Co kognitywista powinien wiedzieć o języku?

Wielkość: px
Rozpocząć pokaz od strony:

Download "Co kognitywista powinien wiedzieć o języku?"

Transkrypt

1 Co kogitywista powiie wiedzieć o języku? Wykład VI/VII: Językozawstwo kogitywe i symbolicza atura języka

2 Dwa kieruki w językozawstwie językozawstwo autoomicze è podejścia formale: język to samoisty system którego właściwości określa gramatyka (rozszerzoa teoria stadardowa oraz teoria rządu i wiązaia) è podejścia behawiorystycze: język to obserwowale zachowaie językozawstwo fukcjoalistycze (kogitywe) wiedza językowa tkwi w umyśle, celem badań językozawczych jest dostarczeie opisu aspektów umysłu umożliwiających tworzeie i rozumieie wyrażeń językowych

3 Gramatyka kogitywa. Źródła Reakcja a Exteded Stadard Theory oraz Govermet ad Bidig Theory Twórcy i badacze: Roald Lagacker, George Lakoff, Mark Johso, Ray Jackedoff ispiracje: F. de Saussure, Pierre Guiraud, gestaltyści, Ludwig Wittgestei, Eleoore Rosch

4 Gramatyka kogitywa a Chomsky kwestiouje tezę o autoomiczości składi gramatyka ie jest urządzeiem geerującym T1: sematyka ligwistycza zajmuje się aalizą i opisem struktury koceptualej (pojęciowej) T2: ie moża poważie badać gramatyki bez uwzględieia zaczeia T3: gramatyka z leksykoem tworzą kotiuum i są opisywale jako struktury symbolicze

5 Zdolości kogitywe człowieka (wybrae) tworzeie ustrukturalizowaych koceptualizacji rozpozawaie i artykułowaie ciągów foologiczych ujmowaie symboliczego związku między strukturami koceptualymi a foologiczymi kategoryzowaie jedych struktur w oparciu o ie kategoryzowaie i ujmowaie daej sytuacji a różych poziomach abstrakcji (schematyzacja)

6 Zdolości kogitywe człowieka (wybrae) rozpozawaie podobieństw między różymi strukturami ustalaie odpowiediości między elemetami zaczeia różych struktur łączeie struktur prostszych w bardziej złożoe ujmowaie scey w kategoriach figura-tło ujmowaie scey a róże sposoby (obrazowaie)

7 Gramatyka kogitywa - podstawy bezpośredio odzwierciedla zakową fukcję języka opiera się wyłączie a zbadaych kogitywych (pozawczych) zdolościach człowieka pozwala a szerokie, ituicyje ujęcie zaczeia Koceptuala jedość gramatyki: postuluje tylko sematycze, foologicze i symbolicze jedostki języka

8 Gramatyka kogitywa - podstawy jedostka symbolicza to asocjacja jedostki sematyczej z foologiczą leksyko, morfologia i składia staowią kotiuum i są całkowicie opisywale w kategoriach jedostek symboliczych

9 Symboliczy charakter języka Teza o symbolizacji: istotą języka jest jego dogłębie symboliczy charakter dwa aspekty arbitralości człowiek istota posługująca się symbolami metaly charakter zaku językowego zarzut 1: aaliza sematycza: subiektywa a awet spekulatywa Wittgestei, Quie: zaczeie to użycie

10 Symboliczy charakter języka zarzut 2: przekoaie o ustaloym charakterze kodu językowego i o telemetacji zarzut 3: czy wszystkie wyrazy symbolizują pojęcia? (drzewo, choć, pewie) zarzut 4: łączeie pojęć (kompozycjoalość) zarzut 5: problem wyrażeń referecyjych R. Jackedoff: świat projektoway G. Faucoier: przestrzeie metale Sherlock Holmes ie istiał ale mieszkał przy Baker Street.

11 Jedostki językowe jedostka językowa: struktura językowa, która osiągęła status jedostki w procesie habituacji gramatyka kogitywa ma charakter iegeeratywy (lista); owe jedostki przyswajaa w oparciu o abstrakcyje wzorce struktury języka (schematy) Schemat sakcjouje ową jedostkę

12 Kategoryzacja gramatyka geeratywa: kategoryzacja wg. waruków koieczych i wystarczających kategoryzacja przez schemat: A B; A jest schematem dla B. B uszczegóławia (kokretyzuje) A. B jest całkowicie zgode z charakterystyką B; [pies] [jamik] kategoryzacja przez prototyp (E. Rosch): A -- B; A jest prototypem, B jest rozszerzeiem prototypu. Zachodzi koflikt między charakterystyką B a charakterystyką A. [wróbel] -- [orzeł]

13 Prototypowa orgaizacja kategorii E. Rosch (1976, 1978): podstawowość hierarchicza: kategorie adrzęde, podstawowe i podrzęde [meble, fotele, wygode fotele] prototypowe efekty kategoryzacji (wymiar poziomy): ie każdy egzemplarz jest dobrym desygatem (prototyp i egzemplarze miej prototypowe) [kategoria:ptak; prototyp:wróbel(us:drozd); egzemplarz miej prototypowy: pigwi]

14 Prototypowa orgaizacja kategorii kategoryzacja a zasadzie podobieństwa rodziego (Wittgestei: termi gra ) kategorie mają charakter radialy (Lakoff) kategoria cetrala i ekstesje peryferyje

15 Prototypowa orgaizacja kategorii efekty prototypowe badae są w foologii, morfologii, sematyce i pragmatyce, sytaktyce, p. pytaia rozstrzygięcia (tak/ie) pytaia szczegółowe (kto, co, gdzie) pytaia retorycze pytaia/wykrzykięcia sufiks -ia (psia, zupia)

16 Procesy kogitywe. Porówaie porówaie - zachodzi pomiędzy: stadardem porówaia (S) celem porówaia (T) opiera się a skaigu pojęciowej aalizie S i T i rejestracji różic między imi różica =0 - rozpozaie

17 Procesy kogitywe. Obrazowaie obrazowaie zdolość do portretowaia tego samego zdarzeia (scey, sytuacji) za pomocą środków alteratywych: poziom uszczegółowiaia (schematyczości): rzecz-zwierzę-ssak-pies-jamik profilowaie maskowaie 1. dawać brać 2.

18 Procesy kogitywe. Obrazowaie trajektor i ladmark: za (czymś) przed (czymś) perspektywa (pukt widzeia, orietacja, kieruek skaowaia)

19 Procesy kogitywe. Obrazowaie Pagórek łagodie wzosi się od rzeki Pagórek łagodie opada do rzeki obserwator metalie poruszający się w przestrzei (subiektywizacja) tło (drugi pla): pojmowaie jedej struktury w powiązaiu z ią (w pewym sesie miej zaczącą); JAN obraził Aę Ja OBRAZIŁ Aę

20 Metafory Lakoff, Johso (1988): Metafory w aszym życiu Staowią cetrale zagadieie teorii języka zjawisko percepcji jedej dziedziy poprzez drugą dziedzia źródłowa (dziedzia fizycza, dostarcza materiału leksykalego) dziedzia docelowa (dotyczy zjawisk psychologiczych, abstrakcji)

21 Metafory Zależości między takimi dziedziami mają charakter systematyczy l l l l Złość jest ogiem źródło: rzeczy mogą palić się przez pewie czas, potem mogą buchąć płomieiem cel: ludzie mogą być źli a iskim stopiu itesywości, a potem mogą stać się wściekli paląca się rzecz jest osobą pełą złości przyczyą ogia jest przyczya złości

22 Metafory itesywość ogia jest itesywością złości Wioski: ludzie używają metafor częściej, iż sądzoo pojawiają się, bo trudo mówić o pewych dziedziach bez pomocy iych dziedzi Argumetacja i woja (Twoje argumety są ie do obroy) (wygrywaie, obroa, strategia, strzelaie, a celowiku)

23 Gramatyka kogitywa. Podsumowaie odrzuca się rozróżieie a sematykę i pragmatykę (Lagacker) gramatyka kogitywa jest modelem użycia języka (performacja?) zaczeń ie opisuje się w kategoriach relacji językrzeczywistość (vs. Morris) obiektem zaiteresowaia są pojęcia-kocepty w umysłach użytkowików

24 Uwagi filozoficze pojęcia mają charakter idiosykratyczy możliwa jest jedak komuikacja, choć ie całkowite porozumieie Lakoff: Idealizacyjy Model Pozawczy abstrahujący od idiosykrazji model dla daej społeczości językowej (oparty a badaiach statystyczych) metoda badań: statystyka i itrospekcja

25 Gramatyka kogitywa. Podsumowaia cd gestaltyzm jako zasada metodologicza w kosekwecji: odrzuceie kompozycjoalości zaczeń (idiomy i metafory) metafora ie jest peryferyjym zjawiskiem, ale podstawowym, kreatywym aspektem języka

26 Gramatyka kogitywa. Bibliografia (1) Jackedoff R., Foudatios of Laguage: Brai, Meaig, Grammar, Evolutio, New York: Oxford UP (2) Lakoff G., Johso M., Metafory w aszym życiu, Warszawa: PIW, (3) Lagacker R., Wykłady z gramatyki kogitywej. Kazimierz ad Wisłą, Lubli: Wyd. UMCS, (4) Lagacker R., Wykłady z gramatyki kogitywej, Wyd. UMCS: Lubli, (5) Podstawy gramatyki kogitywej, H. Kardela (red.), Biblioteka Myśli Semiotyczej, Warszawa: Polskie Towarzystwo Semiotycze, (6) Taylor Joh, Gramatyka kogitywa, Kraków: Uiversitas, 2007.

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Pojęcia to. porównanie trzech sposobów ujmowania pojęć. Monika Marczak IP, UAM

Pojęcia to. porównanie trzech sposobów ujmowania pojęć. Monika Marczak IP, UAM Pojęcia to. porównanie trzech sposobów ujmowania pojęć Monika Marczak IP, UAM Takiego zwierzęcia nie ma?????????? Jeśli brakuje umysłowej reprezentacji pewnego fragmentu rzeczywistości, fragment ten dla

Bardziej szczegółowo

Co to jest znaczenie? Współczesne koncepcje znaczenia i najważn. i najważniejsze teorie semantyczne

Co to jest znaczenie? Współczesne koncepcje znaczenia i najważn. i najważniejsze teorie semantyczne Co to jest znaczenie? Współczesne koncepcje znaczenia i najważniejsze teorie semantyczne Uniwersytet Kardynała Stefana Wyszyńskiego 1 Koncepcje znaczenia 2 3 1. Koncepcje referencjalne znaczenie jako byt

Bardziej szczegółowo

Co to jest znaczenie? Współczesne koncepcje znaczenia i najważn. i najważniejsze teorie semantyczne

Co to jest znaczenie? Współczesne koncepcje znaczenia i najważn. i najważniejsze teorie semantyczne Co to jest znaczenie? Współczesne koncepcje znaczenia i najważniejsze teorie semantyczne Uniwersytet Kardynała Stefana Wyszyńskiego 1 Koncepcje znaczenia 2 3 1. Koncepcje referencjalne znaczenie jako byt

Bardziej szczegółowo

Elementy kognitywistyki:

Elementy kognitywistyki: Wykład I: Elementy kognitywistyki: język naturalny Kognitywistyka, poznanie, język. Uwagi wprowadzające. Po raz pierwszy w historii można coś napisać o instynkcie uczenia się, mówienia i rozumienia języka.

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia

Wpływ religijności na ukształtowanie postawy wobec eutanazji The impact of religiosity on the formation of attitudes toward euthanasia Ewelia Majka, Katarzya Kociuba-Adamczuk, Mariola Bałos Wpływ religijości a ukształtowaie postawy wobec eutaazji The impact of religiosity o the formatio of attitudes toward euthaasia Ewelia Majka 1, Katarzya

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład I: Pomieszanie z modelem w środku Czym jest kognitywistyka? Dziedzina zainteresowana zrozumieniem procesów, dzięki którym mózg (zwł.

Bardziej szczegółowo

Zeszyty naukowe nr 9

Zeszyty naukowe nr 9 Zeszyty aukowe r 9 Wyższej Szkoły Ekoomiczej w Bochi 2011 Piotr Fijałkowski Model zależości otowań giełdowych a przykładzie otowań ołowiu i spółki Orzeł Biały S.A. Streszczeie Niiejsza praca opisuje próbę

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym) Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli

Bardziej szczegółowo

Kategoryzacja. Wstęp do psychologii poznawczej Maciej Raś

Kategoryzacja. Wstęp do psychologii poznawczej Maciej Raś Kategoryzacja Wstęp do psychologii poznawczej Maciej Raś Część pierwsza: Krojenie tortu Slajd prof. Urbańskiego: http://main5.amu.edu.pl/~murbansk/wp-content/uploads/2011/09/wdl_w04.pdf Slajd prof. Urbańskiego:

Bardziej szczegółowo

STATYSTKA I ANALIZA DANYCH LAB II

STATYSTKA I ANALIZA DANYCH LAB II STATYSTKA I ANALIZA DANYCH LAB II 1. Pla laboratorium II rozkłady prawdopodobieństwa Rozkłady prawdopodobieństwa dwupuktowy, dwumiaowy, jedostajy, ormaly. Związki pomiędzy rozkładami prawdopodobieństw.

Bardziej szczegółowo

mgr Albert Leśniak Wydział Polonistyki UJ ROLA GRAFICZNYCH KORELATÓW SCHEMATÓW WYOBRAŻENIOWYCH W WIZUALIZACJI WIEDZY

mgr Albert Leśniak Wydział Polonistyki UJ ROLA GRAFICZNYCH KORELATÓW SCHEMATÓW WYOBRAŻENIOWYCH W WIZUALIZACJI WIEDZY mgr Albert Leśniak Wydział Polonistyki UJ ROLA GRAFICZNYCH KORELATÓW SCHEMATÓW WYOBRAŻENIOWYCH W WIZUALIZACJI WIEDZY Toruń 2017 De revolutionibus orbium coelestium (1543) A w środku wszystkich [sfer] ma

Bardziej szczegółowo

Klasyfikacja inwestycji materialnych ze względu na ich cel:

Klasyfikacja inwestycji materialnych ze względu na ich cel: Metodologia obliczeia powyższych wartości Klasyfikacja iwestycji materialych ze względu a ich cel: mające a celu odtworzeie środków trwałych lub ich wymiaę w celu obiżeia kosztów produkcji, rozwojowe:

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Z punktu widzenia kognitywisty: język naturalny

Z punktu widzenia kognitywisty: język naturalny Z punktu widzenia kognitywisty: język naturalny Wykład I: Czym jest język? http://konderak.eu/pwk13.html Piotr Konderak kondorp@bacon.umcs.lublin.pl p. 205, Collegium Humanicum konsultacje: czwartki, 11:10-12:40

Bardziej szczegółowo

Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja

Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja Księgarnia PWN: Szymon Wróbel - Umysł, gramatyka, ewolucja WSTĘP. MIĘDZY KRYTYKĄ A OBRONĄ ROZUMU OBLICZENIOWEGO 1. INteNCjA 2. KoMPozyCjA 3. tytuł CZĘŚĆ I. WOKÓŁ METODOLOGII ROZDZIAŁ 1. PO CZYM POZNAĆ

Bardziej szczegółowo

LOGIKA Semiotyka. Robert Trypuz. 8 października 2013. Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) Semiotyka 8 października 2013 1 / 42

LOGIKA Semiotyka. Robert Trypuz. 8 października 2013. Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) Semiotyka 8 października 2013 1 / 42 LOGIKA Semiotyka Robert Trypuz Katedra Logiki KUL 8 paździerika 2013 Robert Trypuz (Katedra Logiki) Semiotyka 8 paździerika 2013 1 / 42 Pla wykładu 1 Semiotyka jako auka 2 Zak 3 Język (w semiotyce) 4 Semiotycze

Bardziej szczegółowo

Kognitywistyka, poznanie, język. Uwagi wprowadzające.

Kognitywistyka, poznanie, język. Uwagi wprowadzające. Wykład I: Elementy kognitywistyki: język naturalny Kognitywistyka, poznanie, język. Uwagi wprowadzające. Po raz pierwszy w historii można coś napisać o instynkcie uczenia się, mówienia i rozumienia języka.

Bardziej szczegółowo

Jak skutecznie reklamować towary konsumpcyjne

Jak skutecznie reklamować towary konsumpcyjne K Stowarzyszeie Kosumetów Polskich Jak skuteczie reklamować towary kosumpcyje HALO, KONSUMENT! Chcesz pozać swoje praw a? Szukasz pomoc y? ZADZWOŃ DO INFOLINII KONSUMENCKIEJ BEZPŁATNY TELEFON 0 800 800

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIII, 30.05.06 STATYSTYKA BAYESOWSKA Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Wytwarzanie energii odnawialnej

Wytwarzanie energii odnawialnej Adrzej Nocuñ Waldemar Ostrowski Adrzej Rabszty Miros³aw bik Eugeiusz Miklas B³a ej yp Wytwarzaie eergii odawialej poprzez współspalaie biomasy z paliwami podstawowymi w PKE SA W celu osi¹giêcia zawartego

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223

Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223 Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Podstawy chemii. Natura pomiaru. masa 20 ± 1 g

Podstawy chemii. Natura pomiaru. masa 20 ± 1 g Podstawy chemii ) Sposoby badań obiektów (6 h) pomiar i jego atura klasycza aaliza jakościowa i ilościowa obliczeia rówowagi i ph metody aalizy promieiowaie elektromagetycze kwatowa atura atomu oddziaływaie

Bardziej szczegółowo

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej

3. Tworzenie próby, błąd przypadkowy (próbkowania) 5. Błąd standardowy średniej arytmetycznej PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elemety kombiatoryki 2. Zmiee losowe i ich rozkłady 3. Populacje i próby daych, estymacja parametrów 4. Testowaie hipotez 5. Testy parametrycze 6. Testy

Bardziej szczegółowo

Umysł-język-świat 2012

Umysł-język-świat 2012 Umysł-język-świat 2012 Wykład II: Od behawioryzmu lingwistycznego do kognitywizmu w językoznawstwie Język. Wybrane ujęcia [Skinner, Watson i behawioryzm] Język jest zespołem reakcji na określonego typu

Bardziej szczegółowo

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2

Metoda łączona. Wykład 7 Dwie niezależne próby. Standardowy błąd dla różnicy dwóch średnich. Metoda zwykła (niełączona) n2 2 Wykład 7 Dwie iezależe próby Często porówujemy wartości pewej zmieej w dwóch populacjach. Przykłady: Grupa zabiegowa i kotrola Lekarstwo a placebo Pacjeci biorący dwa podobe lekarstwa Mężczyźi a kobiety

Bardziej szczegółowo

2.1. Studium przypadku 1

2.1. Studium przypadku 1 Uogóliaie wyików Filip Chybalski.. Studium przypadku Opis problemu Przedsiębiorstwo ŚRUBEX zajmuje się produkcją wyrobów metalowych i w jego szerokim asortymecie domiują różego rodzaju śrubki i wkręty.

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

D-3365-2010. Liczy się każdy moment RODZINA KAMER TERMOWIZYJNYCH DRÄGER UCF 6000 DRÄGER UCF 7000 DRÄGER UCF 9000

D-3365-2010. Liczy się każdy moment RODZINA KAMER TERMOWIZYJNYCH DRÄGER UCF 6000 DRÄGER UCF 7000 DRÄGER UCF 9000 D-3365-2010 Liczy się każdy momet RODZINA KAMER TERMOWIZYJNYCH DRÄGER UCF 6000 DRÄGER UCF 7000 DRÄGER UCF 9000 02 RODZINA KAMER TERMOWIZYJNYCH DRÄGER W skupieiu podchodząc do zagrożeia D-3388-2010 03 Czy

Bardziej szczegółowo

ANALIZA DANYCH DYSKRETNYCH

ANALIZA DANYCH DYSKRETNYCH ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

profi-air 250 / 400 touch Nowoczesne centrale rekuperacyjne do wentylacji pomieszczeń mieszkalnych

profi-air 250 / 400 touch Nowoczesne centrale rekuperacyjne do wentylacji pomieszczeń mieszkalnych profi-air 250 / 400 touch Nowoczese cetrale rekuperacyje do wetylacji pomieszczeń mieszkalych SYSTEMY ODWADNIAJĄ CE SYSTEMY ELEKTRYCZNE INSTALACJE WEWNĘTRZNE PRODUKTY DLA PRZEMYSŁU Nowoczesa techologia

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych w zakresie materiału przedstawioego a wykładzie orgaizacyjym Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli doświadczeie,

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem)

D. Miszczyńska, M.Miszczyński KBO UŁ, Badania operacyjne (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assignment Problem) D. Miszczyńska, M.Miszczyński KBO UŁ, Badaia operacyje (wykład 6 _ZP) [1] ZAGADNIENIE PRZYDZIAŁU (ZP) (Assigmet Problem) Bliskim "krewiakiem" ZT (w sesie podobieństwa modelu decyzyjego) jest zagadieie

Bardziej szczegółowo

Urządzenia wej.-wyj. Plan (1) Plan (2) Właściwości urządzeń wejścia-wyjścia (2) Właściwości urządzeń wejścia-wyjścia (1)

Urządzenia wej.-wyj. Plan (1) Plan (2) Właściwości urządzeń wejścia-wyjścia (2) Właściwości urządzeń wejścia-wyjścia (1) Pla () Urządzeia wej.-wyj.. Rodzaje ń wejścia-wyjścia 2. Struktura mechaizmu wejścia-wyjścia a) sterowik ia b) moduł sterujący c) podsystem wejścia-wyjścia 3. Miejsce ń wejścia-wyjścia w architekturze

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechika Pozańska Temat: Laboratorium z termodyamiki Aaliza składu spali powstałych przy spalaiu paliw gazowych oraz pomiar ich prędkości przepływu za pomocą Dopplerowskiego Aemometru Laserowego (LDA)

Bardziej szczegółowo

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)

Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I) Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod

Bardziej szczegółowo

Nowe kierunki w zarządzaniu. Warszawa: WAiP, s Kostera, M. (2003/2005) Antropologia organizacji. Warszawa: PWN.

Nowe kierunki w zarządzaniu. Warszawa: WAiP, s Kostera, M. (2003/2005) Antropologia organizacji. Warszawa: PWN. Kostera, M. (2008) Wprowadzenie, w: Kostera, M. (red.) Nowe kierunki w zarządzaniu. Warszawa: WAiP, s. 17-30. Kostera, M. (2003/2005) Antropologia organizacji. Warszawa: PWN. Podsystemy społeczne Kultura

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematycza Aa Jaicka wykład XIV, 06.06.06 STATYSTYKA BAYESOWSKA CD. Pla a dzisiaj. Statystyka Bayesowska rozkłady a priori i a posteriori estymacja Bayesowska: Bayesowski Estymator Największej

Bardziej szczegółowo

Z punktu widzenia kognitywisty: język naturalny

Z punktu widzenia kognitywisty: język naturalny Z punktu widzenia kognitywisty: język naturalny Wykład III: Język: od syntaktyki do semantyki (od gramatyki do znaczeń) Gramatyka struktur frazowych GSF to drugi, mocniejszy z trzech modeli opisu języka

Bardziej szczegółowo

Kognitywny przewrót w lingwistyce

Kognitywny przewrót w lingwistyce Uniwersytet Kardynała Stefana Wyszyńskiego 1 Kognitywna rewolucja w lingwistyce l. 70. i 80. 2 3 4 Główne założenia kognitywizmu w lingwistyce 1. Lingwistyka jako jedna z nauk kognitywnych; nieautonomiczność

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA?

EKONOMETRIA. Temat wykładu: Co to jest model ekonometryczny? Dobór zmiennych objaśniających w modelu ekonometrycznym CZYM ZAJMUJE SIĘ EKONOMETRIA? EKONOMETRIA Temat wykładu: Co to jest model ekoometryczy? Dobór zmieych objaśiających w modelu ekoometryczym Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapata Tarapata@isi.wat..wat.edu.pl http://

Bardziej szczegółowo

Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk

Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk Filozofia, Pedagogika, Wykład I - Miejsce filozofii wśród innych nauk 10 października 2009 Plan wykładu Czym jest filozofia 1 Czym jest filozofia 2 Filozoficzna geneza nauk szczegółowych - przykłady Znaczenie

Bardziej szczegółowo

Konica Minolta Optimized Print Services (OPS) Oszczędzaj czas. Poprawiaj efektywność. Stabilizuj koszty. OPS firmy Konica Minolta

Konica Minolta Optimized Print Services (OPS) Oszczędzaj czas. Poprawiaj efektywność. Stabilizuj koszty. OPS firmy Konica Minolta Koica Miolta Optimized Prit Services (OPS) Oszczędzaj czas. Poprawiaj efektywość. Stabilizuj koszty. OPS firmy Koica Miolta Optimized Prit Services OPS Najlepszą metodą przewidywaia przyszłości jest jej

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Główne tezy Ferdinanda de Saussure a

Główne tezy Ferdinanda de Saussure a Uniwersytet Kardynała Stefana Wyszyńskiego 1 Paradoksy życia i twórczości Ferdinanda de Saussure a 2 3 studia w Genewie (fizyka, chemia, filozofia, historia sztuki, gramatyka grecka i łacińska), Lipsku

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Wstęp do kognitywistyki. Wykład 8/9: Trwałe reprezentacje mentalne; Schematy

Wstęp do kognitywistyki. Wykład 8/9: Trwałe reprezentacje mentalne; Schematy Wstęp do kognitywistyki Wykład 8/9: Trwałe reprezentacje mentalne; Schematy Reprezentacje trwałe Pojęcia poznawcza reprezentacja świata, schematyczne reprezentacje zbioru obiektów, np. kategorii naturalnych,

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Zastosowania w transporcie pasażerskim. Podzespoły i systemy HMI

Zastosowania w transporcie pasażerskim. Podzespoły i systemy HMI EAO Ekspert w dziedziie iterfejsów człowiek-maszya Zastosowaia w trasporcie pasażerskim Podzespoły i systemy HMI www. eao.com/catalogues EAO Parter dla przemysłu trasportowego Foto: SBB Systemy operacyje

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Badanie efektu Halla w półprzewodniku typu n

Badanie efektu Halla w półprzewodniku typu n Badaie efektu alla w ółrzewodiku tyu 35.. Zasada ćwiczeia W ćwiczeiu baday jest oór elektryczy i aięcie alla w rostoadłościeej róbce kryształu germau w fukcji atężeia rądu, ola magetyczego i temeratury.

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017

Modele tendencji rozwojowej STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 18 listopada 2017 STATYSTYKA OPISOWA Dr Alia Gleska Istytut Matematyki WE PP 18 listopada 2017 1 Metoda aalitycza Metoda aalitycza przyjmujemy założeie, że zmiay zjawiska w czasie moża przedstawić jako fukcję zmieej czasowej

Bardziej szczegółowo

Teorie kompetencji komunikacyjnej rok akademicki 2014/2015 semestr letni. Temat 4:

Teorie kompetencji komunikacyjnej rok akademicki 2014/2015 semestr letni. Temat 4: Teorie kompetencji komunikacyjnej rok akademicki 2014/2015 semestr letni Temat 4: M. Tomasello o rozwoju języka i zdolności komunikacyjnych (3): społeczno-pragmatyczna teoria nabywania języka oraz koncepcja

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

18 Powikłania w leczeniu endodontycznym

18 Powikłania w leczeniu endodontycznym 348 Rozdział 18 Powikłaia w leczeiu edodotyczym rozdział 18 Powikłaia w leczeiu edodotyczym s Mahmoud Torabiejad i Roald R. Lemo tematy do auki Po przeczytaiu tego rozdziału czytelik powiie umieć: 1. rozpozać

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI

Bardziej szczegółowo

ACO Tram. Kanały ACO Tram System zastrzeżony patentem

ACO Tram. Kanały ACO Tram System zastrzeżony patentem Kaały ACO Tram System zastrzeżoy patetem Dla lepszego podziału przestrzei miejskiej Ambicją wielkich aglomeracji jest zapewieie trwałej rówowagi pomiędzy potrzebą mobilości mieszkańców a ochroą ich środowiska

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Szeregi liczbowe

Zadania z analizy matematycznej - sem. I Szeregi liczbowe Zadaia z aalizy matematyczej - sem. I Szeregi liczbowe Defiicja szereg ciąg sum częściowyc. Szeregiem azywamy parę uporządkowaą a ) S ) ) ciągów gdzie: ciąg a ) ciąg S ) jest day jest ciągiem sum częściowych

Bardziej szczegółowo

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu

Optymalizacja sieci powiązań układu nadrzędnego grupy kopalń ze względu na koszty transportu dr hab. iż. KRYSTIAN KALINOWSKI WSIiZ w Bielsku Białej, Politechika Śląska dr iż. ROMAN KAULA Politechika Śląska Optymalizacja sieci powiązań układu adrzędego grupy kopalń ze względu a koszty trasportu

Bardziej szczegółowo

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7,

Zmienna losowa N ma rozkład ujemny dwumianowy z parametrami (, q) = 7, Matematyka ubezpieczeń majątkowych.0.008 r. Zadaie. r, Zmiea losowa N ma rozkład ujemy dwumiaowy z parametrami (, q), tz.: Pr( N k) (.5 + k) (.5) k! Γ Γ * Niech k ozacza taką liczbę aturalą, że: * k if{

Bardziej szczegółowo

Metody numeryczne. Marek Lefik. Wykład 1 Studia doktoranckie

Metody numeryczne. Marek Lefik. Wykład 1 Studia doktoranckie Metody umerycze Marek Lefik Wykład 1 Studia doktorackie 01-013 Metody umerycze: wstęp ogóly Czemu służą MN Rozwiązaia symbolicze zagadień brzegowych dla skomplikowaej geometrii ie jest możliwe Rozwiązaia

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

KULTURA JAKO ZMIENNA WEWNĘTRZNA. związek efektywności i kultury organizacyjnej

KULTURA JAKO ZMIENNA WEWNĘTRZNA. związek efektywności i kultury organizacyjnej KULTURA JAKO ZMIENNA NIEZALEŻNA - narodowe style zarządzania - podobieństwa i różnice w sposobie zarządzania w różnych krajach związek efektywności i kultury narodowej Oprac. na podst. Smircich (1983).

Bardziej szczegółowo

Psychologia procesów poznawczych Kod przedmiotu

Psychologia procesów poznawczych Kod przedmiotu Psychologia procesów poznawczych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Psychologia procesów poznawczych Kod przedmiotu 14.4-WP-PSChM-PPPoz-Ć-S14_pNadGen98ION Wydział Kierunek Wydział Pedagogiki,

Bardziej szczegółowo

Elementy kognitywistyki III: Modele i architektury poznawcze

Elementy kognitywistyki III: Modele i architektury poznawcze Elementy kognitywistyki III: Modele i architektury poznawcze Wykład II: Modele pojęciowe Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe) przeformułowanie

Bardziej szczegółowo

Andrzej Pogorzelski Materiały pomocnicze do studiowania przedmiotu FINANSE PRZEDSIEBIORSTWA

Andrzej Pogorzelski Materiały pomocnicze do studiowania przedmiotu FINANSE PRZEDSIEBIORSTWA . CHARAKTERYSTYKA PIENIĄDZA JAKO TWORZYWA FINANSÓW.. Fukcje pieiądza Najwygodiejszym sposobem defiiowaia pieiądza jest wymieieie jego główych, klasyczych fukcji. I tak pieiądz jest: mierikiem wartości

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Jerzy Bobryk. Transhumanizm a osłabiona świadomość semiotyczna

Jerzy Bobryk. Transhumanizm a osłabiona świadomość semiotyczna Jerzy Bobryk Transhumanizm a osłabiona świadomość semiotyczna Co to jest osłabiona świadomość semiotyczna Terminem tym oznaczam fałszywą lub niepełną świadomość użytkowników znaków i symboli dotyczącą

Bardziej szczegółowo

Przedmiot i zakres językoznawstwa.jak można badać język?

Przedmiot i zakres językoznawstwa.jak można badać język? Przedmiot i zakres językoznawstwa. Jak można badać język? Uniwersytet Kardynała Stefana Wyszyńskiego 1 Przedmiot językoznawstwa 2 Ferdinand de Saussure ojciec językoznawstwa Cours de linguistique générale

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014. Tomasz Zapart * A C T A N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 2(300), 2014 Toasz Zapart * CZYNNIKI WPŁYWAJĄCE NA WSKAŹNIK SZKODOWOŚCI ZE SZCZEGÓLNYM WZGLĘDNIENIEM BEZPIECZENIA FLOTY POJAZDÓW 1.

Bardziej szczegółowo

WSZECHNICA POLSKA. SZKOŁA WYŻSZA TWP w Warszawie WSTĘP DO JĘZYKOZNAWSTWA FILOLOGIA. 26 godzin wykładu

WSZECHNICA POLSKA. SZKOŁA WYŻSZA TWP w Warszawie WSTĘP DO JĘZYKOZNAWSTWA FILOLOGIA. 26 godzin wykładu WSZECHNICA POLSKA. SZKOŁA WYŻSZA TWP w Warszawie WSTĘP DO JĘZYKOZNAWSTWA FILOLOGIA Semestr zimowy, rok akad. 2013/ 2014 26 godzin wykładu Tryb zaliczenia: egzamin pisemny w sesji zimowej (luty 2014) Odpowiedzialna

Bardziej szczegółowo

Statystyczny opis danych - parametry

Statystyczny opis danych - parametry Statystyczy opis daych - parametry Ozaczeia żółty owe pojęcie czerwoy, podkreśleie uwaga * materiał adobowiązkowy Aa Rajfura, Matematyka i statystyka matematycza a kieruku Rolictwo SGGW Zagadieia. Idea

Bardziej szczegółowo

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień.

Metoda analizy hierarchii Saaty ego Ważnym problemem podejmowania decyzji optymalizowanej jest często występująca hierarchiczność zagadnień. Metoda aalizy hierarchii Saaty ego Ważym problemem podejmowaia decyzji optymalizowaej jest często występująca hierarchiczość zagadień. Istieje wiele heurystyczych podejść do rozwiązaia tego problemu, jedak

Bardziej szczegółowo

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej

Opracowanie danych pomiarowych. dla studentów realizujących program Pracowni Fizycznej Opracowaie daych pomiarowych dla studetów realizujących program Pracowi Fizyczej Pomiar Działaie mające a celu wyzaczeie wielkości mierzoej.. Do pomiarów stosuje się przyrządy pomiarowe proste lub złożoe.

Bardziej szczegółowo

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia

Plan wykładu. Analiza danych Wykład 1: Statystyka opisowa. Literatura. Podstawowe pojęcia Pla wykładu Aaliza daych Wykład : Statystyka opisowa. Małgorzata Krętowska Wydział Iformatyki Politechika Białostocka. Statystyka opisowa.. Estymacja puktowa. Własości estymatorów.. Rozkłady statystyk

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

SafeTest 60 Prosty, solidny i ekonomiczny tester bezpieczeństwa elektrycznego urządzeń medycznych.

SafeTest 60 Prosty, solidny i ekonomiczny tester bezpieczeństwa elektrycznego urządzeń medycznych. SafeTest 60 Prosty, solidy i ekoomiczy tester bezpieczeństwa elektryczego urządzeń medyczych. Rigel SafeTest 60 to solidy, iezawody, medyczy aalizator bezpieczeństwa elektryczego. Idealy do testowaia dużej

Bardziej szczegółowo

KULTURA. Prof. dr hab. Monika Kostera Wydział Zarządzania UW

KULTURA. Prof. dr hab. Monika Kostera Wydział Zarządzania UW KULTURA Sposoby rozumienia kultury KULTURA JAKO ZMIENNA NIEZALEŻNA KULTURA JAKO ZMIENNA WEWNĘTRZNA KULTURA JAKO METAFORA RDZENNA stan stan proces narodowe style zarządzania podobieństwa i różnice w sposobie

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/

Bardziej szczegółowo

Załącznik Nr 1 KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Seminarium dyplomowe. 2. KIERUNEK: filologia, specjalność filologia angielska

Załącznik Nr 1 KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Seminarium dyplomowe. 2. KIERUNEK: filologia, specjalność filologia angielska KARTA PRZEDMIOTU Załącznik Nr 1 1. NAZWA PRZEDMIOTU: Seminarium dyplomowe 2. KIERUNEK: filologia, specjalność filologia angielska 3. POZIOM STUDIÓW: studia pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa

Analiza matematyczna i algebra liniowa Aaliza matematycza i algebra liiowa Materiały pomocicze dla studetów do wyładów Rachue różiczowy ucji wielu zmieych. Pochode cząstowe i ich iterpretacja eoomicza. Estrema loale. Metoda ajmiejszych wadratów.

Bardziej szczegółowo

Parametryczne Testy Istotności

Parametryczne Testy Istotności Parametrycze Testy Istotości Wzory Parametrycze testy istotości schemat postępowaia pukt po pukcie Formułujemy hipotezę główą H odośie jakiegoś parametru w populacji geeralej Hipoteza H ma ajczęściej postać

Bardziej szczegółowo

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora

Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo