Adaptacyjne siatki numeryczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Adaptacyjne siatki numeryczne"

Transkrypt

1 Adatacyjne siatki numeryczne Grzegorz Olszanowski, Rafał Ogrodowczyk Katedra Informatyki, Państwowa Wyższa Szkoła Zawodowa w Chełmie, -100 Chełm, ul. Pocztowa 54 Streszczenie W racy tej został rzestawiona idea adatacyjnych siatek numerycznych z uwzględnieniem algorytmów zagęszczenia/rozrzedzenia. Zamieszczone są również wyniki testów imlementacji AMR w akiecie FLASH dla rzykładu arkady w koronie słonecznej. Abstract In this aier we describe the idea of adative mesh refinement. We resent numerical test illustrating refinement/ derefinement of mesh. 1. Wstę Problemy ówczesnej nauki wymagają modelowania złożonych zjawisk fizycznych, a jedynie roste zagadnienia o nieskomlikowanych właściwościach dają się rozwiązać metodami analitycznymi. Do bardziej skomlikowanych rzyadków używa się symulacji komuterowych. Ich wykonanie z żądaną dokładnością imlikuje zwiększeniem czasu symulacji i złożoności obliczeniowej. Obecnie znane są metody owalające na znaczą redukcję wymagań modelu numerycznego badanego roblemu. Jedną z nich są adatacyjne siatki numeryczne (Adative Mesh Refinement), zaewniające zniwelowanie błędów numerycznych w obszarach o dużej zmienności analizowanych wielkości. Doskonale nadające się one do modelowania zagadnień związanych z fizyką Słońca, które to ze względu na rozmiary rzeczywiste i złożoność zjawisk należy do jednych z najbardziej fascynujących niekomletnie oisanych rzez naukę. Tworząc model zjawiska fizycznego definiujemy dyskretny obszar symulacji siatkę numeryczną. W nieadatacyjnych siatkach unkty obliczeniowe ustalane są rzed rozoczęciem obliczeń i ich ołożenia nie zmieniają się w czasie, mimo, iż wymagałaby tego dokładność obliczeń. AMR umożliwia dokonywanie dynamicznego zagęszczenia/rozrzedzenia siatki numerycznej w zależności od zmian badanych wielkości fizycznych. W unkcie drugim oisujemy historię i ideę adatacyjnych siatek numerycznych z uwzględnieniem kryterium zagęszczania. Punkt trzeci stanowi krótki ois modelu numerycznego, który osłużył nam do testów. Wyniki testu i konkluzje zawarte są w unktach czwartym i iątym.

2 . Adative Mesh Refinement (AMR) Historia adatacyjnych siatek numerycznych rozoczęła się w 1984 roku, kiedy to M. Berger i J. Oliver rzedstawili racę dotyczącą użycia siatki o strukturze hierarchicznej do rozwiązywania hierbolicznych cząstkowych równań różniczkowych[1]. Siatki te zwane są AMR. Obecnie idea adatacyjnych siatek numerycznych jest wykorzystywana w wielu obszarach działalności naukowej, rzytaczając tu chociażby niektóre z nich: ois dynamiki gazów, rozwiązywanie równań Poissona, Helmholtz, rzyadek ściśliwego i nieściśliwego rzeływu oisywanego zależnością Navier-Stokes a czy symulacje numeryczne rozchodzenia się fal w lazmie słonecznej. Została ona zaimlementowana w wielu akietach wsomagających modelowanie numeryczne takich jak CLAWPACK[] czy FLASH Code[3]..1. Imlementacja AMR we FLASH Code W naszych badaniach naukowych wykorzystujemy moduł PARAMESH[4], który został zaimlementowany we FLASH Code. Zawiera on zestaw rocedur umożliwiających zagęszczenie/rozrzedzenie siatek numerycznych oraz koordynację tego rocesu w systemach równoległych. Algorytmy wykorzystane w rocedurach zostały zaadotowane z rac P. Löhnera [5] i bazują one na związku (1) warunkującym roces dynamicznych zmian wygenerowanej siatki oczątkowej. Kryterium zagęszczenia siatki numerycznej (E i ) zostało zdefiniowane jako druga ochodna znormalizowana o średnim gradiencie wartości zmiennej testowej w rozatrywanym bloku. W rzyadku jednowymiarowej siatki E i jest oisywane: ui+ 1 ui + ui 1 Ei =, (1) u u + u u + ε u u + u i+ 1 i i i 1 [ ] gdzie u i jest wartością zmiennej testową w i tej komórce. Ostatni człon mianownika zaobiega uwzględnianiu zmian u i, których wartość nie rzekracza stałej ε określanej w liku konfiguracyjnym roblemu. Z rozważań [3] analitycznych wynika, że wielkość E i oisana równaniem (1) jest dostatecznie czuła w wykrywaniu wszelkich nieciągłości i zmian kształtu funkcji oisującej wielkość u i. Uogólniając zależność (1) do trzech wymiarów otrzymujemy: i+ 1 i i 1 E i1ii3 = u i+ 1/ u + u i 1/ + ε u, () gdzie sumowanie odbywa się o wszystkich wsółrzędnych kierunkowych, a ochodna cząstkowa wyliczana jest z uwzględnieniem wartości zmiennej u i w komórce oznaczonej indeksami i 1 i i 3. W zestawie rocedur PARAMESH zostały wykorzystane schematy zagęszczenia siatki numerycznej oisywane w racach [1],[6].W odejściu tym jako odstawową jednostką siatki uważamy blok, rozumiany jako zbiór komórek, rozważanych w geometrii kartezjańskiej. Każda komórka oisywana jest rzez zestaw arametrów: numer rocesora, na którym wykonywane są związane z nią obliczenia, numer bloku w skład, którego wchodzi

3 oraz wsółrzędne określające ołożenie jednostki. Ze względu na hierarchiczną strukturę adatacyjnych siatek fizyczne rozmiary bloków są zróżnicowane (Rys 1). Utworzeniem bloków otomnych kierują dwie odstawowe zasady: rozmiary nowotworzonego bloku stanowią ołowę rzestrzennych wymiarów bloku rodzicielskiego w każdym z kierunków oraz wyełniają one całkowicie objętość bloku rodzicielskiego nie nakładając się na siebie. W ten sosób możemy otrzymać w rzyadku d wymiarów od 0 do d bloków otomnych. Zgodnie z owyższym, w dwuwymiarowym rzyadku, w każdym etaie zagęszczenia możemy otrzymać od 0 do 4 bloków z każdego bloku rodzicielskiego, co zostało ilustrowane na Rys 1. Rys.1 Schemat hierarchicznej struktury drzewiastej adatacyjnej siatki numerycznej wykorzystanej w module PARAMESH akietu FLASH z uwzględnieniem odział na bloki i oziomy zagęszczenia. Liczbę komórek, we wszystkich rozatrywanych kierunkach wchodzących w skład bloku, definiuje użytkownik, rzyisując wartości oczątkowe arametrom w liku konfiguracyjnym roblemu. Dodatkowo każdy z bloków otoczony jest rzez komórki osłaniające 1 zawierające informacje o wartości zmiennej testowej u i w subjednostkch sąsiadujących bloków lub warunkach brzegowych rozatrywanego rocesu (rys. ). Jeśli komórki osłaniające znajdują się na tym samy oziomie zagęszczenia, co blok sąsiedni ich wartości są rzeisywane z komórek rzyległego bloku, gdy ich oziomy są różne ich wartość jest interolowana. 1 ang. guard cells ang level of refinement

4 Rys. Schemat bloku adatacyjnej siatki numerycznej z komórkami osłaniającymi. Szarym kolorem oznaczono komórki bloku, a białym komórki osłaniające. Zbiór bloków składających się na obszar symulacji dzielony jest omiędzy autonomiczne jednostki obliczeniowe wchodzące w skład równoległego systemu komuterowego, rzy czym ojedynczy blok nie może zostać odzielony. Jednostki te odejmują niezależne decyzje o zwiększeniu/zmniejszeniu odległej im liczby bloków zgodnie z zależnością (). Zagęszczenie rowadzi do utworzenia od 0 do d bloków otomnych, odczas gdy rozrzedzenie ociąga za sobą destrukcje bloku wraz z jego rodzeństwem. Powyższe zmiany, często tymczasowe, umieszczane są w amięci odręcznej, o ich akcetacji tak utworzona bloki rozmieszczane są w strukturze rzestrzennej badanego roblemu zgodnie z algorytmem wyznaczania krzywej Morton a [7]. 3. Model numeryczny W celu uwidocznienia właściwości adatacyjnych siatek numerycznych rzerowadziliśmy test, w którym symulowaliśmy rocesy falowe w koronie słonecznej. W naszych rozważaniach badaliśmy rzeływ lazmy oisany zestawem równań magnetohydrodynamicznych (MHD)[8]: ρ + ( ρv) = 0, (3) V 1 ρ + ρ( V ) V = + ( B) B, µ (4) + ( V) = ( γ 1) V, (5) B = ( V B), (6) B = 0, (7) gdzie ρ gęstość, V jest wektorem rędkości lazmy, a oznacza ciśnienie lazmy W szczególności analizowaliśmy dwuwymiarowy model arkady, oisany w racy [9], którego stan równowagi oisany był zależnościami: x y x y y B x = B0 cos ex, B y = B0 sin ex, ρ ( y) = ρ 0 ex. Λ Λ Λ Λ Λ (8) B 0 oznacza wartość indukcji ola magnetycznego u odstawy arkady (y=0), Λ arametr określający wysokość arkady, zaś ρ 0 jest wartością oczątkową gęstości. Powyższy stan równowagi został zaburzony imulsami w ciśnieniu i gęstości, które odowiednio oisują związki: ( x x ) ( x, y, t 0) = Ae ( x x ) ( x, y, t 0) = A e [ / w] [ ( y y ) w] 0 0 / = e, (9) [ / w] [ ( y y ) w] 0 0 / ρ, (10) = ρ e

5 gdzie A i A ρ oznaczają odowiednie amlitudy imulsu, x 0 jest miejscem wygenerowania imulsu, zaś w jest szerokością imulsu. 4. Rezultaty W owyższym zagadnieniu zmienną testową u i, jest gęstość ρ. Przerowadzając symulację numeryczną we FLASH-u otrzymaliśmy nastęujące wyniki, które rzedstawia oniższa tabela Tab. 1. a) b) c) d) e) Tab. 1 Diagramy rzedstawiające kolejne etay siatki numerycznej

6 Na oszczególnych diagramach w Tab1 rzedstawione są kolejne etay zagęszczanie siatki numerycznej. W obszarach o dużym gradiencie gęstości ρ siatka ulega zagęszczeniu, zaś w miejscach o zbliżonych wartościach gęstości omiędzy sąsiednimi blokami ulega rozrzedzeniu. 5. Podsumowanie Adatacyjne siatki numeryczne są narzędziem w znacznym stoniu oszerzającym obszary badawcze. Ich zastosowanie umożliwia skrócenie czasu symulacji numerycznych, zwiększenie dokładności obliczeń w obszarach o dużym gradiencie rozatrywanych wielkości, oszerzeniu obszaru symulacji, co zbliża badania numeryczne do rzeczywistych zjawisk fizycznych obserwowanych w rzyrodzie. AMR doczekał się wielu imlementacji w akietach orogramowania naukowego. Koncecja ta została zaadotowana niemal do wszystkich subdziedzin fizyki. Przerowadzone testy modelujące zjawiska w koronie słonecznej otwierdziły oisane w unktach 1- własności AMR. Stanowi to odstawę do dalszych badań i rozwoju tej tematyki "The software used in this work was in art develoed by the DOE-suorted ASCI/Alliance Center for Astrohysical Thermonuclear Flashes at the University of Chicago." Literatura [1] M. Berger and J. Oliger. Adative mesh refinement for hyerbolic artial differential euations. Journal of Comutational Physics, 53: , [] htt:// [3] htt://flash.uchicago.edu/ [4] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda defainchtein and Charles Packer, "PARAMESH : A arallel adative mesh refinement community toolkit.", Comuter Physics Communications, vol. 16, , (000). [5] R. Löhner - An Adative Finite Element Scheme for Transient Problems in CFD; Com.Meth.Al.Mech.Eng. 61, (1987). [6] M. Berger and P. Colella. Local adative mesh refinement for shock hydrodynamics. Journal of Comutational Physics, 8(1):64--84, May Lawrence Livermore Laboratory Reort No. UCRL [7] Warren M. S., Salmon J. K., Astrohysical N-body simulations using hierarchical tree data structures, Proceedings of the 199 ACM/IEEE conference on Suercomuting [8] Murawski K., Analytical and numerical methods for wave roagation in fluids, World Scientific, Singaore (00) [9] R. Oliver, K. Murawski, J. L. Ballester, Numerical simulations of imulsively generated MHD waves in a otential coronal arcade, Astron. Astrohys. 330, 76 (1998).

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe

J. Szantyr - Wykład nr 30 Podstawy gazodynamiki II. Prostopadłe fale uderzeniowe Proagacja zaburzeń o skończonej (dużej) amlitudzie. W takim rzyadku nie jest możliwa linearyzacja równań zachowania. Rozwiązanie ich w ostaci nieliniowej jest skomlikowane i rowadzi do nastęujących zależności

Bardziej szczegółowo

Komentarz 3 do fcs. Drgania sieci krystalicznej. I ciepło właściwe ciała stałego.

Komentarz 3 do fcs. Drgania sieci krystalicznej. I ciepło właściwe ciała stałego. Komentarz do fcs. Drgania sieci krystalicznej. I cieło właściwe ciała stałego. Drgania kryształu możemy rozważać z dwóch unktów widzenia. Pierwszy to makroskoowy, gdy długość fali jest znacznie większa

Bardziej szczegółowo

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się PŁYNY RZECZYWISTE Płyny rzeczywiste Przeływ laminarny Prawo tarcia Newtona Przeływ turbulentny Oór dynamiczny Prawdoodobieństwo hydrodynamiczne Liczba Reynoldsa Politechnika Oolska Oole University of Technology

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH. W. Kollek 1 T. Mikulczyński 2 D.Nowak 3

BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH. W. Kollek 1 T. Mikulczyński 2 D.Nowak 3 VI KONFERENCJA ODLEWNICZA TECHNICAL 003 BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH BADANIA SYMULACYJNE PROCESU IMPULSOWEGO ZAGĘSZCZANIA MAS FORMIERSKICH W. Kollek 1 T. Mikulczyński

Bardziej szczegółowo

Zakres zagadnienia. Pojęcia podstawowe. Pojęcia podstawowe. Do czego słuŝą modele deformowalne. Pojęcia podstawowe

Zakres zagadnienia. Pojęcia podstawowe. Pojęcia podstawowe. Do czego słuŝą modele deformowalne. Pojęcia podstawowe Zakres zagadnienia Wrowadzenie do wsółczesnej inŝynierii Modele Deformowalne Dr inŝ. Piotr M. zczyiński Wynikiem akwizycji obrazów naturalnych są cyfrowe obrazy rastrowe: dwuwymiarowe (n. fotografia) trójwymiarowe

Bardziej szczegółowo

GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA

GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s.8-86, Gliwice 007 GLOBALNE OBLICZANIE CAŁEK PO OBSZARZE W PURC DLA DWUWYMIAROWYCH ZAGADNIEŃ BRZEGOWYCH MODELOWANYCH RÓWNANIEM NAVIERA-LAMEGO I POISSONA EUGENIUSZ

Bardziej szczegółowo

MODEL MATEMATYCZNY I ANALIZA UKŁADU NAPĘDOWEGO SILNIKA INDUKCYJNEGO Z DŁUGIM ELEMENTEM SPRĘŻYSTYM DLA PARAMETRÓW ROZŁOŻONYCH

MODEL MATEMATYCZNY I ANALIZA UKŁADU NAPĘDOWEGO SILNIKA INDUKCYJNEGO Z DŁUGIM ELEMENTEM SPRĘŻYSTYM DLA PARAMETRÓW ROZŁOŻONYCH Prace Naukowe Instytutu Maszyn, Naędów i Pomiarów Elektrycznych Nr 66 Politechniki Wrocławskiej Nr 66 Studia i Materiały Nr 3 1 Andriy CZABAN*, Marek LIS** zasada Hamiltona, równanie Euler Lagrange a,

Bardziej szczegółowo

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA

WYKŁAD 14 PROSTOPADŁA FALA UDERZENIOWA WYKŁAD 4 PROSTOPADŁA FALA UDERZENIOWA PROSTOPADŁA FALA UDERZENIOWA. ADIABATA HUGONIOTA. S 0 normal shock wave S Gazodynamika doszcza istnienie silnych nieciągłości w rzeływach gaz. Najrostszym rzyadkiem

Bardziej szczegółowo

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika

Ćwiczenia do wykładu Fizyka Statystyczna i Termodynamika Ćwiczenia do wykładu Fizyka tatystyczna i ermodynamika Prowadzący dr gata Fronczak Zestaw 5. ermodynamika rzejść fazowych: równanie lausiusa-laeyrona, własności gazu Van der Waalsa 3.1 Rozważ tyowy diagram

Bardziej szczegółowo

Rozdział 21, który przedstawia zastosowanie obliczeń wysokiej wydajności w numerycznej algebrze liniowej

Rozdział 21, który przedstawia zastosowanie obliczeń wysokiej wydajności w numerycznej algebrze liniowej Rozdział 21, który rzedstawia zastosowanie obliczeń wysokiej wydajności w numerycznej algebrze liniowej 1.0.1 Oeracje macierzowe Istotnym elementem wszelkich równoległych algorytmów macierzowych jest określenie

Bardziej szczegółowo

Analiza nośności pionowej pojedynczego pala

Analiza nośności pionowej pojedynczego pala Poradnik Inżyniera Nr 13 Aktualizacja: 09/2016 Analiza nośności ionowej ojedynczego ala Program: Plik owiązany: Pal Demo_manual_13.gi Celem niniejszego rzewodnika jest rzedstawienie wykorzystania rogramu

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. adanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

ALGORYTM STRAŻAKA W WALCE Z ROZLEWAMI OLEJOWYMI

ALGORYTM STRAŻAKA W WALCE Z ROZLEWAMI OLEJOWYMI JOLANTA MAZUREK Akademia Morska w Gdyni Katedra Matematyki ALGORYTM STRAŻAKA W WALCE Z ROZLEWAMI OLEJOWYMI W artykule rzedstawiono model wykorzystujący narzędzia matematyczne do ustalenia reguł oraz rozwiązań,

Bardziej szczegółowo

OPTYMALNE PROJEKTOWANIE ELEMENTÓW KONSTRUKCYJNYCH WYKONANYCH Z KOMPOZYTÓW WŁÓKNISTYCH

OPTYMALNE PROJEKTOWANIE ELEMENTÓW KONSTRUKCYJNYCH WYKONANYCH Z KOMPOZYTÓW WŁÓKNISTYCH Zeszyty Naukowe WSInf Vol 13, Nr 1, 2014 Elżbieta Radaszewska, Jan Turant Politechnika Łódzka Katedra Mechaniki i Informatyki Technicznej email: elzbieta.radaszewska@.lodz.l, jan.turant@.lodz.l OPTYMALNE

Bardziej szczegółowo

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu

nieciągłość parametrów przepływu przyjmuje postać płaszczyzny prostopadłej do kierunku przepływu CZĘŚĆ II DYNAMIKA GAZÓW 4 Rozdział 6 Prostoadła fala 6. Prostoadła fala Podstawowe własności: nieciągłość arametrów rzeływu rzyjmuje ostać łaszczyzny rostoadłej do kierunku rzeływu w zbieżno - rozbieżnym

Bardziej szczegółowo

ZJAWISKO SYNCHRONIZACJI DRGAŃ I WZBUDZENIA ASYNCHRONICZNEGO W OSCYLATORZE LIENARDA

ZJAWISKO SYNCHRONIZACJI DRGAŃ I WZBUDZENIA ASYNCHRONICZNEGO W OSCYLATORZE LIENARDA JAN ŁUCZKO ZJAWISKO SYNCHRONIZACJI DRGAŃ I WZBUDZENIA ASYNCHRONICZNEGO W OSCYLATORZE LIENARDA SYNCHRONIZATION OF VIBRATION AND ASYNCHRONIC EXCITATION IN LIENARD S OSCILLATOR Streszczenie Abstract W niniejszym

Bardziej szczegółowo

Roboty Przemysłowe. 1. Pozycjonowane zderzakowo manipulatory pneumatyczne wykorzystanie cyklogramu pracy do planowania cyklu pracy manipulatora

Roboty Przemysłowe. 1. Pozycjonowane zderzakowo manipulatory pneumatyczne wykorzystanie cyklogramu pracy do planowania cyklu pracy manipulatora Roboty rzemysłowe. ozycjonowane zderzakowo maniulatory neumatyczne wykorzystanie cyklogramu racy do lanowania cyklu racy maniulatora Celem ćwiczenia jest raktyczne wykorzystanie cyklogramu racy maniulatora,

Bardziej szczegółowo

5. Jednowymiarowy przepływ gazu przez dysze.

5. Jednowymiarowy przepływ gazu przez dysze. CZĘŚĆ II DYNAMIKA GAZÓW 9 rzeływ gazu rzez dysze. 5. Jednowymiarowy rzeływ gazu rzez dysze. Parametry krytyczne. 5.. Dysza zbieżna. T = c E - back ressure T c to exhauster Rys.5.. Dysza zbieżna. Równanie

Bardziej szczegółowo

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu

Instrukcja do laboratorium z fizyki budowli. Ćwiczenie: Pomiar i ocena hałasu w pomieszczeniu nstrukcja do laboratorium z fizyki budowli Ćwiczenie: Pomiar i ocena hałasu w omieszczeniu 1 1.Wrowadzenie. 1.1. Energia fali akustycznej. Podstawowym ojęciem jest moc akustyczna źródła, która jest miarą

Bardziej szczegółowo

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń

1. Model procesu krzepnięcia odlewu w formie metalowej. Przyjęty model badanego procesu wymiany ciepła składa się z następujących założeń ROK 4 Krzenięcie i zasilanie odlewów Wersja 9 Ćwicz. laboratoryjne nr 4-04-09/.05.009 BADANIE PROCESU KRZEPNIĘCIA ODLEWU W KOKILI GRUBOŚCIENNEJ PRZY MAŁEJ INTENSYWNOŚCI STYGNIĘCIA. Model rocesu krzenięcia

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

Mini-quiz 0 Mini-quiz 1

Mini-quiz 0 Mini-quiz 1 rawda fałsz Mini-quiz 0.Wielkości ekstensywne to: a rędkość kątowa b masa układu c ilość cząstek d temeratura e całkowity moment magnetyczny.. Układy otwarte: a mogą wymieniać energię z otoczeniem b mogą

Bardziej szczegółowo

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH Mgr inż. Anna GRZYMKOWSKA Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa DOI: 10.17814/mechanik.2015.7.236 DETEKCJA FAL UDERZENIOWYCH W UKŁADACH ŁOPATKOWYCH CZĘŚCI NISKOPRĘŻNYCH TURBIN PAROWYCH

Bardziej szczegółowo

3. Kinematyka podstawowe pojęcia i wielkości

3. Kinematyka podstawowe pojęcia i wielkości 3. Kinematya odstawowe ojęcia i wielości Kinematya zajmuje się oisem ruchu ciał. Ruch ciała oisujemy w ten sosób, że odajemy ołożenie tego ciała w ażdej chwili względem wybranego uładu wsółrzędnych. Porawny

Bardziej szczegółowo

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami.

Rysunek 1 Przykładowy graf stanów procesu z dyskretnymi położeniami. Procesy Markowa Proces stochastyczny { X } t t nazywamy rocesem markowowskim, jeśli dla każdego momentu t 0 rawdoodobieństwo dowolnego ołożenia systemu w rzyszłości (t>t 0 ) zależy tylko od jego ołożenia

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

Sterowanie ślizgowe zapewniające zbieżność uchybu w skończonym czasie dla napędu bezpośredniego

Sterowanie ślizgowe zapewniające zbieżność uchybu w skończonym czasie dla napędu bezpośredniego Stefan BROCK Politechnika Poznańska, Instytut Automatyki i Inżynierii Informatycznej doi:0.599/48.06.05.3 Sterowanie ślizgowe zaewniające zbieżność uchybu w skończonym czasie dla naędu bezośredniego Streszczenie.

Bardziej szczegółowo

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego

W-23 (Jaroszewicz) 20 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Bangkok, Thailand, March 011 W-3 (Jaroszewicz) 0 slajdów Na odstawie rezentacji rof. J. Rutkowskiego Fizyka kwantowa fale rawdoodobieństwa funkcja falowa aczki falowe materii zasada nieoznaczoności równanie

Bardziej szczegółowo

Laboratorium Metod i Algorytmów Sterowania Cyfrowego

Laboratorium Metod i Algorytmów Sterowania Cyfrowego Laboratorium Metod i Algorytmów Sterowania Cyfrowego Ćwiczenie 3 Dobór nastaw cyfrowych regulatorów rzemysłowych PID I. Cel ćwiczenia 1. Poznanie zasad doboru nastaw cyfrowych regulatorów rzemysłowych..

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

6 6.1 Projektowanie profili

6 6.1 Projektowanie profili 6 Niwelacja rofilów 6.1 Projektowanie rofili Niwelacja rofilów Niwelacja rofilów olega na określeniu wysokości ikiet niwelacją geometryczną, trygonometryczną lub tachimetryczną usytuowanych wzdłuŝ osi

Bardziej szczegółowo

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych

1. Parametry strumienia piaskowo-powietrznego w odlewniczych maszynach dmuchowych MATERIAŁY UZUPEŁNIAJACE DO TEMATU: POMIAR I OKREŚLENIE WARTOŚCI ŚREDNICH I CHWILOWYCH GŁÓWNYCHORAZ POMOCNICZYCH PARAMETRÓW PROCESU DMUCHOWEGO Józef Dańko. Wstę Masa wyływająca z komory nabojowej strzelarki

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

2.14. Zasada zachowania energii mechanicznej

2.14. Zasada zachowania energii mechanicznej Wykład 6 14 Zasada zachowania energii mechanicznej Informatyka 011/1 Stajesz na szczycie góry Mocujesz deskę, zakładasz gogle i zaczynasz szaleńczy zjazd W miarę jak twoja energia otencjalna zamienia się

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego.

Zapis pochodnej. Modelowanie dynamicznych systemów biocybernetycznych. Dotychczas rozważane były głownie modele biocybernetyczne typu statycznego. owanie dynamicznych systemów biocybernetycznych Wykład nr 9 z kursu Biocybernetyki dla Inżynierii Biomedycznej rowadzonego rzez Prof. Ryszarda Tadeusiewicza Dotychczas rozważane były głownie modele biocybernetyczne

Bardziej szczegółowo

Dynamiczne struktury danych: listy

Dynamiczne struktury danych: listy Dynamiczne struktury danych: listy Mirosław Mortka Zaczynając rogramować w dowolnym języku rogramowania jesteśmy zmuszeni do oanowania zasad osługiwania się odstawowymi tyami danych. Na rzykład w języku

Bardziej szczegółowo

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów

Wykład 4 Gaz doskonały, gaz półdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstępstwa gazów Wykład 4 Gaz doskonały, gaz ółdoskonały i gaz rzeczywisty Równanie stanu gazu doskonałego uniwersalna stała gazowa i stała gazowa Odstęstwa gazów rzeczywistych od gazu doskonałego: stoień ściśliwości Z

Bardziej szczegółowo

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych.

Ćwiczenie nr 3. Wyznaczanie współczynnika Joule a-thomsona wybranych gazów rzeczywistych. Termodynamika II ćwiczenia laboratoryjne Ćwiczenie nr 3 Temat: Wyznaczanie wsółczynnika Joule a-tomsona wybranyc gazów rzeczywistyc. Miejsce ćwiczeń: Laboratorium Tecnologii Gazowyc Politecniki Poznańskiej

Bardziej szczegółowo

DYNAMICZNA REAKCJA ELEMENTU RUROCIĄGU NA DZIAŁANIE FALI DETONACYJNEJ

DYNAMICZNA REAKCJA ELEMENTU RUROCIĄGU NA DZIAŁANIE FALI DETONACYJNEJ MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 38, s. 115-122, Gliwice 2009 DYNAMICZNA REAKCJA ELEMENTU RUROCIĄGU NA DZIAŁANIE FALI DETONACYJNEJ JERZY MAŁACHOWSKI Katedra Mechaniki i Informatyki Stosowanej Wojskowa

Bardziej szczegółowo

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

Matematyka z kluczem

Matematyka z kluczem Matematyka z kluczem Ois założonych osiągnięć ucznia Ogólny ois osiągnięć Ois ogólnych lanowanych osiągnięć ucznia odajemy z odziałem na oszczególne oziomy. Ułatwi to nauczycielom określenie szczegółowych

Bardziej szczegółowo

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 :

Jest to zasada zachowania energii w termodynamice - równoważność pracy i ciepła. Rozważmy proces adiabatyczny sprężania gazu od V 1 do V 2 : I zasada termodynamiki. Jest to zasada zachowania energii w termodynamice - równoważność racy i cieła. ozważmy roces adiabatyczny srężania gazu od do : dw, ad - wykonanie racy owoduje rzyrost energii wewnętrznej

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

WYRÓWNOWAŻANIE MAS W RUCHU OBROTOWYM

WYRÓWNOWAŻANIE MAS W RUCHU OBROTOWYM CZASOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISKA I ARCHITEKTURY JOURNAL OF CIVIL ENGINEERING, ENVIRONMENT AND ARCHITECTURE JCEEA, t. XXXI, z. 61 (/14), kwiecień-czerwiec 014, s. 161-17 Dariusz SZYBICKI 1 Łukasz

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

BeStCAD - Moduł INŻYNIER 1

BeStCAD - Moduł INŻYNIER 1 BeStCAD - Moduł INŻYNIER 1 Ścianki szczelne Oblicza ścianki szczelne Ikona: Polecenie: SCISZ Menu: BstInżynier Ścianki szczelne Polecenie służy do obliczania ścianek szczelnych. Wyniki obliczeń mogą być

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA I TECHNICZNA

TERMODYNAMIKA PROCESOWA I TECHNICZNA ERMODYNAMIKA PROCESOWA I ECHNICZNA Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste rzemiany termodynamiczne Prof. Antoni Kozioł, Wydział Chemiczny

Bardziej szczegółowo

Z poprzedniego wykładu:

Z poprzedniego wykładu: Z orzedniego wykładu: Człon: Ciało stałe osiadające możliwość oruszania się względem innych członów Para kinematyczna: klasy I, II, III, IV i V (względem liczby stoni swobody) Niższe i wyższe ary kinematyczne

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Systemy sterowania i wspomagania decyzji

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Systemy sterowania i wspomagania decyzji Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Systemy sterowania i wsomagania decyzji Synteza regulatora wieloobszarowego stabilizującego ołożenie wahadła

Bardziej szczegółowo

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej

TERMODYNAMIKA PROCESOWA. Wykład VI. Równania kubiczne i inne. Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej ERMODYNAMIKA PROCESOWA Wykład VI Równania kubiczne i inne Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej Komunikat Wstęne terminy egzaminu z ermodynamiki rocesowej : I termin środa 15.06.016

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKÓW KIERUNKOWYCH CHARAKTERYSTYK RUCHU POCISKÓW W BADANIACH SYMULACYJNYCH FALI TYPU N

WYZNACZANIE WSPÓŁCZYNNIKÓW KIERUNKOWYCH CHARAKTERYSTYK RUCHU POCISKÓW W BADANIACH SYMULACYJNYCH FALI TYPU N XVII Międzynarodowa Szkoła Komuterowego Wsomagania Projektowania, Wytwarzania i Eksloatacji Dr hab. inż. Jan PIETRASIEŃSKI, rof. WAT Dr inż. Dariusz RODZIK Wojskowa Akademia Techniczna Mgr inż. Stanisław

Bardziej szczegółowo

Dodatek E Transformator impulsowy Uproszczona analiza

Dodatek E Transformator impulsowy Uproszczona analiza 50 Dodatek E Transformator imulsowy Uroszczona analiza Za odstawę uroszczonej analizy transformatora imulsowego rzyjmiemy jego schemat zastęczy w wersji zredukowanej L, w której arametry strony wtórnej

Bardziej szczegółowo

Modelowanie zagadnień cieplnych: analiza porównawcza wyników programów ZSoil i AnsysFluent

Modelowanie zagadnień cieplnych: analiza porównawcza wyników programów ZSoil i AnsysFluent Piotr Olczak 1, Agata Jarosz Politechnika Krakowska 2 Modelowanie zagadnień cieplnych: analiza porównawcza wyników programów ZSoil i AnsysFluent Wprowadzenie Autorzy niniejszej pracy dokonali porównania

Bardziej szczegółowo

REPREZENTACJA HIERARCHICZNEGO GRAFU ZNAKOWAŃ Z WYKORZYSTANIEM FUNKCJI MONOTONICZNYCH

REPREZENTACJA HIERARCHICZNEGO GRAFU ZNAKOWAŃ Z WYKORZYSTANIEM FUNKCJI MONOTONICZNYCH II Konferencja Naukowa KNWS'0 "Informatyka- sztuka czy rzemios o" - czerwca 00, Z otniki Luba skie REPREZENTACJA HIERARCHICZNEGO GRAFU ZNAKOWAŃ Z WYKORZYSTANIE FUNKCJI ONOTONICZNYCH Piotr iczulski Instytut

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:

Bardziej szczegółowo

WYDAJNOŚĆ POMPOWANIA W MIESZALNIKU Z DWOMA MIESZADŁAMI NA WALE THE PUMPING EFFICIENCY IN DUAL IMPELLER AGITATOR

WYDAJNOŚĆ POMPOWANIA W MIESZALNIKU Z DWOMA MIESZADŁAMI NA WALE THE PUMPING EFFICIENCY IN DUAL IMPELLER AGITATOR ANDRZEJ DUDA, JERZY KAMIEŃSKI, JAN TALAGA * WYDAJNOŚĆ POMPOWANIA W MIESZALNIKU Z DWOMA MIESZADŁAMI NA WALE THE PUMPING EFFICIENCY IN DUAL IMPELLER AGITATOR Streszczenie W niniejszej racy rzedstawiono wyniki

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Procesy wykładniczego wzrostu i spadku (np populacja bakterii, rozpad radioaktywny, wymiana ciepła) można modelować równaniem

Bardziej szczegółowo

D. II ZASADA TERMODYNAMIKI

D. II ZASADA TERMODYNAMIKI WYKŁAD D,E D. II zasada termodynamiki E. Konsekwencje zasad termodynamiki D. II ZAADA ERMODYNAMIKI D.1. ełnienie I Zasady ermodynamiki jest warunkiem koniecznym zachodzenia jakiegokolwiek rocesu w rzyrodzie.

Bardziej szczegółowo

Wykład 3. Prawo Pascala

Wykład 3. Prawo Pascala 018-10-18 Wykład 3 Prawo Pascala Pływanie ciał Ściśliwość gazów, cieczy i ciał stałych Przemiany gazowe Równanie stanu gazu doskonałego Równanie stanu gazu van der Waalsa Przejścia fazowe materii W. Dominik

Bardziej szczegółowo

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona

Porównanie nacisków obudowy Glinik 14/35-POz na spąg obliczonych metodą analityczną i metodą Jacksona dr inż. JAN TAK Akademia Górniczo-Hutnicza im. St. Staszica w Krakowie inż. RYSZARD ŚLUSARZ Zakład Maszyn Górniczych GLINIK w Gorlicach orównanie nacisków obudowy Glinik 14/35-Oz na sąg obliczonych metodą

Bardziej szczegółowo

Modelowanie numeryczne oddziaływania pociągu na konstrukcje przytorowe

Modelowanie numeryczne oddziaływania pociągu na konstrukcje przytorowe KRÓL Roman 1 Modelowanie numeryczne oddziaływania pociągu na konstrukcje przytorowe Aerodynamika, oddziaływania pociągu, metoda objętości skończonych, CFD, konstrukcje kolejowe Streszczenie W artykule

Bardziej szczegółowo

np. dla elektronów w kryształach; V(x+d) = V(x), d - okres periodyczności = wielkość komórki elementarnej kryształu

np. dla elektronów w kryształach; V(x+d) = V(x), d - okres periodyczności = wielkość komórki elementarnej kryształu Potencjały eriodyczne n. dla elektronów w kryształach; V(x+d) V(x), d - okres eriodyczności wielkość komórki elementarnej kryształu rzyadek kryształu jednowymiarowego sieci z bazą gdy w komórce elementarnej

Bardziej szczegółowo

Model przepływu powietrza w ośrodku porowatym z uwzględnieniem wewnętrznych źródeł ciepła

Model przepływu powietrza w ośrodku porowatym z uwzględnieniem wewnętrznych źródeł ciepła 10 Prace Instytutu Mechaniki Górotworu PAN Tom 10, nr 1-4, (008), s. 10-11 Instytut Mechaniki Górotworu PAN Model rzeływu owietrza w ośrodku orowatym z uwzględnieniem wewnętrznych źródeł cieła PRZEMYSŁAW

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnia dańsa Wydział Eletrotechnii i Automatyi Katedra Inżynierii Systemów Sterowania Podstawy Automatyi Transmitancyjne schematy bloowe i zasady ich rzeształcania Materiały omocnicze do ćwiczeń termin

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015. Zadania z teleinformatyki na zawody III stopnia

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015. Zadania z teleinformatyki na zawody III stopnia EUROELEKTRA Ogólnoolska Olimiada iedzy Elektrycznej i Elektronicznej Rok szkolny 4/5 Zadania z teleinformatyki na zawody III stonia L. Zadanie. Oblicz kąt oło mocy HPB (ang. Half Por Beam idth) jednego

Bardziej szczegółowo

MECHANIK NR 3/2015 59

MECHANIK NR 3/2015 59 MECHANIK NR 3/2015 59 Bogusław PYTLAK 1 toczenie, owierzchnia mimośrodowa, tablica krzywych, srzężenie osi turning, eccentric surface, curve table, axis couling TOCZENIE POWIERZCHNI MIMOŚRODOWYCH W racy

Bardziej szczegółowo

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie

Doświadczenie Joule a i jego konsekwencje Ciepło, pojemność cieplna sens i obliczanie Praca sens i obliczanie Pierwsza zasada termodynamiki 2.2.1. Doświadczenie Joule a i jego konsekwencje 2.2.2. ieło, ojemność cielna sens i obliczanie 2.2.3. Praca sens i obliczanie 2.2.4. Energia wewnętrzna oraz entalia 2.2.5.

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie

Bardziej szczegółowo

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO

WARUNKI RÓWNOWAGI UKŁADU TERMODYNAMICZNEGO WARUNKI RÓWNOWAGI UKŁADU ERMODYNAMICZNEGO Proces termodynamiczny zachodzi doóty, doóki układ nie osiągnie stanu równowagi. W stanie równowagi odowiedni otencjał termodynamiczny układu osiąga minimum, odczas

Bardziej szczegółowo

WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ

WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ MODELOWANIE INŻYNIERSKIE ISNN 896-77X 3, s. 67-7, Gliwice 006 WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ ZBIGNIEW KOSMA BOGDAN NOGA PRZEMYSŁAW MOTYL Instytut

Bardziej szczegółowo

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi

Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne. 1. Badanie przelewu o ostrej krawędzi Metody doświadczalne w hydraulice Ćwiczenia laboratoryjne 1. Badanie rzelewu o ostrej krawędzi Wrowadzenie Przelewem nazywana jest cześć rzegrody umiejscowionej w kanale, onad którą może nastąić rzeływ.

Bardziej szczegółowo

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe:

13) Na wykresie pokazano zależność temperatury od objętości gazu A) Przemianę izotermiczną opisują krzywe: B) Przemianę izobaryczną opisują krzywe: ) Ołowiana kula o masie kilograma sada swobodnie z wysokości metrów. Który wzór służy do obliczenia jej energii na wysokości metrów? ) E=m g h B) E=m / C) E=G M m/r D) Q=c w m Δ ) Oblicz energię kulki

Bardziej szczegółowo

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO

ANALIZA ZALEśNOŚCI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA CELU I STANOWISKA OGNIOWEGO ZESZYTY NAUKOWE WSOWL Nr (148) 8 ISSN 1731-8157 Sławomir KRZYśANOWSKI ANALIZA ZALEśNOŚI KĄTA PODNIESIENIA LUFY OD WZAJEMNEGO POŁOśENIA ELU I STANOWISKA OGNIOWEGO Jednym z ierwszych etaów nauczania rzedmiotu

Bardziej szczegółowo

Specjalnościowy Obowiązkowy Polski Semestr VI

Specjalnościowy Obowiązkowy Polski Semestr VI KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016 Z-ID-607a Wybrane modele klasyfikacji i regresji Selected Models of Classification

Bardziej szczegółowo

Zjawisko Comptona opis pół relatywistyczny

Zjawisko Comptona opis pół relatywistyczny FOTON 33, Lato 06 7 Zjawisko Comtona ois ół relatywistyczny Jerzy Ginter Wydział Fizyki UW Zderzenie fotonu ze soczywającym elektronem Przy omawianiu dualizmu koruskularno-falowego jako jeden z ięknych

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII INWESTYCYJNYCH NA RYNKACH KAPITAŁOWYCH WRAZ Z ZASTOSOWANIEM WAŻONEGO UŚREDNIANIA

ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII INWESTYCYJNYCH NA RYNKACH KAPITAŁOWYCH WRAZ Z ZASTOSOWANIEM WAŻONEGO UŚREDNIANIA STUDIA INFORMATICA 2012 Volume 33 Number 2A (105) Alina MOMOT Politechnika Śląska, Instytut Informatyki Michał MOMOT Instytut Techniki i Aaratury Medycznej ITAM ADAPTACYJNE PODEJŚCIE DO TWORZENIA STRATEGII

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Jak określić stopień wykorzystania mocy elektrowni wiatrowej?

Jak określić stopień wykorzystania mocy elektrowni wiatrowej? Jak określić stoień wykorzystania mocy elektrowni wiatrowej? Autorzy: rof. dr hab. inŝ. Stanisław Gumuła, Akademia Górniczo-Hutnicza w Krakowie, mgr Agnieszka Woźniak, Państwowa WyŜsza Szkoła Zawodowa

Bardziej szczegółowo

MODELOWANIE INŻYNIERSKIE ISSN X 38, s , Gliwice 2009

MODELOWANIE INŻYNIERSKIE ISSN X 38, s , Gliwice 2009 MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 38, s. 309-319, Gliwice 2009 NUMERYCZNA METODYKA IDENTYFIKACJI MODELU CHABOCHE A NA PODSTAWIE BADAŃ EKSPERYMENTALNYCH SPECJALNYCH STRUKTUR GRANULOWANYCH ROBERT ZALEWSKI

Bardziej szczegółowo

MODELOWANIE PROCESÓW TECHNOLOGICZNYCH WYSTĘPUJĄCYCH W PIECZARKARNIACH: MODEL WYMIANY CIEPŁA I MASY

MODELOWANIE PROCESÓW TECHNOLOGICZNYCH WYSTĘPUJĄCYCH W PIECZARKARNIACH: MODEL WYMIANY CIEPŁA I MASY Inżynieria Rolnicza 5(123)/2010 MODELOWANIE PROCESÓW TECHNOLOGICZNYCH WYSTĘPUJĄCYCH W PIECZARKARNIACH: MODEL WYMIANY CIEPŁA I MASY Ewa Wacowicz, Leonard Woroncow Katedra Automatyki, Politecnika Koszalińska

Bardziej szczegółowo

MODELOWANIE SYNCHRONIZACJI ODRYWANIA SIĘ PĘCHERZY GAZOWYCH Z DWÓCH SĄSIADUJĄCYCH CYLINDRYCZNYCH DYSZ

MODELOWANIE SYNCHRONIZACJI ODRYWANIA SIĘ PĘCHERZY GAZOWYCH Z DWÓCH SĄSIADUJĄCYCH CYLINDRYCZNYCH DYSZ MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 179-186, Gliwice 2010 MODELOWANIE SYNCHRONIZACJI ODRYWANIA SIĘ PĘCHERZY GAZOWYCH Z DWÓCH SĄSIADUJĄCYCH CYLINDRYCZNYCH DYSZ ROMUALD MOSDORF, TOMASZ WYSZKOWSKI

Bardziej szczegółowo

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie nr 9

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie nr 9 Instytut Fizyki Politechniki Wrocławskiej Laboratorium Fizyki Cienkich Warstw Ćwiczenie nr 9 Wyznaczanie stałych otycznych cienkich warstw metali metodą elisometryczną Oracowanie: dr Krystyna Żukowska

Bardziej szczegółowo

Warunki i tryb rekrutacji na studia w roku akademickim 2010/2011 w Akademii Morskiej w Szczecinie

Warunki i tryb rekrutacji na studia w roku akademickim 2010/2011 w Akademii Morskiej w Szczecinie Załącznik nr 1 do Uchwały nr 10/009 Senatu Akademii Morskiej w Szczecinie z dnia 7.05.009 r. Warunki i tryb rekrutacji na studia w roku akademickim 010/011 w Akademii Morskiej w Szczecinie Niniejsze zasady

Bardziej szczegółowo

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and

Bardziej szczegółowo

Projekt 9 Obciążenia płata nośnego i usterzenia poziomego

Projekt 9 Obciążenia płata nośnego i usterzenia poziomego Projekt 9 Obciążenia łata nośnego i usterzenia oziomego Niniejszy rojekt składa się z dwóch części:. wyznaczenie obciążeń wymiarujących skrzydło,. wyznaczenie obciążeń wymiarujących usterzenie oziome,

Bardziej szczegółowo

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII MODELOWANIE INśYNIERSKIE ISSN 1896-771X 37, s. 1-2, Gliwice 29 SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII BOGDAN SAPIŃSKI 1, PAWEŁ MARTYNOWICZ

Bardziej szczegółowo

Ćwiczenie 4. Wyznaczanie poziomów dźwięku na podstawie pomiaru skorygowanego poziomu A ciśnienia akustycznego

Ćwiczenie 4. Wyznaczanie poziomów dźwięku na podstawie pomiaru skorygowanego poziomu A ciśnienia akustycznego Ćwiczenie 4. Wyznaczanie oziomów dźwięku na odstawie omiaru skorygowanego oziomu A ciśnienia akustycznego Cel ćwiczenia Zaoznanie z metodą omiaru oziomów ciśnienia akustycznego, ocena orawności uzyskiwanych

Bardziej szczegółowo

MECHANIKA PŁYNÓW. Materiały pomocnicze do wykładów. opracował: prof. nzw. dr hab. inż. Wiesław Grzesikiewicz

MECHANIKA PŁYNÓW. Materiały pomocnicze do wykładów. opracował: prof. nzw. dr hab. inż. Wiesław Grzesikiewicz MECHANIKA PŁYNÓW Materiały omocnicze do wykładów oracował: ro. nzw. dr hab. inż. Wiesław Grzesikiewicz Warszawa aździernik - odkształcalne ciało stałe Mechanika łynów dział mechaniki materialnych ośrodków

Bardziej szczegółowo

This article is available in PDF-format, in coloured version, at: www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne.html

This article is available in PDF-format, in coloured version, at: www.wydawnictwa.ipo.waw.pl/materialy-wysokoenergetyczne.html Z. Surma, Z. Leciejewski, A. Dzik, M. Białek This article is available in PDF-format, in coloured version, at: www.wydawnictwa.io.waw.l/materialy-wysokoenergetyczne.html Materiały Wysokoenergetyczne /

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

DŁAWIENIE IZENTALPOWE

DŁAWIENIE IZENTALPOWE DŁAWIENIE IZENALPOWE Jeżeli r > σ to dominującymi siłami są siły rzyciągania i energia otencjalna cząstek rzyjmuje wartości ujemne. Oznacza to, że aby zwiększyć odległość omiędzy cząstkami należy zwiększyć

Bardziej szczegółowo

KOMPUTEROWA SYMULACJA RUCHU CIAŁA SZTYWNEGO. WSPÓŁCZYNNIK RESTYTUCJI

KOMPUTEROWA SYMULACJA RUCHU CIAŁA SZTYWNEGO. WSPÓŁCZYNNIK RESTYTUCJI Autorzy ćwiczenia: J. Grabski, K. Januszkiewicz Ćwiczenie 10 KOPUTEROWA SYULACJA RUCHU CIAŁA SZTYWNEGO. WSPÓŁCZYNNIK RESTYTUCJI 10.1. Cel ćwiczenia Celem ćwiczenia jest rzedstawienie możliwości wykorzystania

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu

Niezawodność elementu nienaprawialnego. nienaprawialnego. 1. Model niezawodnościowy elementu. 1. Model niezawodnościowy elementu Niezawodność elemenu nienarawialnego. Model niezawodnościowy elemenu nienarawialnego. Niekóre rozkłady zmiennych losowych sosowane w oisie niezawodności elemenów 3. Funkcyjne i liczbowe charakerysyki niezawodności

Bardziej szczegółowo