LOKALIZACJA OBIEKTÓW NA OBRAZACH CYFROWYCH Z WIDEOREJESTRATORA RUCHU DROGOWEGO OBJECT LOCATION IN DIGITAL IMAGES FROM A ROAD TRAFFIC VIDEORECORDER

Wielkość: px
Rozpocząć pokaz od strony:

Download "LOKALIZACJA OBIEKTÓW NA OBRAZACH CYFROWYCH Z WIDEOREJESTRATORA RUCHU DROGOWEGO OBJECT LOCATION IN DIGITAL IMAGES FROM A ROAD TRAFFIC VIDEORECORDER"

Transkrypt

1 ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 11 Sera TANSPOT z. 71 Nr kol Zbgnew CZAPLA, Wesław PAMUŁA LOKALIZACJA OIEKTÓW NA OAZACH CYFOWYCH Z WIDEOEJESTATOA UCHU DOGOWEGO Streszczene. Artykuł przedstawa zagadnena analzy scen ruchu drogowego. Jako metodę przetwarzana wstępnego w detekcj cech punktowych obektów wykorzystano konwersję obrazu do dwuwarstwowego modelu danych. Do dwuwarstwowego modelu danych obrazu zastosowano detektory cech punktowych FAST SUSAN. Do lokalzacj obektów nadaje sę jest prosta oblczenowo detekcja cech punktowych obektów (przy zastosowanu dwuwarstwowego modelu danych). OJECT LOCATION IN DIGITAL IMAGES FOM A OAD TAFFIC VIDEOECODE Summary. The paper presents ssues of road traffc scene analyss. Image converson nto the two-layer data model s used as a prelmnary processng method n detecton of object feature ponts. The feature ponts detectors FAST and SUSAN are appled to two-layer data model of an mage. Detecton of object feature ponts usng the two-layer data model s sutable for the object locaton and t s computatonally smple. 1. WSTĘP We współczesnych systemach transportowych do sterowana wykorzystywane są parametry ruchu drogowego. Stosuje sę wele różnych metod ch wyznaczana, m.n. można wykorzystać analzę obrazów cyfrowych otrzymywanych z wdeorejestratora ruchu drogowego [1]. Analza obrazu obejmuje różne technk: segmentację obrazu, ndeksację obektów oraz ch klasyfkację. Danym wejścowym w tego rodzaju analze jest obraz, natomast danym wyjścowym jest zestaw atrybutów opsujących zawartość obrazu. Segmentacja obrazów jest technką, w której tworzone są obekty przez łączene obszarów obrazu zgodne z wybranym kryterum jednorodnośc. Podstawowym kryterum jednorodnośc jest ustalony zakres wartośc pksel. Najbardzej znane metody segmentacj to: segmentacja przez podzał obrazu,

2 8 Z. Czapla, W. Pamuła przez rozrost obrazu, wykorzystująca wykrywane krawędz oraz oparta na statystyce [], [3], [4]. Przed analzą obrazu często przeprowadzane jest jego przetwarzane, które jest przeprowadzane w celu poprawy jakośc obrazu, (np. przez redukcję zakłóceń, zwększene kontrastu) lub w celu uwypuklena cech obrazu przydatnych do jego analzy, (np. przez wyodrębnane krawędz bnaryzację). Danym wejścowym przy przetwarzanu obrazu jest obraz źródłowy, natomast danym wyjścowym jest przetworzony obraz wynkowy [], [3], [4]. Obrazy cyfrowe przechowywane są w plkach grafcznych, których rozmary są zazwyczaj duże. ozmar plków grafcznych można zmnejszyć przeprowadzając kompresję, która może być bezstratna lub stratna. Kompresja bezstratna pozwala na odtworzene nezmenonego obrazu źródłowego, stratna jest bardzej efektywna, natomast jednak powoduje utratę częśc nformacj obrazowej. Znanych jest wele metod kompresj zarówno stratnych, jak bezstratnych [5], [6]. W metodach przetwarzana analzy obrazów można stosować wstępne przetwarzane obrazów, które ma na celu zmanę formatu danych w postać bardzej odpowedną dla wykorzystywanych algorytmów. Dwuwarstwowy model danych obrazów cyfrowych jest reprezentacją obrazu, która powstaje w wynku kodowana predykcyjnego dostarczającego nformacj o charakterze zman w otoczenu poszczególnych pksel może być wykorzystane do lokalzacj obektów na obraze. W artykule przeprowadzono porównane wynków detekcj cech punktowych obektów z użycem krawędz oraz z wykorzystanem dwuwarstwowego modelu danych. Wybrano też do oceny detektory narożnków SUSAN FAST, które najczęścej są stosowane w śledzenu obektów w sekwencj obrazów [11].. DWUWASTWOWY MODEL DANYCH OAZÓW CYFOWYCH Dwuwarstwowy model danych obrazu cyfrowego tworzy nową reprezentację obrazu, składającą sę z dwóch warstw. Jedna z warstw zawera wartośc bazowe pksel, druga składa sę z wartośc różncowych, określających różncę mędzy wartoścą pksela a odpowadającą mu wartoścą bazową [7]. Wele obrazów zawera obszary pksel o zblżonych wartoścach. Take obszary mogą zostać opsane przez cąg wartośc pksel, zawerające wartość bazową obszaru oraz sekwencję wartośc różncowych, które odnoszą sę do poszczególnych pksel opsywanego obszaru. eprezentacja całego obrazu tworzona jest przez zbór cągów pksel wszystkch obszarów obrazu. Zbór wartośc różncowych wszystkch pksel tworzy warstwę różncową dwuwarstwowego modelu danych, natomast zbór wartośc bazowych warstwę bazową modelu. Każda z warstw jest kodowana oddzelne. Założene, że wartość różncowa jest lczbą całkowtą z zakresu od do15 pozwala na kodowane w jednym bajce dwóch wartośc różncowych. Wartośc bazowe obszarów są kodowane bez zman jedna wartość w jednym bajce.

3 Lokalzacja obektów na obrazach cyfrowych 9.1. Konwersja obrazu do modelu dwuwarstwowego Konwersja obrazów cyfrowych do dwuwarstwowego modelu danych przeprowadzana jest na obrazach o rozdzelczośc pozomów jasnośc 8 btów na pksel. Taka rozdzelczość jest wystarczająca do wększośc zastosowań przemysłowych. Obraz źródłowy, poddawany konwersj do modelu dwuwarstwowego, opsywany jest przez dwuwymarową macerz X, na podstawe której, w wynku skanowana, tworzony jest wektor obrazu Y. Wektory konwersj D przeznaczone są do przechowywana wartośc różncowych pksel (wektor D) wartośc bazowych obszarów (wektor ). Obraz źródłowy dzelony jest na kwadratowe blok o rozmarze x pksele, a następne blok te są kolejno konwertowane do wektora obrazu Y. Po przekonwertowanu wszystkch bloków obrazu do wektora Y ustalana jest perwsza wartość bazowa jest ona zapsywana do wektora konwersj : b y. (1) Perwszą wartoścą zapsaną do wektora konwersj D jest znacznk wartośc bazowej c: d c. () Odczytywane są elementy wektora obrazu Y uwzględnane są dwa przypadk. W perwszym z nch wartość różncowa meśc sę na 4 btach wtedy jest ona zapsywana do wektora konwersj D: d. (3) y W drugm przypadku wartość różncowa ne meśc sę na 4 btach wtedy ustalana jest nowa wartość bazowa; do wektora konwersj D zapsywany jest znacznk wartośc bazowej c, a do wektora konwersj zapsywana jest nowa wartość bazowa. Indeksy elementów wektorów określają beżącą zapsywaną pozycję, z uwzględnenem przesunęca mędzy ndeksam wektorów C: d c, (4) b y. Strumeń wyjścowy S składa sę z dwóch strumen składowych S 1 oraz S : S S 1 S. (5) Strumeń składowy S 1 powstaje przez połączene sąsednch wartośc różncowych wektora konwersj D w jeden bajt: s d 16 d, (6) a strumeń składowy S tworzony jest bezpośredno przez wektor konwersj :.. Konwersja powrotna obrazu do modelu jednowarstwowego S. (7) Konwersja powrotna obrazu do modelu jednowarstwowego odbywa sę w odwrotnej kolejnośc nż konwersja obrazu do modelu dwuwarstwowego obejmuje: podzelene strumena S na strumene składowe S 1 S, wydzelene wektorów konwersj D, odtworzene wektora obrazu Y oraz odtworzene macerzy obrazu X.

4 3 Z. Czapla, W. Pamuła.3. Wynk konwersj do modelu dwuwarstwowego Konwersj do modelu dwuwarstwowego poddano cztery obrazy testowe o różnym pozome szczegółowośc. Wszystke obrazy testowe mały rozdzelczość pozomów jasnośc 8 btów na pksel rozdzelczość przestrzenną 56 x 56 pksel. Wynk konwersj do modelu dwuwarstwowego przedstawają odpowedno rysunk 1 do 4. ys. 1. Wynk konwersj obrazu 1 Fg. 1. esult of converson of mage 1 ys.. Wynk konwersj obrazu Fg.. esult of converson of mage ys. 3. Wynk konwersj obrazu 3 Fg. 3. esult of converson of mage 3 ys. 4. Wynk konwersj obrazu 4 Fg. 4. esult of converson of mage 4

5 Lokalzacja obektów na obrazach cyfrowych 31 Po lewej strone rysunków znajduje sę obraz źródłowy, po prawej obraz przedstawający rozmeszczene wartośc bazowych. We wszystkch przypadkach uzyskano zmnejszene rozmaru reprezentacj obrazu o ponad %. ozkład punktów bazowych odpowada zawartośc obrazu jest przydatny do lokalzacj obektów znajdujących sę na obrazach. 3. DETEKTOY CECH PUNKTOWYCH OIEKTÓW Cechy punktowe obektów pozwalają zmnejszyć rozmar ch opsu na obraze mogą ułatwć przeprowadzene operacj odnajdywana korespondujących elementów obektów na kolejnych obrazach w sekwencj. Wymagają uważnego doboru progów dyskrymnacj dla uzyskana stotnych do śledzena elementów obektów. Ważnym własnoścam punktów charakterystycznych są: mała czułość na zmany orentacj, przesunęca obektów, odporność na szum, wahana wartośc pksel obektów w czase wywołane zmaną ośwetlena pola obserwacj, mała złożoność oblczenowa, łatwość przeprowadzana operacj dopasowana w algorytmach śledzena. Cechy punktowe wyznacza sę, analzując zmany wartośc pksel lub wylczając statystyk wartośc w kołowym obszarze wokół danego pksela. Przekroczene zadanego progu detekcj wskazuje na wystąpene cechy punktowej. W zastosowanach ważne są detektory narożnków Harrsa, SUSAN, FAST [8], [9], [1]. Detektor Harrsa wylcza cechy rozkładu gradentów w sąsedztwe danego pksela. Na podstawe współczynnków macerzy autokorelacj wartośc pksel M wynos: A ( w x P ) M w ( w y A C P ) C C ( w x P )( w y P ), gdze: w σ, w xσ, w yσ, wektory wag odpowedno: dla wylczana gausowskego fltru wygładzającego, gradentu w kerunku pozomym, gradentu w kerunku ponowym. Określona zostaje mara obecnośc narożnków H : H H det( M ( M 11 ) k trace(m ) M M 1 M 1 ) k ( M 11 M Wylczane cech punktowych Harrsa wymaga wylczana kerunkowych gradentów zman jasnośc pksel stąd wykluczona jest możlwość wykorzystana reprezentacj z użycem zaproponowanego dwuwarstwowego modelu danych. SUSAN pozwala sklasyfkować zawartość kołowego otoczena pksela. Używa sę aproksymacj koła o średncy do klkunastu pksel (najczęścej 3, 7, 11 rys. 5). Wartośc pksel w sąsedztwe P (j) porównuje sę z wartoścą pksela centralnego P (x,y ), zlczając pksele różnące sę o wartość progu. óżnca lczby pksel sąsedztwa L różnących sę E określa S marę obecnośc narożnków. Wartość progu określa zdolność do elmnacj szumów czułość współczynnka. Dla L=K/ współczynnk wskazuje na występowane ). (8) (9)

6 3 Z. Czapla, W. Pamuła narożnków, dla L=3K/4 krawędz, gdze: K lczba pksel w sąsedztwe w kole, otaczającym pksel centralny. 1 e( j) E K j1 e( j) L E S P ( x, y P ( x, y E L ) próg ) próg Najmnej złożony oblczenowo algorytm jest podstawą do wylczana mary cech detektora FAST (ang. Features from Accelerated Segment Test); cechy wyznaczane są na podstawe szybkego sprawdzena obwodu. Wyznaczona welkość określa długość neprzerwanego wycnka obwodu okręgu, wyrażoną lczbą pksel, którego pksele różną sę od wartośc pksela środka okręgu o ustaloną wartość. Gdy lczba przekroczy zadany próg, uznaje sę środek za punkt charakterystyczny. 1 l( j) F jobwód l( j) P ( x P ( x, y ), y ) ozpatrywany jest zwykle okręg o średncy 7 pksel (rys. 5), który ma 16 pksel na obwodze. Pksele, dla których F wynos 9, najczęścej są narożnkam (jest to też najmnejsza wartość jednoznaczne wskazująca na to, że okręg ne zawera krawędz). próg próg (1) (11) ys. 5. Kołowe otoczena pksela do wyznaczana SUSAN FAST Fg. 5. Pxel neghbourhoods for evaluatng SUSAN and FAST 3.1. Implementacja detektorów cech punktowych Korzystając ze strumena wartośc bazowych S (7) reprezentacj obrazu, można zaproponować uproszczone wersje detektorów. Wartośc bazowe w newelkm otoczenu (a take są otoczena detekcj) określają pksele stotne dla obecnośc obektu, można zatem na ch podstawe określć cechy tego obektu. Analzując lczbę wartośc bazowych w otoczenu lub na obwodze, można uzyskać równoważny detektor cech punktowych. Detektor SUSAN: zlczane są pksele z wartoścam bazowym w kole pksela centralnego.

7 Lokalzacja obektów na obrazach cyfrowych 33 e E 1 ( j) S K j1 e ( j) L E wartosć bazowa E Detektor FAST: sprawdzany jest cąg wartośc bazowych na obwodze otoczena pksela centralnego. l 1 ( j) F l jobwód ( j) L wartosć bazowa Implementacja ne wymaga znajomośc wartośc bazowych, a jedyne ch pozycj względem analzowanych pksel centralnych. Operacje składają sę z sumowana stanów obecnośc, a węc z operacj realzowanych z użycem najprostszych środków. 3.. Wynk porównana detekcj cech punktowych Uproszczone detektory zamplementowano za pomocą paketu matematycznego Matlab przeprowadzono badane detekcj cech punktowych za pomocą bazy danych obrazów ze stanowsk rejestracj ruchu drogowego. Jako materału porównawczego użyto wynków z badań detektorów cech punktowych, wykorzystujących krawędze obektów dla detekcj. Krawędze obektów były wyznaczane z użycem gradentu morfologcznego, wylczanego w kwadratowym otoczenu 3 x 3 pksele. Przykładowe wynk lustruje rys. 6. (1) (13) ys. 6. Perwszy wersz: krawędze obektów, cechy punktowe: SUSAN, FAST, drug wersz: wartośc bazowe, cechy punktowe: SUSAN, FAST Fg st row: object edges, feature ponts: SUSAN, FAST, nd row: base values, feature ponts: SUSAN, FAST Detekcja z wykorzystanem wartośc bazowych jest mnej czuła; generowana jest mnejsza lczba cech punktowych, których lokalzacja odpowada lokalzacj cech uzyskanych

8 34 Z. Czapla, W. Pamuła dla krawędz obektów. Nadaje sę ona do śledzena obektów w sekwencj obrazów, a wykorzystywane algorytmy cechują sę newelką złożonoścą oblczenową. 4. PODSUMOWANIE Lokalzacja obektów jest ważnym elementem analzy scen ruchu drogowego. Konwersja obrazu cyfrowego do reprezentacj dwuwarstwowej może być stosowana jako metoda przetwarzana wstępnego w algorytme lokalzacj obektów. Detekcja cech punktowych z użycem wartośc bazowych dwuwarstwowej reprezentacj obrazu spełna wymagana dla śledzena obektów w sekwencj obrazów. Atrakcyjną cechą zaproponowanych detektorów jest ch bardzo nska złożoność oblczenowa, która ułatwa sprzętową realzację z użycem programowalnych układów logcznych. blografa 1. Datka S., Sucharzewsk W., Tracz M.: Inżynera ruchu. Wydawnctwa Komunkacj Łącznośc, Warszawa Gonzales.C., Woods.E.: Dgtal Image Processng. Pearson Prentce Hall, New Jersey Pratt W.K.: Dgtal Image Processng. John Wley & Sons, Inc., Hoboken, New Jersey Tadeusewcz., Korohoda P.: Komputerowa analza przetwarzane obrazów. Wydawnctwo Fundacj Postępu Telekomunkacj, Kraków Salomon D.: Data compresson. The Complete eference. Sprnger-Verlag, New York erln, Hedelberg. 6. Sayood K.: Kompresja danych wprowadzene. Wydawnctwo M, Warszawa. 7. Czapla Z.: The Two-Layer Data Model of Vehcles Dgtal Images, [n:] Pecha J., Węgrzyn T. (eds.): Transacton on Transport Systems Telematcs and Safety. Slesan Unversty of Technology Academc Press, Glwce 9, p Harrs C., Stephens M.: A combned corner and edge detector. Proc. of the 4th ALVEY Conference, 1988, p Smth S.M., rady J.M.: SUSAN a new approach to low level mage processng. Int. J. Comput. Vs., Vol. 3, No.1, 1997, p osten E., Drummond T.: Fusng ponts and lnes for hgh performance trackng, [n]: 1th IEEE Internatonal Conference on Computer Vson. Vol., ejng, Chna, Sprnger 5, p Lowe D.G.: Dstnctve Image Features from Scale-Invarant Keyponts. Internatonal Journal of Computer Vson, Vol. 6. No., 4, p ecenzent: Prof. dr hab. nż. omuald Szopa Praca wykonana w ramach W-483/T6/9

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Detekcja punktów zainteresowania

Detekcja punktów zainteresowania Informatyka, S2 sem. Letni, 2013/2014, wykład#8 Detekcja punktów zainteresowania dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Proces przetwarzania obrazów

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x

Bardziej szczegółowo

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW

STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW STANDARDOWE TECHNIKI KOMPRESJI SYGNAŁÓW Źródło Kompresja Kanał transmsj sek wdeo 60 Mbt 2 mn muzyk (44 00 próbek/sek, 6 btów/próbkę) 84 Mbt Dekompresja Odborca. Metody bezstratne 2. Metody stratne 2 Kodowane

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ], STATECZNOŚĆ SKARP W przypadku obektu wykonanego z gruntów nespostych zaprojektowane bezpecznego nachylena skarp sprowadza sę do przekształcena wzoru na współczynnk statecznośc do postac: tgφ tgα = n gdze:

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012 ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów. Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)

Bardziej szczegółowo

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Mara Konopka Katedra Ekonomk Organzacj Przedsęborstw Szkoła Główna Gospodarstwa Wejskego w Warszawe Analza porównawcza rozwoju wybranych banków komercyjnych w latach 2001 2009 Wstęp Polska prywatyzacja

Bardziej szczegółowo

Prawdziwa ortofotomapa

Prawdziwa ortofotomapa Prawdzwa ortofotomapa klasyczna a prawdzwa ortofotomapa mnmalzacja przesunęć obektów wystających martwych pól na klasycznej ortofotomape wpływ rodzaju modelu na wynk ortorektyfkacj budynków stratege opracowana

Bardziej szczegółowo

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np. Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model Jadwga LAL-JADZIAK Unwersytet Zelonogórsk Instytut etrolog Elektrycznej Elżbeta KAWECKA Unwersytet Zelonogórsk Instytut Informatyk Elektronk Ocena dokładnośc estymacj funkcj korelacyjnych z użycem modelu

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 3

Natalia Nehrebecka. Zajęcia 3 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

Statyczna alokacja kanałów (FCA)

Statyczna alokacja kanałów (FCA) Przydzał kanałów 1 Zarys wykładu Wprowadzene Alokacja statyczna a alokacja dynamczna Statyczne metody alokacj kanałów Dynamczne metody alokacj kanałów Inne metody alokacj kanałów Alokacja w strukturach

Bardziej szczegółowo

Podstawy teorii falek (Wavelets)

Podstawy teorii falek (Wavelets) Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc

Bardziej szczegółowo

APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY W PROGRAMIE LABVIEW

APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY W PROGRAMIE LABVIEW ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 015 Sera: TRANSPORT z. 86 Nr kol. 196 Jan WARCZEK, Kaml BRONCEL APLIKACJA METODY BADAŃ WŁASNOŚCI DYNAMICZNYCH ZAWIESZEŃ POJAZDÓW SAMOCHODOWYCH O DMC POWYŻEJ 3,5 TONY

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego Ćwczene 1 Wydzał Geonżyner, Górnctwa Geolog ABORATORUM PODSTAW EEKTROTECHNK Badane obwodów prądu snusodalne zmennego Opracował: Grzegorz Wśnewsk Zagadnena do przygotowana Ops elementów RC zaslanych prądem

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7 Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy zmennych dyskretnych 1. Zmenne cągłe a zmenne dyskretne 2. Interpretacja parametrów przy

Bardziej szczegółowo

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH INSTYTUT KLIMATYZACJI I OGRZEWNICTWA ĆWICZENIA LABORATORYJNE Z WENTYLACJI I KLIMATYZACJI: BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH 1. WSTĘP Stanowsko laboratoryjne pośwęcone badanu

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej

Bardziej szczegółowo

Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej 60-965 Poznań ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, Studa stacjonarne, II stopeń, sem.1 Laboratorum Technk Śwetlnej wersja z dn. 08.05.017 Ćwczene nr 6 Temat: Porównane parametrów

Bardziej szczegółowo

Wyszukiwanie w bazie danych obrazów kolorowych

Wyszukiwanie w bazie danych obrazów kolorowych Rozdzał 33 Wyszukwane w baze danych obrazów kolorowych Streszczene. W rozdzale zaproponowano strukturę systemu rozszerzającego funkcjonalność relacyjnych baz danych o możlwość porównywana obrazów kolorowych.

Bardziej szczegółowo

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

PORÓWNANIE FUNKCJI OCENY SEGMENTACJI W KONTEKŚCIE METODY REDUKCJI NADSEGMENTACJI OBRAZÓW BARWNYCH

PORÓWNANIE FUNKCJI OCENY SEGMENTACJI W KONTEKŚCIE METODY REDUKCJI NADSEGMENTACJI OBRAZÓW BARWNYCH Jakub SMOŁKA Mara SKUBLEWSKA-PASZKOWSKA PORÓWNANIE FUNKCJI OCENY SEGMENTACJI W KONTEKŚCIE METODY REDUKCJI NADSEGMENTACJI OBRAZÓW BARWNYCH STRESZCZENIE Artykuł dotyczy jednego z problemów transformacj wododzałowej,

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Wizyjny system nadzoru zajętości parkingu

Wizyjny system nadzoru zajętości parkingu STAWOWY Marek 1 Wzyjny system nadzoru zajętośc parkngu Słowa kluczowe: nadzór wdeo, kontrola zajętośc mejsc parkngowych. Streszczene W pracy zaproponowano metodę detekcj zajętośc mejsc parkngowych wykorzystującą

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20 Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca

Bardziej szczegółowo

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH

Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa.   PARA ZMIENNYCH LOSOWYCH Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy

Bardziej szczegółowo

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

Ćwiczenie 10. Metody eksploracji danych

Ćwiczenie 10. Metody eksploracji danych Ćwczene 10. Metody eksploracj danych Grupowane (Clusterng) 1. Zadane grupowana Grupowane (ang. clusterng) oznacza grupowane rekordów, obserwacj lub przypadków w klasy podobnych obektów. Grupa (ang. cluster)

Bardziej szczegółowo

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO

OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POBLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU GENETYCZNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrcal Engneerng 015 Mkołaj KSIĄŻKIEWICZ* OPTYMALIZACJA WARTOŚCI POLA MAGNETYCZNEGO W POLIŻU LINII NAPOWIETRZNEJ Z WYKORZYSTANIEM ALGORYTMU

Bardziej szczegółowo

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych.

Neural networks. Krótka historia 2004-05-30. - rozpoznawanie znaków alfanumerycznych. Neural networks Lecture Notes n Pattern Recognton by W.Dzwnel Krótka hstora McCulloch Ptts (1943) - perwszy matematyczny ops dzalana neuronu przetwarzana przez nego danych. Proste neurony, które mogly

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

GENERACJA REALISTYCZNYCH

GENERACJA REALISTYCZNYCH WYKŁAD 10 GENERACJA REALISTYCZNYCH OBRAZÓW W SCEN 3-D, 3 METODA ŚLEDZENIA PROMIENI Plan wykładu: Sformułowana owana problemu Metoda próbkowana przestrzen Metoda śledzena promen - algorytm Oblczena w metodze

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma

Bardziej szczegółowo

Kodowanie informacji. Instytut Informatyki UWr Studia wieczorowe. Wykład nr 2: rozszerzone i dynamiczne Huffmana

Kodowanie informacji. Instytut Informatyki UWr Studia wieczorowe. Wykład nr 2: rozszerzone i dynamiczne Huffmana Kodowane nformacj Instytut Informatyk UWr Studa weczorowe Wykład nr 2: rozszerzone dynamczne Huffmana Kod Huffmana - nemłe przypadk... Nech alfabet składa sę z 2 lter: P(a)=1/16 P(b)=15/16 Mamy H(1/16,

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

FILTRACJA OBRAZÓW CYFROWYCH Z WYKORZYSTANIEM BAYESOWSKIEGO WAśONEGO UŚREDNIANIA

FILTRACJA OBRAZÓW CYFROWYCH Z WYKORZYSTANIEM BAYESOWSKIEGO WAśONEGO UŚREDNIANIA STUDIA INFORMATICA 2010 Volume 31 Number 2A (89) Alna MOMOT Poltechnka Śląska, Instytut Informatyk FILTRACJA OBRAZÓW CYFROWYCH Z WYKORZYSTANIEM BAYESOWSKIEGO WAśONEGO UŚREDNIANIA Streszczene. Fltry cyfrowe

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

Komórkowy model sterowania ruchem pojazdów w sieci ulic.

Komórkowy model sterowania ruchem pojazdów w sieci ulic. Komórkowy model sterowana ruchem pojazdów w sec ulc. Autor: Macej Krysztofak Promotor: dr n ż. Marusz Kaczmarek 1 Plan prezentacj: 1. Wprowadzene 2. Cel pracy 3. Podsumowane 2 Wprowadzene Sygnalzacja śwetlna

Bardziej szczegółowo

Ewolucyjne projektowanie filtrów cyfrowych IIR o nietypowych charakterystykach amplitudowych

Ewolucyjne projektowanie filtrów cyfrowych IIR o nietypowych charakterystykach amplitudowych Adam Słowk Mchał Bałko Wydzał Elektronk Poltechnka Koszalńska ul. JJ Śnadeckch 2, 75-453 Koszaln Ewolucyjne projektowane fltrów cyfrowych IIR o netypowych charakterystykach ampltudowych Słowa kluczowe:

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej... Adam Waszkowsk * Adam Waszkowsk Zastosowane welowymarowej analzy porównawczej w doborze spó³ek do portfela nwestycyjnego Zastosowane welowymarowej analzy porównawczej... Wstêp Na warszawskej Ge³dze Paperów

Bardziej szczegółowo

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 208. Komputerowa realizacja automatów skończonych

KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 208. Komputerowa realizacja automatów skończonych KATEDRA INFORMATYKI TECHNICZNEJ Ćwczena laboratoryjne z Logk Układów Cyfrowych ćwczene 208 Temat: Komputerowa realzacja automatów skończonych 1. Cel ćwczena Celem ćwczena jest praktyczne zapoznane sę ze

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II

Realizacja logiki szybkiego przeniesienia w prototypie prądowym układu FPGA Spartan II obert Berezowsk Natala Maslennkowa Wydzał Elektronk Poltechnka Koszalńska ul. Partyzantów 7, 75-4 Koszaln Mchał Bałko Przemysław Sołtan ealzacja logk szybkego przenesena w prototype prądowym układu PG

Bardziej szczegółowo

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych

Zarządzanie ryzykiem w przedsiębiorstwie i jego wpływ na analizę opłacalności przedsięwzięć inwestycyjnych dr nż Andrze Chylńsk Katedra Bankowośc Fnansów Wyższa Szkoła Menedżerska w Warszawe Zarządzane ryzykem w rzedsęborstwe ego wływ na analzę ołacalnośc rzedsęwzęć nwestycynych w w w e - f n a n s e c o m

Bardziej szczegółowo

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa

Bardziej szczegółowo

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO

ROZWIĄZYWANIE DWUWYMIAROWYCH USTALONYCH ZAGADNIEŃ PRZEWODZENIA CIEPŁA PRZY POMOCY ARKUSZA KALKULACYJNEGO OZWIĄZYWAIE DWUWYMIAOWYCH USALOYCH ZAGADIEŃ PZEWODZEIA CIEPŁA PZY POMOCY AKUSZA KALKULACYJEGO OPIS MEODY Do rozwązana ustalonego pola temperatury wyorzystana est metoda blansów elementarnych. W metodze

Bardziej szczegółowo

APROKSYMACJA QUASIJEDNOSTAJNA

APROKSYMACJA QUASIJEDNOSTAJNA POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy

Bardziej szczegółowo

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki

Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:

Bardziej szczegółowo

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego

Michal Strzeszewski Piotr Wereszczynski. poradnik. Norma PN-EN 12831. Nowa metoda. obliczania projektowego. obciazenia cieplnego Mchal Strzeszewsk Potr Wereszczynsk Norma PN-EN 12831 Nowa metoda oblczana projektowego. obcazena ceplnego poradnk Mchał Strzeszewsk Potr Wereszczyńsk Norma PN EN 12831 Nowa metoda oblczana projektowego

Bardziej szczegółowo

Zadanie na wykonanie Projektu Zespołowego

Zadanie na wykonanie Projektu Zespołowego Zadane na wykonane Projektu Zespołowego Celem projektu jest uzyskane następującego szeregu umejętnośc praktycznych: umejętnośc opracowana równoległych wersj algorytmów (na przykładze algorytmów algebry

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne

Bardziej szczegółowo

Minimalizacja globalna, algorytmy genetyczne i zastosowanie w geotechnice

Minimalizacja globalna, algorytmy genetyczne i zastosowanie w geotechnice Mnmalzacja globalna, algorytmy genetyczne zastosowane w geotechnce Metoda sejsmczna Metoda geoelektryczna Podstawowy podzał ZAGADNIENIE PROSTE (ang. forward problem) model + parametry modelu dane (ośrodek,

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2)

Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Micha Strzelecki Metody przetwarzania i analizy obrazów biomedycznych (2) Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie Innowacyjna

Bardziej szczegółowo

IDENTYFIKACJA ŹRÓDEŁ AKTYWNOŚCI WIBROAKUSTYCZNEJ MASZYN METODĄ KSZTAŁTOWANIA WIĄZKI SYGNAŁU (BEAMFORMING)

IDENTYFIKACJA ŹRÓDEŁ AKTYWNOŚCI WIBROAKUSTYCZNEJ MASZYN METODĄ KSZTAŁTOWANIA WIĄZKI SYGNAŁU (BEAMFORMING) dr nż. Jerzy Motylewsk mgr nż. Potr Pawłowsk mgr nż. Mchał Rak dr nż. Tomasz G. Zelńsk Zakład Technolog Intelgentnych Instytut Podstawowych Problemów Technk PAN IDENTYFIKACJA ŹRÓDEŁ AKTYWNOŚCI WIBROAKUSTYCZNEJ

Bardziej szczegółowo

Diagnostyka układów kombinacyjnych

Diagnostyka układów kombinacyjnych Dagnostyka układów kombnacyjnych 1. Wprowadzene Dagnostyka obejmuje: stwerdzene stanu układu, systemu lub ogólne sec logcznej. Jest to tzw. kontrola stanu wykrywająca czy dzałane sec ne jest zakłócane

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone

Programowanie Równoległe i Rozproszone Programowane Równoległe Rozproszone Wykład Programowane Równoległe Rozproszone Lucjan Stapp Wydzał Matematyk Nauk Informacyjnych Poltechnka Warszawska (l.stapp@mn.pw.edu.pl) /38 PRR Wykład Chcemy rozwązać

Bardziej szczegółowo

Współczynnik przenikania ciepła U v. 4.00

Współczynnik przenikania ciepła U v. 4.00 Współczynnk przenkana cepła U v. 4.00 1 WYMAGANIA Maksymalne wartośc współczynnków przenkana cepła U dla ścan, stropów, stropodachów, oken drzw balkonowych podano w załącznku do Rozporządzena Mnstra Infrastruktury

Bardziej szczegółowo

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch

Bardziej szczegółowo

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311

Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311 Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009. A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta

Bardziej szczegółowo

Rachunek niepewności pomiaru opracowanie danych pomiarowych

Rachunek niepewności pomiaru opracowanie danych pomiarowych Rachunek nepewnośc pomaru opracowane danych pomarowych Mędzynarodowa Norma Oceny Nepewnośc Pomaru (Gude to Epresson of Uncertanty n Measurements - Mędzynarodowa Organzacja Normalzacyjna ISO) http://physcs.nst./gov/uncertanty

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju

Praca podkładu kolejowego jako konstrukcji o zmiennym przekroju poprzecznym zagadnienie ekwiwalentnego przekroju Praca podkładu kolejowego jako konstrukcj o zmennym przekroju poprzecznym zagadnene ekwwalentnego przekroju Work of a ralway sleeper as a structure wth varable cross-secton - the ssue of an equvalent cross-secton

Bardziej szczegółowo

BADANIE I WNIOSKOWANIE DIAGNOSTYCZNE

BADANIE I WNIOSKOWANIE DIAGNOSTYCZNE BADANIE I WNIOSKOWANIE DIAGNOSYCZNE WYBRANE ZAGADNIENIA Praca zborowa pod redakcją naukową adeusza DĄBROWSKIEGO Warszawa 203 Opnodawcy prof. dr hab. nŝ. Jerzy LEWIOWICZ prof. dr hab. nŝ. Andrzej MICHALSKI

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo