu obiektu fizycznego (f(x, y)) do postaci
Bardziej szczegółowoGrafika komputerowa. Zajęcia IX
Grafika komputerowa Zajęcia IX Ćwiczenie 1 Usuwanie efektu czerwonych oczu Celem ćwiczenia jest usunięcie efektu czerwonych oczu u osób występujących na zdjęciu tak, aby plik wynikowy wyglądał jak wzor_1.jpg
Bardziej szczegółowoTechniki wizualizacji. Ćwiczenie 4. Podstawowe algorytmy przetwarzania obrazów
Doc. dr inż. Jacek Jarnicki Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej jacek.jarnicki@pwr.wroc.pl Techniki wizualizacji Ćwiczenie 4 Podstawowe algorytmy przetwarzania obrazów
Bardziej szczegółowoProste metody przetwarzania obrazu
Operacje na pikselach obrazu (operacje punktowe, bezkontekstowe) Operacje arytmetyczne Dodanie (odjęcie) do obrazu stałej 1 Mnożenie (dzielenie) obrazu przez stałą Operacje dodawania i mnożenia są operacjami
Bardziej szczegółowoAnaliza obrazu. wykład 7. Marek Jan Kasprowicz Uniwersytet Rolniczy 2009
Analiza obrazu komputerowego wykład 7 Marek Jan Kasprowicz Uniwersytet Rolniczy 2009 Slajdy przygotowane na podstawie książki Komputerowa analiza obrazu R.Tadeusiewicz, P. Korohoda, Filtry morfologiczne
Bardziej szczegółowoĆwiczenie 6. Transformacje skali szarości obrazów
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 6. Transformacje skali szarości obrazów 1. Obraz cyfrowy Obraz w postaci cyfrowej
Bardziej szczegółowoECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 6.0
ECDL/ICDL Użytkowanie baz danych Moduł S1 Sylabus - wersja 6.0 Przeznaczenie Sylabusa Dokument ten zawiera szczegółowy Sylabus dla modułu ECDL/ICDL Użytkowanie baz danych. Sylabus opisuje zakres wiedzy
Bardziej szczegółowozna wybrane modele kolorów i metody transformacji między nimi zna podstawowe techniki filtracji liniowej, nieliniowej dla obrazów cyfrowych
Nazwa Wydziału Nazwa jednostki prowadzącej moduł Nazwa modułu kształcenia Kod modułu Język kształcenia Wydział Matematyki i Informatyki Instytut Informatyki Przetwarzanie i analiza obrazów cyfrowych w
Bardziej szczegółowoAutomatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych
Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego
Bardziej szczegółowoCECHY BIOMETRYCZNE: ODCISK PALCA
CECHY BIOMETRYCZNE: ODCISK PALCA Odcisk palca można jednoznacznie przyporządkować do osoby. Techniki pobierania odcisków palców: Czujniki pojemnościowe - matryca płytek przewodnika i wykorzystują zjawisko
Bardziej szczegółowoLaboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 9. Przetwarzanie sygnałów wizyjnych. Politechnika Świętokrzyska.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 9 Przetwarzanie sygnałów wizyjnych. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na
Bardziej szczegółowoAutomatyczne nastawianie ostrości
Automatyczne nastawianie ostrości Systemy automatycznego nastawiania ostrości (AF) - budowa, działanie, zalety, wady, zastosowanie, algorytmy wyostrzania - przykłady Jakub Skalak http://www.fis.agh.edu.pl/~4skalak/
Bardziej szczegółowoMichał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1)
Michał Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (1) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna
Bardziej szczegółowo