SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

Wielkość: px
Rozpocząć pokaz od strony:

Download "SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)"

Transkrypt

1 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek) Nazwa jednostki realizującej przedmiot Kierunek studiów Poziom kształcenia Profil Forma studiów Rok i semestr studiów Rodzaj przedmiotu Koordynator Imię i nazwisko osoby prowadzącej / osób prowadzących * - zgodnie z ustaleniami na wydziale Wydział Matematyczno-Przyrodniczy Wydział Matematyczno-Przyrodniczy Inżynieria Materiałowa studia I stopnia (inżynierskie) ogólnoakademicki studia stacjonarne I rok, I i II semestr przedmiot podstawowy dr Renata Jurasińska 1.2.Formy zajęć dydaktycznych, wymiar godzin i punktów ECTS Wykł. Ćw. Konw. Lab. Sem. ZP Prakt. Inne ( jakie?) Liczba pkt ECTS Sposób realizacji zajęć zajęcia w formie tradycyjnej zajęcia realizowane z wykorzystaniem metod i technik kształcenia na odległość 1.4. Forma zaliczenia przedmiotu/ modułu ( z toku) ( egzamin, zaliczenie z oceną, zaliczenie bez oceny) Ćwiczenia: zaliczenie na ocenę po I i II semestrze Egzamin: po II semestrze 2. WYMAGANIA WSTĘPNE Wiadomości z zakresu szkoły ponadgimnazjalnej ( w I i II) semestrze, wiadomości z analizy matematycznej z I semestru (w II semestrze). 3. CELE, EFEKTY KSZTAŁCENIA, TREŚCI PROGRAMOWE I STOSOWANE METODY DYDAKTYCZNE 3.1. Cele przedmiotu/modułu C1 Zapoznanie z podstawowymi pojęciami analizy matematycznej. C2 C3 Zapoznanie z podstawowymi metodami i technikami stosowanymi w analizie matematycznej. Zapoznanie z możliwościami stosowania aparatu matematycznego do opisu zagadnień i rozwiązywania problemów fizycznych i technicznych.

2 3.2 Efekty kształcenia dla przedmiotu/ modułu ( wypełnia koordynator) EK ( efekt kształcenia) EK_01 Treść efektu kształcenia zdefiniowanego dla przedmiotu (modułu) ma wiedzę w zakresie matematyki obejmującą zagadnienia analizy matematycznej, algebry oraz elementy matematyki stosowanej, niezbędne do rozumienia i ilościowego opisu zjawisk i procesów technologicznych oraz posługiwania się aparatem matematycznym i metodami matematycznymi w opisie i modelowaniu zjawisk i procesów fizycznych i chemicznych; definiuje klasyczne pojęcia i formułuje podstawowe twierdzenia z zakresu analizy matematycznej Odniesienie do efektów kierunkowych (KEK) IM_W01 EK_02 zna techniki obliczeniowe stosowane w analizie matematycznej IM_W01 EK_03 oblicza granice ciągów liczbowych, bada zbieżność szeregów IM_W01 liczbowych, oblicza granice funkcji i bada ciągłość funkcji, oblicza IM_U01 pochodne funkcji oraz stosuje je do badania monotoniczności, IM_U07 IM_U11 wklęsłości i wypukłości oraz wyznaczania ekstremów lokalnych i punktów przegięcia wykresów funkcji, potrafi obliczać całki nieoznaczone i oznaczone, oblicza granice ciągów funkcyjnych, bada zbieżność szeregów funkcyjnych, umie obliczać granice i badać ciągłość funkcji dwóch zmiennych, wyznacza ekstrema lokalne, absolutne i warunkowe funkcji wielu zmiennych przy użyciu pochodnych cząstkowych, wyznacza ekstrema lokalne, absolutne i warunkowe funkcji wielu zmiennych przy użyciu pochodnych cząstkowych, potrafi obliczać całki podwójne po prostokącie i po obszarach normalnych, stosuje je do rozwiązywania zagadnień geometrycznych i fizycznych, oblicza całki krzywoliniowe skierowane i nieskierowane, stosuje je do rozwiązywania zagadnień geometrycznych i fizycznych, opisuje różne zjawiska za pomocą równań różniczkowych, rozwiązuje różne typy równań różniczkowych zwyczajnych I i II rzędu, rozwiązuje różne typy równań różniczkowych zwyczajnych I i II rzędu EK_04 rozumie potrzebę uczenia się przez całe życie oraz podnoszenia kompetencji zawodowych i osobistych, rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy i umiejętności oraz związaną z tym odpowiedzialność, jest świadomy własnych ograniczeń i wie, kiedy zwrócić się do ekspertów 3.3 Treści programowe (wypełnia koordynator) A. Problematyka wykładu Treści merytoryczne Wiadomości wstępne (przypomnienie podstawowych pojęć ze szkoły średniej). IM_K01 IM_K05 IM_K06 IM_K08 Ciągi liczbowe, podciągi, ciągi monotoniczne i ograniczone, granica ciągu, najważniejsze twierdzenia o granicach ciągów (działania na granicach ciągów, twierdzenie o trzech ciągach, liczba e jako granica ciągu). Szeregi liczbowe, definicja szeregu liczbowego, ciąg sum częściowych, zbieżność szeregu liczbowego, suma szeregu, podstawowe kryteria zbieżności szeregów o wyrazach dodatnich, szeregi naprzemienne, zbieżność bezwzględna i warunkowa, kryterium Leibniza.

3 Funkcje rzeczywiste jednej zmiennej rzeczywistej, funkcje różnowartościowe i monotoniczne, składanie funkcji i funkcje odwrotne, przegląd funkcji elementarnych. Granica funkcji, definicja granicy, podstawowe twierdzenia, granice niewłaściwe i jednostronne, ciągłość funkcji w punkcie, własności funkcji ciągłych. Pochodna funkcji, definicja, interpretacja geometryczna i fizyczna, podstawowe twierdzenia i wzory, pochodne wyższych rzędów. Twierdzenia o wartości średniej, twierdzenia Rolla i Lagrange'a, twierdzenie Taylora i Maclaurina, reguła de l'hospitala. Badanie przebiegu zmienności funkcji, asymptoty, monotoniczność i ekstrema lokalne, wypukłość i punkty przegięcia. Całka nieoznaczona, funkcja pierwotna, podstawowe twierdzenia i wzory, całkowanie przez części i podstawienie, całkowanie funkcji wymiernych, niewymiernych, trygonometrycznych. Całka oznaczona, definicja, interpretacja geometryczna, związek między całką oznaczoną o nieoznaczoną. Zastosowanie całki oznaczonej do obliczania pól płaskich, długości łuków, objętości i powierzchni brył obrotowych przy różnych sposobach przedstawienia krzywej. Całki niewłaściwe I i II rodzaju. Ciągi i szeregi funkcyjne, zbieżność punktowa i jednostajna, kryteria zbieżności jednostajnej. Szeregi Taylora i Maclaurina i ich zastosowanie. Szereg potęgowy, promień zbieżności szeregu potęgowego. Funkcje wielu zmiennych rzeczywistych, granice, ciągłość, różniczkowalność, pochodne cząstkowe funkcji wielu zmiennych. Ekstrema lokalne, absolutne i warunkowe funkcji wielu zmiennych, metody wyznaczania tych ekstremów, przykłady. Całki wielokrotne, ich obliczanie, interpretacja i zastosowania. Całki podwójne po prostokącie i po obszarze normalnym. Całki krzywoliniowe skierowane i nieskierowane, obliczanie, interpretacja i zastosowania. Definicja równania różniczkowego, definicja rozwiązania równania różniczkowego, krzywa całkowa równania różniczkowego. Metody rozwiązywania pewnych typów równań różniczkowych zwyczajnych I rzędu: równanie o zmiennych rozdzielonych, równania dające się sprowadzić przez podstawienie do równania o zmiennych rozdzielonych, równanie liniowe, niektóre równania nieliniowe: równanie Bernoulliego, równanie Riccatiego, równanie różniczkowe zupełne, czynnik całkujący. Metody rozwiązywania pewnych typów równań różniczkowych zwyczajnych II rzędu, równanie liniowe n-tego rzędu o stałych współczynnikach. B. Problematyka ćwiczeń audytoryjnych, konwersatoryjnych, laboratoryjnych, zajęć praktycznych Treści merytoryczne Wiadomości wstępne (przypomnienie podstawowych pojęć ze szkoły średniej). Ciągi liczbowe, podciągi, ciągi monotoniczne i ograniczone, granica ciągu, najważniejsze twierdzenia o granicach ciągów (działania na granicach ciągów, twierdzenie o trzech ciągach, liczba e jako granica ciągu). Szeregi liczbowe, definicja szeregu liczbowego, ciąg sum częściowych, zbieżność szeregu liczbowego, suma szeregu, podstawowe kryteria zbieżności szeregów o wyrazach dodatnich, szeregi naprzemienne, zbieżność bezwzględna i warunkowa, kryterium Leibniza. Funkcje rzeczywiste jednej zmiennej rzeczywistej, funkcje różnowartościowe i monotoniczne, składanie funkcji i funkcje odwrotne, przegląd funkcji elementarnych. Granica funkcji, definicja granicy, podstawowe twierdzenia, granice niewłaściwe i jednostronne, ciągłość funkcji w punkcie, własności funkcji ciągłych. Pochodna funkcji, definicja, interpretacja geometryczna i fizyczna, podstawowe twierdzenia i wzory, pochodne wyższych rzędów. Twierdzenia o wartości średniej, twierdzenia Rolla i Lagrange'a, twierdzenie Taylora i Maclaurina, reguła

4 de l'hospitala. Badanie przebiegu zmienności funkcji, asymptoty, monotoniczność i ekstrema lokalne, wypukłość i punkty przegięcia. Całka nieoznaczona, funkcja pierwotna, podstawowe twierdzenia i wzory, całkowanie przez części i podstawienie, całkowanie funkcji wymiernych, niewymiernych, trygonometrycznych. Całka oznaczona, definicja, interpretacja geometryczna, związek między całką oznaczoną o nieoznaczoną. Zastosowanie całki oznaczonej do obliczania pól płaskich, długości łuków, objętości i powierzchni brył obrotowych przy różnych sposobach przedstawienia krzywej. Całki niewłaściwe I i II rodzaju. Ciągi i szeregi funkcyjne, zbieżność punktowa i jednostajna, kryteria zbieżności jednostajnej. Szeregi Taylora i Maclaurina i ich zastosowanie. Szereg potęgowy, promień zbieżności szeregu potęgowego. Funkcje wielu zmiennych rzeczywistych, granice, ciągłość, różniczkowalność, pochodne cząstkowe funkcji wielu zmiennych. Ekstrema lokalne, absolutne i warunkowe funkcji wielu zmiennych, metody wyznaczania tych ekstremów, przykłady. Całki wielokrotne, ich obliczanie, interpretacja i zastosowania. Całki podwójne po prostokącie i po obszarze normalnym. Całki krzywoliniowe skierowane i nieskierowane, obliczanie, interpretacja i zastosowania. Definicja równania różniczkowego, definicja rozwiązania równania różniczkowego, krzywa całkowa równania różniczkowego. Metody rozwiązywania pewnych typów równań różniczkowych zwyczajnych I rzędu: równanie o zmiennych rozdzielonych, równania dające się sprowadzić przez podstawienie do równania o zmiennych rozdzielonych, równanie liniowe, niektóre równania nieliniowe: równanie Bernoulliego, równanie Riccatiego, równanie różniczkowe zupełne, czynnik całkujący. Metody rozwiązywania pewnych typów równań różniczkowych zwyczajnych II rzędu, równanie liniowe n-tego rzędu o stałych współczynnikach. 3.4 Metody dydaktyczne Wykład: wykład problemowy, wykład z prezentacją multimedialną Ćwiczenia: Rozwiązywanie zadań 4 METODY I KRYTERIA OCENY 4.1 Sposoby weryfikacji efektów kształcenia Symbol efektu EK_01 EK_02 EK_03 Metody oceny efektów kształcenia ( np.: kolokwium, egzamin ustny, egzamin pisemny, projekt, sprawozdanie, obserwacja w trakcie zajęć) Kolokwium, obserwacja w trakcie zajęć, egzamin pisemny (część zadaniowa) Kolokwium, obserwacja w trakcie zajęć, egzamin pisemny (część zadaniowa) Kolokwium, obserwacja w trakcie zajęć, egzamin pisemny (część zadaniowa) EK_04 Obserwacja w trakcie zajęć Ćw Forma zajęć dydaktycznych (w, ćw, ) W, Ćw W, Ćw W, Ćw 4.2 Warunki zaliczenia przedmiotu (kryteria oceniania) Zaliczenie ćwiczeń ( po I i II semestrze) 75% oceny stanowią wyniki kolokwiów, 25% aktywność na zajęciach. Za kolokwia można będzie uzyskać w ciągu semestru maksymalnie 30 punktów (2x15), zaś za aktywność maksymalnie 10 punktów. Oceny - poniżej 20 pkt. brak zaliczenia,

5 20 24 pkt. dostateczny, pkt. plus dostateczny, pkt. dobry, pkt. plus dobry, pkt. bardzo dobry. Egzamin (po II semestrze) Z części zadaniowej (składającej się z 5 zadań) można będzie uzyskać maksymalnie 25 punktów. Oceny poniżej 12,5 pkt. niedostateczny, 12,5 15 pkt. dostateczny, 15 17,5 pkt. plus dostateczny, 17,5 20 pkt. dobry, 20 22,5 pkt. plus dobry, 22,5 25 pkt. bardzo dobry. Z części teoretycznej (test uzupełnień) można będzie uzyskać maksymalnie 20 punktów Oceny - poniżej 10 pkt. brak zaliczenia, 9-12 pkt. dostateczny, pkt. plus dostateczny, pkt. dobry, pkt. plus dobry, pkt. bardzo dobry. Do uzyskania pozytywnej oceny z egzaminu konieczne jest zaliczenie obu jego części. 5. CAŁKOWITY NAKŁAD PRACY STUDENTA POTRZEBNY DO OSIĄGNIĘCIA ZAŁOŻONYCH EFEKTÓW W GODZINACH ORAZ PUNKTACH ECTS Aktywność godziny zajęć wg planu z nauczycielem 120 przygotowanie do zajęć 80 udział w konsultacjach 10 przygotowanie do egzaminu 65 udział w egzaminie 3 Inne (jakie?) SUMA GODZIN 278 SUMARYCZNA LICZBA PUNKTÓW ECTS 11 Liczba godzin/ nakład pracy studenta 6. PRAKTYKI ZAWODOWE W RAMACH PRZEDMIOTU/ MODUŁU wymiar godzinowy zasady i formy odbywania praktyk Nie dotyczy Nie dotyczy 7. LITERATURA Literatura podstawowa: 1. J. Banaś, S. Wędrychowicz; Zbiór zadań z analizy matematycznej, WNT Warszawa 1993; 2. G.M. Fichtenholz, Rachunek różniczkowy i całkowy, tom II i III. PWN, Warszawa W. Krysicki, L. Włodarski; Analiza matematyczna w zadaniach t. I i II, PWN Warszawa 1998; 4. J. Muszyński, A.D. Myszkis; Równania różniczkowe zwyczajne, PWN Warszawa 1984.

6 5. W. Rudin, Podstawy analizy matematycznej, PWN, Warszawa R. Rudnicki, Wykłady z analizy matematycznej, PWN, Warszawa 2001 Literatura uzupełniająca: 1. M. Gewert, Z. Skoczylas, Analiza matematyczna I. Definicje, twierdzenia, wzory, GiS, Wrocław M. Gewert, Z. Skoczylas, Analiza matematyczna I. Przykłady i zadania, GiS, Wrocław M. Gewert, Z. Skoczylas, Analiza matematyczna II. Definicje, twierdzenia, wzory, GiS, Wrocław M. Gewert, Z. Skoczylas, Analiza matematyczna II. Przykłady i zadania, GiS, Wrocław M. Gewert, Z. Skoczylas, Równania różniczkowe zwyczajne. Teoria, przykłady, zadania, GiS, Wrocław K. Kuratowski, Rachunek różniczkowy i całkowy. Funkcje jednej zmiennej, WN PWN, Warszawa Akceptacja Kierownika Jednostki lub osoby upoważnionej

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka I Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych, Zakład

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Analiza matematyczna

Analiza matematyczna Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Mathematical analysis

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Analiza matematyczna Mathematical analysis. Transport I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Geometria szkolna Kod

Bardziej szczegółowo

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna Rok akademicki: 2018/2019 Kod: BIT-1-101-s Punkty ECTS: 6 Wydział: Geologii, Geofizyki i Ochrony Środowiska Kierunek: Informatyka Stosowana Specjalność: Poziom studiów:

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska

Analiza matematyczna. Mechanika i Budowa Maszyn I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Matematyki dr Beata Maciejewska Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus Obowiązuje od roku akademickiego

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30 Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 B Nazwa w języku angielskim Mathematical Analysis 1B Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Matematyka 1 2 Kod modułu 04-A-MAT1-60-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień 6 Rok

Bardziej szczegółowo

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1002-W1

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK205 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej

Opis przedmiotu. Karta przedmiotu - Matematyka II Katalog ECTS Politechniki Warszawskiej Kod przedmiotu TR.NIK203 Nazwa przedmiotu Matematyka II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

KARTA PRZEDMIOTU WYMAGANIA WSTEPNE CELE KURSU

KARTA PRZEDMIOTU WYMAGANIA WSTEPNE CELE KURSU WYDZIAŁ KARTA PRZEDMIOTU Nazwa przedmiotu w języku polskim Nazwa przedmiotu w języku angielskim Kierunek studiów (jeśli dotyczy) Specjalność (jeśli dotyczy) Stopień studiów i forma Rodzaj przedmiotu Kod

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne)

Geodezja i Kartografia I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) Stacjonarne (stacjonarne / niestacjonarne) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka I Nazwa modułu w języku angielskim Mathematics I Obowiązuje od

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2020 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Wstęp do logiki i teorii

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016 2020 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Statystyka w biologii

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: EIB s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Matematyka I Rok akademicki: 2013/2014 Kod: EIB-1-110-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Inżynieria Biomedyczna Specjalność:

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Matematyka II Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Wydział Nauk Technicznych i Ekonomicznych, Instytut Nauk Technicznych, Zakład

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki.

PRZEWODNIK PO PRZEDMIOCIE MATEMATYKA II E. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Władysław Pękała. ogólnoakademicki. Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj

Bardziej szczegółowo

Z-0476z Analiza matematyczna I

Z-0476z Analiza matematyczna I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus I Obowiązuje od roku akademickiego 2012/2013 Z-0476z Analiza matematyczna I A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I

Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-LOGN1-004 Analiza matematyczna I Mathematical analysis I A. USYTUOWANIE

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Podstawy prawa medycznego Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej

Bardziej szczegółowo

Z-ID-102 Analiza matematyczna I

Z-ID-102 Analiza matematyczna I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Calculus I Obowiązuje od roku akademickiego 2015/2016 Z-ID-102 Analiza matematyczna I A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

GEODEZJA I KARTOGRAFIA I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka II Nazwa modułu w języku angielskim Mathematics II Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Analiza matematyczna I

Analiza matematyczna I Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

SYLABUS PRAWA CZŁOWIEKA W POLSCE WYDZIAŁ SOCJOLOGICZNO HISTORYCZNY INSTYTUT NAUK O POLITYCE

SYLABUS PRAWA CZŁOWIEKA W POLSCE WYDZIAŁ SOCJOLOGICZNO HISTORYCZNY INSTYTUT NAUK O POLITYCE SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2013-2016 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek) Nazwa jednostki

Bardziej szczegółowo

AiRZ-0008 Matematyka Mathematics

AiRZ-0008 Matematyka Mathematics . KARTA MODUŁU / KARTA PRZEDMIOTU AiRZ-0008 Matematyka Mathematics Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Bankowość I. Kod przedmiotu/

Bardziej szczegółowo

SYLABUS PRZEDMIOTU - Matematyka

SYLABUS PRZEDMIOTU - Matematyka SYLABUS PRZEDMIOTU - Matematyka I. Informacje ogólne 1. Nazwa przedmiotu: Matematyka 2. Kod przedmiotu: 02-MATB, 02-MATL, 02-MATLM 3. Rodzaj modułu kształcenia obowiązkowy 4. Kierunek studiów: Chemia (specjalności:

Bardziej szczegółowo

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Wydział Wychowania Fizycznego. Katedra Turystyki i Rekreacji

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Wydział Wychowania Fizycznego. Katedra Turystyki i Rekreacji SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Finanse i Rachunkowość Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Matematyka I Rok akademicki: 2014/2015 Kod: MME-1-106-s Punkty ECTS: 11 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Metalurgia Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 015-017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Instrumenty finansowe Kod

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Wydział Wychowania Fizycznego

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Wydział Wychowania Fizycznego SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Psychologia społeczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek)

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)

Matematyka Mathematics. Inżynieria bezpieczeństwa I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Matematyka Mathematics A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia

Bardziej szczegółowo

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) mgr Angelina Wolan-Nieroda- ćwiczenia konwersatoryjne

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) mgr Angelina Wolan-Nieroda- ćwiczenia konwersatoryjne SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Terapia sensoryczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Metodologia badań naukowych

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Metodologia badań naukowych SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Metodologia badań naukowych Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015/ /2018 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015/ /2018 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015/2016-2017/2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Finanse przedsiębiorstw i instytucji finansowych Kod przedmiotu/

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium 45 30 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. A Nazwa w języku angielskim Mathematical Analysis. A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 Z-LOG-476I Analiza matematyczna I Calculus I A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA... (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Język angielski Kod przedmiotu/

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2017/2023

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2017/2023 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2017/2023 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Zdrowie seksualne i reprodukcyjne Kod

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Zwalczanie przestępczości. Socjologiczno-Historyczny. Instytut Nauk o Polityce

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Zwalczanie przestępczości. Socjologiczno-Historyczny. Instytut Nauk o Polityce Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2017-2020 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Kod przedmiotu/ modułu*

Bardziej szczegółowo

Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni)

Podstawowy (podstawowy / kierunkowy / inny HES) Obowiązkowy (obowiązkowy / nieobowiązkowy) Semestr 2. Semestr letni (semestr zimowy / letni) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 2 Nazwa modułu w języku angielskim Mathematics 2 Obowiązuje od

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Wydział Socjologiczno-Historyczny

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Wydział Socjologiczno-Historyczny Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Wstęp do badań politologicznych

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Zarządzanie i marketing. Wykł. Ćw. Konw. Lab. Sem. ZP Prakt. GN Liczba pkt ECTS

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Zarządzanie i marketing. Wykł. Ćw. Konw. Lab. Sem. ZP Prakt. GN Liczba pkt ECTS SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2017-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Zarządzanie i marketing Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 3 Nazwa modułu w języku angielskim Mathematics 3 Obowiązuje od roku akademickiego 2016/17 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Pedagogika ogólna Kod

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej kierunek) Nazwa jednostki

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1 Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia

Bardziej szczegółowo

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) mgr Justyna Leszczak ćwiczenia konwersatoryjne. Liczba pkt ECTS

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) mgr Justyna Leszczak ćwiczenia konwersatoryjne. Liczba pkt ECTS SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2018 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Trening motoryczny Kod przedmiotu/ modułu* Wydział (nazwa jednostki prowadzącej

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 4

KARTA KURSU. Kod Punktacja ECTS* 4 Załącznik nr 4 do Zarządzenia Nr.. KARTA KURSU Nazwa Analiza matematyczna 3 Nazwa w j. ang. Mathematical Analysis 3 Kod Punktacja ECTS* 4 Koordynator Prof. M. C. Zdun Zespół dydaktyczny dr Z. Powązka,

Bardziej szczegółowo

Analiza matematyczna II

Analiza matematyczna II Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna za przedmiot: Osoba(y) prowadząca(e) Przedmioty wprowadzające wraz z wymaganiami wstępnymi

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: Ma 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechatronika 5. Specjalność: Eksploatacja Systemów Mechatronicznych

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia Uniwersytet Śląski w Katowicach str.. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 207/208Z 3. Poziom kształcenia studia pierwszego stopnia (inżynierskie) 4. Profil kształcenia ogólnoakademicki 5. Forma

Bardziej szczegółowo

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka 1 Nazwa modułu w języku angielskim Mathematics 1 Obowiązuje od

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

OPIS MODUŁ KSZTAŁCENIA (SYLABUS)

OPIS MODUŁ KSZTAŁCENIA (SYLABUS) OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu kształcenia Matematyka 3 2 Kod modułu kształcenia 04-ASTR1-MatIII60-2Z 3 Rodzaj modułu kształcenia obowiązkowy 4 Kierunek studiów Astronomia

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Zarządzanie i marketing. Wykł. Ćw. Konw. Lab. Sem. ZP Prakt. GN Liczba pkt ECTS

SYLABUS. DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Zarządzanie i marketing. Wykł. Ćw. Konw. Lab. Sem. ZP Prakt. GN Liczba pkt ECTS SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2018-2023 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Zarządzanie i marketing Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2017-2020 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu BEZPIECZEŃSTWO KONSUMENTÓW

Bardziej szczegółowo