KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH
|
|
- Sylwester Ksawery Matusiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 KARTA KURSU DLA STUDIÓW PODYPLOMOWYCH NAZWA Wstęp do mtemtyki z elementmi nlizy mtemtycznej NAZWA W J. ANG. Introduction to Mthemtics ith Elements of Clculus PUNKTACJA ECTS* 10 OPIS KURSU (Cele ksztłceni) Celem przedmiotu jest z jednej strony pogłębienie i usystemtyzonie idomości z logiki mtemtycznej, teorii zbioró orz funkcji. Wiedz t jest potrzebn słuchczom do studioni innych przedmiotó. Pondto studenci będą poznć podsty nlizy mtemtycznej niezbędne nuczniu mtemtyki n różnych poziomch edukcji. EFEKTY KSZTAŁCENIA Efekt ksztłceni dl kursu Efekty ksztłceni dl studió podyplomoych WIEDZA W01 Uczestnik kursu zn definicje zdni i formy zdnioej orz sposoby torzeni zdń z form zdnioych rónież przy pomocy kntyfiktoró, zn różne funktory zdniotórcze i stosuje je do budoni sych ypoiedzi, zn podstoe pr rchunku zdń i kntyfiktoró W02 Zn definicje sumy, różnicy, iloczynu zbioró. Wie jk buduje się iloczyn krtezjński zbioró i rozumie ziązek tego iloczynu z pojęciem relcji orz funkcji. Rozpoznje pojęci: obrz, przeciobrz zbioru orz funkcj różnortościo, funkcj odrotn i funkcj złożon. K_W01, K_W05, K_W07 W03 Zn definicję relcji orz różnych jej łsności. Odróżni relcje rónożnościoe od porządkujących. Wie co to jest zsd bstrkcji. Rozpoznje zbiory linioo uporządkone i częścioo uporządkone. W04 Zn definicję ciągu i szeregu liczboego. Odróżni ciągi rytmetyczne od geometrycznych. Rozumie definicje grnicy ciągu i sumy szeregu orz njżniejsze tierdzeni ziązne z tymi pojęcimi. 1
2 W05 Zn definicje i podstoe łsności różnych funkcji elementrnych (funkcj linio, kdrto, ielomin, funkcj homogrficzn, ymiern, potęgo o ykłdniku rzeczyistym, funkcj ykłdnicz i logrytmiczn, funkcje trygonometryczne i cyklometryczne). W06 Zn definicje grnicy i ciągłości funkcji orz loklne i globlne łsności funkcji ciągłych. Zn definicję pochodnej funkcji orz jej interpretcję geometryczną, formułuje podstoe tierdzeni ziązne z monotonicznością i ekstremmi funkcji elementrnych. Efekt ksztłceni dl kursu Efekty ksztłceni dl studió podyplomoych UMIEJĘTNOŚCI U01 Słuchcz odróżni zdni od form zdnioych. W prostych przypdkch potrfi rozstrzygć prdziość lub fłszyość zdń, torzy z form zdnioych zdni. Interpretuje rónni i nieróności jko formy zdnioe. U02 Posługuje się dziłnimi n zbiorch. Potrfi bdć czy dn relcj jest funkcją, umie sprdzć różnortościoość funkcji, określić zorem funkcję odrotną do funkcji odrclnej, bdć dziedzinę, monotoniczność i różnortościoość funkcji złożonej. U03 Posługuje się definicjmi relcji rónożnościoych i porządkujących. Potrfi stosoć definicję relcji rónożnościoej do definioni pojęć i konstrukcji zbioró liczboych. K_U01, K_U05, K_U09 U04 Potrfi udoodnić indukcyjnie prdziość prostych róności i nieróności. U05 Oblicz grnice prostych ciągó liczboych i sum szeregó geometrycznych. Potrfi zstosoć definicje i tierdzeni ziązne z ciągmi orz szeregmi geometrycznymi do roziązyni różnych zgdnień, np. geometrycznych. U06 Rozpoznje funkcje przyste i nieprzyste. Potrfi sporządzć ykresy funkcji elementrnych orz znjdoć ich obrzy podstoych przeksztłcenich geometrycznych. Umie roziązyć nieskomplikone rónni i nieróności: linioe, kdrtoe, ielominoe, ymierne, ykłdnicze, logrytmiczne i trygonometryczne. 2
3 U07 Potrfi obliczć pochodne prostych funkcji orz pisć rónni stycznej do ykresu funkcji. Umie zstosoć pochodną do bdni funkcji (monotoniczność, ekstrem loklne, ypukłość i punkty przegięci), stosuje regułę de l' Hospitl do obliczni grnicy i yznczni symptot pionoych i ukośnych. Efekt ksztłceni dl kursu Efekty ksztłceni dl studió podyplomoych KOMPETENCJE SPOŁECZNE K01 Absolent kursu zn ogrniczeni łsnej iedzy i rozumie potrzebę jej uzupełnini. K02 Potrfi formułoć pytni służące pogłębieniu zrozumieni dnego temtu. K03 Rozumie konieczność systemtycznej prcy orz potrfi prcoć zespołoo, K04 Potrfi smodzielnie zdobyć potrzebną literturę.. K_K01, K_K02, K_K03, K_K05 ORGANIZACJA FORMA ZAJĘĆ LICZBA GODZIN WYKŁAD (W) ZAJĘCIA W GRUPACH A K L S P EL OPIS METOD PROWADZENIA ZAJĘĆ Wykłd będzie prodzony z ykorzystniem środkó multimedilnych np. prezentcji komputeroych. Po rozpoznniu możliości słuchczy niektórzy z nich będą zprszni do referoni penych frgmentó ykłdu. W czsie ćiczeń ykorzystyne zostną metody ktyizujące słuchczy, pene elementy rchunku będą spierne klkultormi grficznymi lub progrmmi komputeroymi (np. Derive lub Geogebr) 3
4 FORMY SPRAWDZANIA EFEKTÓW KSZTAŁCENIA E le r ni ng Gr y dy d kt yc zn e Ć i cz en i sz ko le Z ję ci te re no e c l bo r to ry jn oj ek t in dy i du l ny W01 W02 W03 W04 W05 W06 U01 x U02 U03 x U04 x U05 U06 U07 K01 K02 K03 K04 x oj ek t gr up o y U dz ił dy sk us ji Re fe r t c pi se m n (e se j) Eg z mi n us tn y Eg z mi n pi se m ny In ne TREŚCI MERYTORYCZNE (ykz temtó) 1. Rchunek zdń. Zmienne zdnioe i funktory zdniotórcze. (tutologie) rchunku zdń. Formy zdnioe. Rónni i nieróności jko formy zdnioe. Kntyfiktory. rchunku kntyfiktoró. 2. Zbiory, relcje i funkcje. Algebr zbioró. Iloczyn krtezjński zbioró. Relcje. Funkcje jko relcje, obrz i przeciobrz zbioru. Funkcje różnortościoe. Funkcj odrotn do funkcji odrclnej. Funkcj złożon. 3. Relcj porządkując i rónożnościo. Zbiory uporządkone. Relcj rónożnościo i zsd bstrkcji. Zstosonie relcji rónożnościoych do definioni pojęć, np. konstrukcji zbioró liczboych. 4. Zsd indukcji mtemtycznej. 5. Ciągi i ich łsności. Pojęcie ciągu i podciągu. Ciągi monotoniczne i ogrniczone. Ciągi definione rekurencyjnie. Ciąg rytmetyczny i geometryczny. Grnic ciągu. Liczb 6. Szeregi liczboe. Pojęcie szeregu. Szereg geometryczny i jego sum. Wżniejsze kryteri zbieżności szeregu. 7. Funkcje liczbo-liczboe. Zbiór liczb rzeczyistych. Funkcje określone podzbiorch zbioru o rtościch Dziedzin funkcji. Wykres funkcji. Miejsc zeroe funkcji. 4
5 Funkcje przyste i nieprzyste. Funkcje okresoe. zeksztłcnie ykresu funkcji. 8. Funkcje elementrne. Funkcj linio i kdrto, ielominy. Funkcj homogrficzn, funkcje ymierne. Potęg o ykłdniku rzeczyistym. Funkcj potęgo. Funkcj ykłdnicz i logrytmiczn. Funkcje trygonometryczne i cyklometryczne. Rónni i nieróności: linioe, kdrtoe, ielominoe, ymierne, ykłdnicze, logrytmiczne i trygonometryczne. 9. Grnic i ciągłość funkcji. Definicj Heine'go i Cuchy'ego grnicy funkcji, ich rónożność. Grnice jednostronne. Asymptoty funkcji. Ciągłość funkcji. Loklne i globlne łsności funkcji ciągłych. Ciągłość funkcji elementrnych. 10. Pochodn funkcji. Definicj pochodnej, interpretcj geometryczn i fizyczn pochodnej. Definicj stycznej do ykresu funkcji. Pochodne funkcji elementrnych. Pochodne yższych rzędó. 11. Tierdzeni o rtości średniej. Tierdzeni: Rolle', Lgrnge' i Tylor o rtości średniej. Zstosonie tych tierdzeń do bdni funkcji (monotoniczność, ekstrem loklne, ypukłość i punkty przegięci) i doodó nieróności. Reguł de l' Hospitl. 12. Cłk nieoznczon. Funkcj pierotn i jej łsności. Cłkonie funkcji. 13. Cłk oznczon. Sumy cłkoe Riemnn. Cłk oznczon Riemnn i jej łsności. Ziązek miry Jordn z cłką Riemnn. Geometryczne i fizyczne zstosoni cłek Riemnn. (informcyjnie). LITERATURA PODSTAWOWA 1. A. Birkholz, Anliz mtemtyczn dl nuczycieli, PWN, Wrsz A. Chronoski, H. Kąkol, Z. Poązk, Grnic i ciągłość funkcji, Wydnicto,,Dl Szkoły", Bielsko-Bił A. Chronoski, Z. Poązk, Pochodn funkcji, Wydnicto,,Dl Szkoły", Bielsko-Bił H. i J. Musielkoie, Anliz mtemtyczn, Wydnicto Nukoe UAM, Poznń, 1993 Tom I (cz. 1), Poznń 2000 Tom I (cz. 2). LITERATURA UZUPEŁNIAJĄCA 1. H. Kąkol, Z. Poązk, Pojącie funkcji, Wydnicto,,Dl Szkoły", Bielsko-Bił, 1994 (cz. I), 1995 (cz. II). 2. W. Krysicki, L. Włodrski, Anliz mtemtyczn zdnich, cz. I, PWN, Wrsz Z. Moszner, O teorii relcji, PZWS, Wrsz J. Musielk, Wstęp do mtemtyki, PWN, Wrsz
6 Bilns godzinoy zgodny z CNPS (Cłkoity Nkłd cy Student) Ilość godzin kontkcie z prodzącymi Wykłd 20 Konerstorium (ćiczeni, lbortorium itd.) 40 Pozostłe godziny kontktu student z prodzącym 20 Lektur rmch przygotoni do zjęć 60 Ilość godzin prcy student bez kontktu z prodzącymi zygotonie krótkiej prcy pisemnej lub refertu po zpoznniu się z niezbędną literturą przedmiotu zygotonie projektu lub prezentcji n podny temt (prc grupie) zygotonie do egzminu 70 Ogółem bilns czsu prcy 250 6
Analiza matematyczna v.1.6 egzamin mgr inf niestacj 1. x p. , przy założeniu, że istnieją lim
Anliz mtemtyczn v..6 egzmin mgr inf niestcj Oznczeni: f, g, h : J R funkcje rzeczywiste określone n J R J przedził, b),, b], [, b), [, b], półprost, b),, b],, ), [, ) lub prost R α, β [min{α, β}, m{α,
Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30
Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 B Nazwa w języku angielskim Mathematical Analysis 1B Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia
SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów
KARTA KURSU. Kod Punktacja ECTS* 4
Załącznik nr 4 do Zarządzenia Nr.. KARTA KURSU Nazwa Analiza matematyczna 3 Nazwa w j. ang. Mathematical Analysis 3 Kod Punktacja ECTS* 4 Koordynator Prof. M. C. Zdun Zespół dydaktyczny dr Z. Powązka,
KARTA KURSU. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory
KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 6 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny dr Antoni
Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU
Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1
KARTA KURSU. Kod Punktacja ECTS* 7
KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 7 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny: Dr hab. prof.
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
WYDZIAŁ ***** KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):
KARTA KURSU. Techniki relaksacyjne Relaxation techniques. mgr Elżbieta Sionko. Opis kursu (cele kształcenia)
KARTA KURSU Nz Nz j. ng. Tchniki rlkscjn Rlion chniqus Kod Punkcj CTS* 1 Koornor mgr lżbi Sionko Zspół dkczn mgr lżbi Sionko Opis kursu (cl kszłcni) Clm kursu js zpoznni sudn z pojęcim srsu i snu rlksu,
MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej
Dorot Ponczek, Krolin Wej MATeMAtyk 3 inf Przedmiotowy system ocenini wrz z określeniem wymgń edukcyjnych Zkres podstwowy i rozszerzony Wyróżnione zostły nstępujące wymgni progrmowe: konieczne (K), podstwowe
KARTA KURSU (realizowanego w module specjalności) Geoinformacja
Gospodrk przstrznn, I stopiń smstr IV studi stcjonrn KARTA KURSU (rlizongo modul spcjlności) Goinformcj Nz Nz j. ng. GIS plnoniu przstrznm GIS in sptil mngmnt Kod Punktcj ECTS* 4 Koorntor Dr Pł Struś Zspół
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE
Wymgni edukcyjne mtemtyk kls 2 zkres podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych
Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I A. USYTUOWANIE
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Matematyka I Rok akademicki: 2014/2015 Kod: MME-1-106-s Punkty ECTS: 11 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Metalurgia Specjalność: Poziom studiów: Studia I stopnia
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30
WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:
ANALIZA SYLABUS. A. Informacje ogólne
ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:
Matematyka I i II - opis przedmiotu
Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska
KARTA KURSU. Mathematics
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie
Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15
Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)
Opis poszczególnych przedmiotów (Sylabus)
Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I
KARTA KURSU. Kod Punktacja ECTS* 1
KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci
FUNKCJA KWADRATOWA. Moduł - dział -temat Lp. Zakres treści. z.p. z.r Funkcja kwadratowa - powtórzenie PLANIMETRIA 1
FUNKCJA KWADRATOWA Moduł - dził -temt Funkcj kwdrtow - powtórzenie Lp Lp z.p. z.r. 1 1 Równni kwdrtowe 2 Postć iloczynow funkcji kwdrtowej 3 Równni sprowdzlne do równń kwdrtowych Nierówności kwdrtowe 5
Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju
Rozdził 3 Cłki niewłściwe 3. Wprowdzenie Omwine w poprzednim rozdzile cłki oznczone są cłkmi funkcji ciągłych n przedzile domkniętym, więc funkcji ogrniczonych n przedzile skończonym. Wiele zgdnień prktycznych
2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują):
OPISU MODUŁU KSZTAŁCENIA (SYLABUS) I. Informacje ogólne 1) Nazwa modułu : MATEMATYCZNE PODSTAWY KOGNITYWISTYKI 2) Kod modułu : 08-KODL-MPK 3) Rodzaj modułu : OBOWIĄZKOWY 4) Kierunek studiów: KOGNITYWISTYKA
2. FUNKCJE WYMIERNE Poziom (K) lub (P)
Kls drug poziom podstwowy 1. SUMY ALGEBRAICZNE Uczeń otrzymuje ocenę dopuszczjącą lub dostteczną, jeśli: rozpoznje jednominy i sumy lgebriczne oblicz wrtości liczbowe wyrżeń lgebricznych redukuje wyrzy
OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dla przedmiotu Sporządzanie umów na kierunku Zarządzanie i prawo w biznesie
Ktedr Prw Cywilnego, Hndlowego i Ubezpieczeniowego Poznń, dni 15 pździernik 2018 r. OPIS MODUŁU ZAJĘĆ/PRZEDMIOTU (SYLABUS) dl przedmiotu Sporządznie umów n kierunku Zrządznie i prwo w biznesie I. Informcje
Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne
Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 1 2 Kod modułu 04-A-MAT1-60-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza zespolona. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza zespolona 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład + 15 ćwiczenia
Wymagania kl. 2. Uczeń:
Wymgni kl. 2 Zkres podstwowy Temt lekcji Zkres treści Osiągnięci uczni. SUMY ALGEBRAICZNE. Sumy lgebriczne definicj jednominu pojęcie współczynnik jednominu porządkuje jednominy pojęcie sumy lgebricznej
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)
Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki
AiRZ-0531 Analiza matematyczna Mathematical analysis
KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:
Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające
Wymgni edukcyjne z mtemtyki ls 2 b lo Zkres podstwowy Oznczeni: wymgni konieczne; wymgni podstwowe; R wymgni rozszerzjące; D wymgni dopełnijące; W wymgni wykrczjące Temt lekcji Zkres treści Osiągnięci
Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski
Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość
KARTA KURSU. Probability theory
KARTA KURSU Nazwa Nazwa w j. ang. Rachunek prawdopodobieństwa Probability theory Kod Punktacja ECTS* 4 Koordynator Dr Ireneusz Krech Zespół dydaktyczny Dr Ireneusz Krech Dr Robert Pluta Opis kursu (cele
KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30
DZIAŁ 2. Figury geometryczne
1 kl. 6, Scenriusz lekcji Pole powierzchni bryły DZAŁ 2. Figury geometryczne Temt w podręczniku: Pole powierzchni bryły Temt jest przeznczony do relizcji podczs 2 godzin lekcyjnych. Zostł zplnowny jko
Z-ID-102 Analiza matematyczna I
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus I Obowiązuje od roku akademickiego 2015/2016 Z-ID-102 Analiza matematyczna I A. USYTUOWANIE MODUŁU W SYSTEMIE
Wymagania edukacyjne matematyka klasa 2b, 2c, 2e zakres podstawowy rok szkolny 2015/2016. 1.Sumy algebraiczne
Wymgni edukcyjne mtemtyk kls 2b, 2c, 2e zkres podstwowy rok szkolny 2015/2016 1.Sumy lgebriczne N ocenę dopuszczjącą: 1. rozpoznje jednominy i sumy lgebriczne 2. oblicz wrtości liczbowe wyrżeń lgebricznych
KARTA KURSU. Elementy statystyki matematycznej. Mathematical statistics
KARTA KURSU Nazwa Nazwa w j. ang. Elementy statystyki matematycznej Mathematical statistics Kod Punktacja ECTS* 5 Koordynator Dr Ireneusz Krech Zespół dydaktyczny: Dr Ireneusz Krech Dr Grażyna Krech Opis
Wymagania na ocenę dopuszczającą z matematyki klasa II Matematyka - Babiański, Chańko-Nowa Era nr prog. DKOS 4015-99/02
Wymgni n ocenę dopuszczjącą z mtemtyki kls II Mtemtyk - Bbiński, Chńko-Now Er nr prog. DKOS 4015-99/02 Temt lekcji Zkres treści Osiągnięci uczni WIELOMIANY 1. Stopień i współczynniki wielominu 2. Dodwnie
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH
MATEMATYKA KLASY I K i rozszerzonym WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH oprcowne n podstwie przedmiotowego systemu ocenini NOWEJ ERY
KARTA KURSU. Kod Punktacja ECTS* 2
KARTA KURSU Nz Nz j. ng. Odno biologiczn mdycyn sttyczn Wllnss nd sttic mdicin Kod Punktcj ECTS* 2 Koordyntor Mgr Agt Romńsk - Kistl Zspół dydktyczny Mgr Agt Romńsk-Kistl Opis kursu (cl ksztłcni) Clm ksztłcni
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć
Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):
KARTA PRZEDMIOTU WYMAGANIA WSTEPNE CELE KURSU
WYDZIAŁ KARTA PRZEDMIOTU Nazwa przedmiotu w języku polskim Nazwa przedmiotu w języku angielskim Kierunek studiów (jeśli dotyczy) Specjalność (jeśli dotyczy) Stopień studiów i forma Rodzaj przedmiotu Kod
Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30
KARTA KURSU. Holistic SPA and Wellness treatments. Kod Punktacja ECTS* 2
KARTA KURSU Nz Nz j. ng. Holistyczn zbigi Sp & Wllnss Holistic SPA nd Wllnss trtmnts Kod Punktcj ECTS* 2 Koordyntor mgr Agniszk Rymrczyk-Kpuścik Zspół dydktyczny mgr Agniszk Rymrczyk- Kpuścik Opis kursu
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Algebra liniowa (ALL010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30 7. TYP
AiRZ-0531 Analiza matematyczna Mathematical analysis
KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Chemia ogólna i analityczna Inorganic and Analitical Chemistry
KARTA KURSU Nazwa Nazwa w j. ang. Chemia ogólna i analityczna Inorganic and Analitical Chemistry Kod Punktacja ECTS* 4 Koordynator dr Iwona Stawoska Zespół dydaktyczny dr Agnieszka Kania dr Iwona Stawoska
KARTA KURSU. Nazwa. Podstawy Fizyki. Nazwa w j. ang. Introduction to Physics. Kod Punktacja ECTS* 4
KARTA KURSU Nazwa Podstawy Fizyki Nazwa w j. ang. Introduction to Physics Kod Punktacja ECTS* 4 Koordynator dr hab. prof. UP Czesław Kajtoch ZESPÓŁ DYDAKTYCZNY dr hab. prof. UP Czesław Kajtoch dr Wojciech
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)
Przedmiot: Matematyka I Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E05_1_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: pierwszy Semestr: pierwszy
Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne
Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu
Z-0476z Analiza matematyczna I
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus I Obowiązuje od roku akademickiego 2012/2013 Z-0476z Analiza matematyczna I A. USYTUOWANIE MODUŁU W SYSTEMIE
WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU
WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka I Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych, Zakład
KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Wstęp do logiki i teorii mnogości (LTM010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN:
KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej.
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna I (ANA011) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60 /
Dorota Ponczek, Karolina Wej. MATeMAtyka 2. Plan wynikowy. Zakres podstawowy
Dorot Ponczek, rolin Wej MATeMAtyk Pln wynikowy Zkres podstwowy MATeMAtyk. Pln wynikowy. ZP Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące
WYDZIAŁ ***** KARTA PRZEDMIOTU
9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli
KARTA KURSU (realizowanego w module specjalności) MATEMATYKA z INFORMATYKĄ
Załącznik nr 7 do Zarządzenia Nr. KARTA KURSU (realizowanego w module specjalności) MATEMATYKA z INFORMATYKĄ (nazwa specjalności) Nazwa Nazwa w j. ang. Specyfika myślenia matematycznego uczniów na I i
WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym
Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania
Rok akademicki: 2018/2019 Kod: GGiG s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Matematyka 1 Rok akademicki: 2018/2019 Kod: GGiG-1-101-s Punkty ECTS: 9 Wydział: Górnictwa i Geoinżynierii Kierunek: Górnictwo i Geologia Specjalność: Poziom studiów: Studia I stopnia Forma
GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek
Wymagania edukacyjne z matematyki dla klasy II a liceum (poziom podstawowy) na rok szkolny 2018/2019
Wymgni edukcyjne z mtemtyki dl klsy II liceum (poziom podstwowy) n rok szkolny 08/09 Oznczeni: wymgni konieczne, P wymgni podstwowe, R wymgni rozszerzjące, D wymgni dopełnijące, W wymgni wykrczjące. SUMY
MATeMAtyka zakres podstawowy
MATeMAtyk zkres podstwowy Proponowny rozkłd mteriłu kl. I (100 h) Temt lekcji Liczb 1. Liczby rzeczywiste 15 1. Liczby nturlne 1 2. Liczby cłkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3
usuwa niewymierność z mianownika wyrażenia typu
Wymgni edukcyjne n poszczególne oceny z mtemtyki Kls pierwsz zkres podstwowy. LICZBY RZECZYWISTE podje przykłdy liczb: nturlnych, cłkowitych, wymiernych, niewymiernych, pierwszych i złożonych orz przyporządkowuje
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/3 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60
WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU
Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI POZIOM PODSTAWOWY KLASA 2 1. SUMY ALGEBRAICZNE rozpoznje jednominy i sumy lgebriczne
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1
Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60
KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 6 6. LICZBA GODZIN: 30
Wymagania na poszczególne oceny z matematyki w Zespole Szkół im. St. Staszica w Pile. Kl. II poziom podstawowy
Wymgni n poszczególne oceny z mtemtyki w Zespole Szkół im. St. Stszic w Pile 1. SUMY ALGEBRAICZNE Kl. II poziom podstwowy Uczeń otrzymuje ocenę dopuszczjącą, jeśli: rozpoznje jednominy i sumy lgebriczne
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
Mteriły do wykłdu MATEMATYKA DYSKRETNA dl studiów zocznych cz. Progrm wykłdu: KOMBINATORYKA:. Notcj i podstwowe pojęci. Zlicznie funkcji. Permutcje. Podziory zioru. Podziory k-elementowe. Ziory z powtórzenimi
Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus Obowiązuje od roku akademickiego
( ) Lista 2 / Granica i ciągłość funkcji ( z przykładowymi rozwiązaniami)
List / Grnic i ciągłość funkcji ( z przykłdowymi rozwiąznimi) Korzystjąc z definicji grnicy (ciągowej) funkcji uzsdnić podne równości: sin ) ( + ) ; b) ; c) + 5 Obliczyć grnice funkcji przy orz : + ) f
SYLABUS. Cele zajęć z przedmiotu
Załącznik nr 1 do Zarządzenia Rektora UR Nr 4/2012 z dnia 20.01.2012r. SYLABUS Nazwa przedmiotu Nazwa jednostki prowadzącej przedmiot Analiza matematyczna Wydział Matematyczno-Przyrodniczy, Instytut Fizyki
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne
Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu
studia stacjonarne w/ćw zajęcia zorganizowane: 30/15 3,0 praca własna studenta: 55 Godziny kontaktowe z nauczycielem akademickim: udział w wykładach
Nazwa jednostki prowadzącej kierunek: Nazwa kierunku: Poziom kształcenia: Profil kształcenia: Moduły wprowadzające / wymagania wstępne: Nazwa modułu (przedmiot lub grupa przedmiotów) Osoby prowadzące:
KARTA KURSU. Statystyka. Kod Punktacja ECTS* 2
Aktualizacja 2015/2016 Geografia I stopnia studia niestacjonarne KARTA KURSU Nazwa Nazwa w j. ang. Statystyka Statistics Kod Punktacja ECTS* 2 Koordynator Dr Sławomir Dorocki Zespół dydaktyczny Dr Sławomir
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:
Sumy algebraiczne i funkcje wymierne
Sumy lgebriczne i funkcje wymierne Moduł - dził -temt Zkres treści Sumy lgebriczne 1 definicj jednominu, sumy lgebricznej, wyrzów podobnych pojęcie współczynnik jednominu Dodwnie i odejmownie sum lgebricznych
Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 Z-LOG-476I Analiza matematyczna I Calculus I A. USYTUOWANIE MODUŁU W
Sylabus - Matematyka
Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne
KARTA KURSU. Kod Punktacja ECTS* 1
Załącznik nr 4 do Zarządzenia Nr.. KARTA KURSU Nazwa Nazwa w j. ang. Elektrochemia Electrochemistry Kod Punktacja ECTS* 1 Zespół dydaktyczny Koordynator dr inż. Piotr Bieniek dr hab. Krzysztof Kruczała,
Analiza matematyczna I
Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi