Metody numeryczne I. Programy wspomagajace obliczenia Maxima. Janusz Szwabiński.
|
|
- Nina Kołodziejczyk
- 9 lat temu
- Przeglądów:
Transkrypt
1 Metody numeryczne I Programy wspomagajace obliczenia Maxima Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/25
2 Maxima Pierwsze kroki Przekształcenia wyrażeń algebraicznych Trygonometria Pochodne i całki Macierze Równania i układy równań Równania różniczkowe zwyczajne Operacje wejścia/wyjścia Elementy programowania Metody numeryczne I (C) 2004 Janusz Szwabiński p.2/25
3 Gdzie szukać? Linux+, nr 10/2002 Metody numeryczne I (C) 2004 Janusz Szwabiński p.3/25
4 Pierwsze kroki quit(); - zakończenie programu każde polecenie kończymy znakiem ; lub $ (C1), (C2),..., oraz (D1), (D2),... to odpowiednio etykiety poleceń użytkownika i odpowiedzi programu (zmiana w najnowszej wersji programu!) describe(polecenie); - opis polecenia example(polecenie); - przykład zastosowania polecenia znak % reprezentuje ostatni wynik %TH(i) to i-ty wynik od końca Metody numeryczne I (C) 2004 Janusz Szwabiński p.4/25
5 ev(expr,flag) - modyfikuje wyrażenie na podstawie użytej flagi (np. numer) ALT+P - poprzednie polecenie Metody numeryczne I (C) 2004 Janusz Szwabiński p.5/25
6 Operacje arytmetyczne + dodawanie - odejmowanie * mnożenie skalarne / dzielenie ^ lub ** potęgowanie. mnożenie macierzowe Metody numeryczne I (C) 2004 Janusz Szwabiński p.6/25
7 Operatory przypisania : przypisanie wartości := definiowanie funkcji = definiowanie równań Metody numeryczne I (C) 2004 Janusz Szwabiński p.7/25
8 Wybrane funkcje matematyczne sin, cos, tan, cot asin, acos, atan, acot sinh, cosh, tanh, coth asinh, acosh, atanh, acoth log, exp, sqrt, abs/cabs max, min, signum airy, bessel, gamma Metody numeryczne I (C) 2004 Janusz Szwabiński p.8/25
9 Przekształcanie wyrażeń algebraicznych expand ratsimp factor scsimp rozwinięcie wyrażenia algebraicznego uproszczenie wyrażenia rozkład wyrażenia na czynniki uproszczenie wyrażenia przy spełnieniu pewnych tożsamości Metody numeryczne I (C) 2004 Janusz Szwabiński p.9/25
10 Trygonometria trigexpand trigreduce rozwinięcie wyrażenia tryg. uproszczenie wyrażenia tryg. Uwaga! Polecenie halfangles:true; spowoduje, że Maxima będzie wykorzystywać związki między funkcjami kątów połówkowych. Metody numeryczne I (C) 2004 Janusz Szwabiński p.10/25
11 Pochodne i całki diff(exp,v1,n1,v2,n2,...) Przykład diff(sin(x)*cos(x),x,2); diff(sin(x)*exp(y^2),x,1,y,2); Metody numeryczne I (C) 2004 Janusz Szwabiński p.11/25
12 Przykład integrate(exp,var) integrate(sin(x)**3,x); integrate(1/(x^2 + 1),x,0,inf); Metody numeryczne I (C) 2004 Janusz Szwabiński p.12/25
13 Przykład residue(exp,var,val) residue(1/(x-%i),x,%i); residue(sin(a*x)/x^4,x,0); Metody numeryczne I (C) 2004 Janusz Szwabiński p.13/25
14 Inne przydatne polecenia assume forget depends changevar Metody numeryczne I (C) 2004 Janusz Szwabiński p.14/25
15 Macierze Definiowanie macierzy matrix setelmx genmatrix Przykład matrix([1,2],[3,4]); setelmx(5,2,2,a); h[i,j]:=1/(i+j-1); genmatrix(h,3,3); Metody numeryczne I (C) 2004 Janusz Szwabiński p.15/25
16 Elementy macierzy A[i,j] Mnożenie macierzowe (uwaga na spacje!) A. B Wyznacznik i macierz odwrotna determinant invert Metody numeryczne I (C) 2004 Janusz Szwabiński p.16/25
17 Transpozycja macierzy transpose Wartości i wektory własne eigenvalues eigenvectors Metody numeryczne I (C) 2004 Janusz Szwabiński p.17/25
18 Równania i układy równań algsys([exp1,exp2,...],[var1,var2,...]) linsolve([exp1,exp2,...],[var1,var2,...]) solve(exp,var) Metody numeryczne I (C) 2004 Janusz Szwabiński p.18/25
19 Równania różniczkowe zwyczajne (RRZ) Definiowanie równań różniczkowych zwyczajnych x^2 diff(y,x)+3*x*y=sin(x)/x; depends(y,x); x^2 diff(y,x)+3*x*y=sin(x)/x; x^2 diff(y(x),x)+3*x*y(x)=sin(x)/x; Metody numeryczne I (C) 2004 Janusz Szwabiński p.19/25
20 Rozwiązywanie RRZ ode2(eqn,depvar,indvar) desolve([eq1,...,eqn],[dv1,...,dvn]) Wartości początkowe i brzegowe ic1(soln,iv=a,dv=b) ic2(soln,iv=a,dv=b,diff(dv,iv)=c) bc2(soln,iv=a,dv=b,iv=c,dv=d) atvalue (tylko w połączeniu z desolve) Metody numeryczne I (C) 2004 Janusz Szwabiński p.20/25
21 Wizualizacja danych plot2d(expr,range,options) plot3d(expr,xrange,yrange,options) xgraph_curves(list) Przykład plot2d(sin(x),[x,-5,5]); plot2d(sec(x),[x,-2,2],[y,-20,20],[nticks,200]); plot2d([parametric,cos(t),sin(t),[t,-%pi*2,%pi*2]]); plot3d(x^2-y^2,[x,-2,2],[y,-2,2],[grid,12,12]) Metody numeryczne I (C) 2004 Janusz Szwabiński p.21/25
22 Operacje wejścia/wyjścia Zapisanie sesji do pliku writefile("/home/szwabin/sesja.txt"); closefile(); Przekształcenie sesji do skryptu stringout("plik.mac"); Załadowanie skryptu batch("plik.mac"); demo("plik.dem"); Metody numeryczne I (C) 2004 Janusz Szwabiński p.22/25
23 Eksport wyników do TEX a tex(expr,plik) Zapisanie wybranych wyników save(plik,arg1,arg2,...) Metody numeryczne I (C) 2004 Janusz Szwabiński p.23/25
24 Elementy programowania Zmienne lokalne block([var:val],stmt) Instrukcja warunkowa IF cond THEN stmt1 ELSE stmt2 Pętle FOR var:init STEP incr THRU limit DO body FOR var:init STEP incr WHILE cond DO body FOR var:init STEP incr UNLESS cond DO body Metody numeryczne I (C) 2004 Janusz Szwabiński p.24/25
25 Przykład block([fpprec:50],bfloat(%pi)); h(x) := if x>=0 then 1 else 0; for a:-3 thru 26 step 7 do ldisplay(a)$ Metody numeryczne I (C) 2004 Janusz Szwabiński p.25/25
Programowanie w języku Matlab
Programowanie w języku Matlab D. Caban, P. Skurowski Wykład. Składnia języka, podstawowe struktury i operacje Matlab Nazwa pochodzi od MATrix LAboratory Środowisko obliczeń numerycznych i symbolicznych
Podstawowe wyrażenia matematyczne
Lech Sławik Podstawy Maximy 3 Wyrażenia matematyczne.wxmx 1 / 7 Podstawowe wyrażenia matematyczne 1 Nazwy Nazwy (zmiennych, stałych, funkcji itp.) w Maximie mogą zawierać małe i duże litery alfabetu łacińskiego,
do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa podstawowe operacje na macierzach WYKŁAD Piotr Ciskowski M A T L A B : Computation Visualization Programming easy to use environment MATLAB = matrix laboratory podstawowa jednostka
Przy Matlabie istnieje duże społeczność wymieniająca się plikami, programami i poradami http://www.mathworks.com/matlabcentral/
Pomimo rozwoju programów klikologicznych w ekonometrii, istnieje wiele osób, które wciąż cenią sobie programy typu Matlab, czy Gauss. W programach klikologicznych typu EViews użytkownik ma małą kontrolę
Harmonogramowanie, kosztorysowanie, planowanie budowy.
Harmonogramowanie, kosztorysowanie, planowanie budowy. Adrian Bałazy, Dawid Fedko Realizacja Modelowanie Symulacje BIM Koordynacja Harmonogram Przedmiary Adrian Bałazy AUTOMATYZACJA PROCESU BUDOWLANEGO
Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II
Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną
Podstawowe działania w rachunku macierzowym
Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:
WEKTORY I MACIERZE. Strona 1 z 11. Lekcja 7.
Strona z WEKTORY I MACIERZE Wektory i macierze ogólnie nazywamy tablicami. Wprowadzamy je:. W sposób jawny: - z menu Insert Matrix, - skrót klawiszowy: {ctrl}+m, - odpowiedni przycisk z menu paska narzędziowego
Języki programowania wysokiego poziomu. PHP cz.2.
Języki programowania wysokiego poziomu PHP cz.2. Instrukcje strukturalne PHP Instrukcje strukturalne Instrukcja grupująca (blok instrukcji) Instrukcja warunkowa, if-else Instrukcja wyboru, switch-case
1 Wiadomości wst ¾epne
Wiadomości wst ¾ene. Narysować wykresy funkcji elementarnych sin cos tg ctg a ( a 6= ) log a ( a 6= ) arcsin arccos arctg arcctg Podać ich dziedziny i rzeciwdziedziny.. Roz o zyć na u amki roste wyra zenie
Obliczenia Symboliczne
Lekcja Strona z Obliczenia Symboliczne MathCad pozwala na prowadzenie obliczeń zarówno numerycznych, dających w efekcie rozwiązania w postaci liczbowej, jak też obliczeń symbolicznych przeprowadzanych
Rozkład materiału klasa 1BW
Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP
Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad
Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+
'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu
KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6
KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
Wstęp do Pythona. Janusz Szwabiński. Python w obliczeniach numerycznych (C) 2005 Janusz Szwabiński p.1/36
Wstęp do Pythona Janusz Szwabiński szwabin@ift.uni.wroc.pl Python w obliczeniach numerycznych (C) 2005 Janusz Szwabiński p.1/36 Wstęp do Pythona Zasoby w sieci Python jako zaawansowany kalkulator Pierwszy
DRGANIA MECHANICZNE. materiały uzupełniające do ćwiczeń. Wydział Samochodów i Maszyn Roboczych studia inżynierskie
DRGANIA MECHANICZNE materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak część modelowanie, drgania swobodne Poniższe materiały
Matlab Składnia + podstawy programowania
Matlab Składnia + podstawy programowania Matlab Matrix Laboratory środowisko stworzone z myślą o osobach rozwiązujących problemy matematyczne, w których operuje się na danych stanowiących wielowymiarowe
do MATLABa programowanie WYKŁAD Piotr Ciskowski
Wprowadzenie do MATLABa programowanie WYKŁAD Piotr Ciskowski instrukcje sterujące instrukcja warunkowa: if instrukcja wyboru: switch instrukcje iteracyjne: for, while instrukcje przerwania: continue, break,
Kurs wyrównawczy dla kandydatów i studentów UTP
Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno
14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.
Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących
KURS GEOMETRIA ANALITYCZNA
KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie
Wszystkie warianty kursu. Lista zadań
ALGEBRA Z GEOMETRI A ANALITYCZN A Wszystkie warianty kursu Zadania z listy oznaczone gwiazdka ( ) sa nieco trudniejsze albo maja charakter teoretyczny Jednak nie wychodza one poza program kursu Odpowiedzi
Metody numeryczne Laboratorium 2
Metody numeryczne Laboratorium 2 1. Tworzenie i uruchamianie skryptów Środowisko MATLAB/GNU Octave daje nam możliwość tworzenia skryptów czyli zapisywania grup poleceń czy funkcji w osobnym pliku i uruchamiania
PAKIET MathCad - Część III
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad
Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr
Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr I. Wyrażenia wymierne: funkcja wymierna - Dziedzina wyrażenia wymiernego. - Skarcenie
MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.
INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję
SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015
Centralna Komisja Egzaminacyjna ul. J. Lewartowskiego 6, 00-190 Warszawa www.cke.edu.pl sekret.cke@cke.edu.pl SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015 Cześć! W kwietniu
Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,
Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią
wykład III uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - zarządzanie pamięcią, struktury,
, Programowanie, uzupełnienie notatek: dr Jerzy Białkowski , 1 2 3 4 , Wczytywanie liczb , Wczytywanie liczb 1 #include 2 #include < s t d l i b. h> 3 4 int main ( ) { 5 int rozmiar, numer
Sin[Pi / 4] Log[2, 1024] Prime[10]
In[1]:= (* WSTĘP DO PAKIETU MATHEMATICA *) (* autorzy: Łukasz Płociniczak,Marek Teuerle*) (* Składnia: nazwy funkcji z wielkiej litery a argumenty w kwadratowych nawiasach. Wywołujemy wartość SHIFT+ENTER
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
Laboratorium Programowanie Obrabiarek CNC. Nr H7
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie Obrabiarek CNC Nr H7 Programowanie z wykorzystaniem parametrów i funkcji matematycznych Opracował: Dr inŝ. Wojciech
for - instrukcja pętli "dla" umożliwia wielokrotne obliczenie sekwencji wyrażeń s s + k s while z j
Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw4.mcd /9 Katedra Inmatyki Stosowanej - Studium Podstaw Inmatyki PAKIET MathCad - Część IV. PROGRAMOWANIE MathCad posiada możliwości tworzenia prostych podprogramów,
Elementy animacji sterowanie manipulatorem
Elementy animacji sterowanie manipulatorem 1 Cel zadania Wykształcenie umiejętności korzystania z zapisu modelu aplikacji w UML oraz definiowania właściwego interfejsu klasy. 2 Opis zadania Należy napisać
SMath Studio - podstawowe operacje
Opracował: Artur Borowiec; Politechnika Rzeszowska 0 SMath Studio - podstawowe operacje SMath Studio to program do sekwencjnch obliczeń numercznch i smbolicznch z wkorzstaniem jednostek fizcznch. I. Region.
Technologie Informacyjne
Technologie Informacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności April 11, 2016 Technologie Informacyjne Wprowadzenie : wizualizacja obrazów poprzez wykorzystywanie technik komputerowych.
Matlab MATrix LABoratory Mathworks Inc.
Małgorzata Jakubowska Matlab MATrix LABoratory Mathworks Inc. MATLAB pakiet oprogramowania matematycznego firmy MathWorks Inc. (www.mathworks.com) rozwijany od roku 1984 język programowania i środowisko
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI. Wprowadzenie do środowiska Matlab
LABORATORIUM 3 ALGORYTMY OBLICZENIOWE W ELEKTRONICE I TELEKOMUNIKACJI Wprowadzenie do środowiska Matlab 1. Podstawowe informacje Przedstawione poniżej informacje maja wprowadzić i zapoznać ze środowiskiem
Wykład 3: Matlab cz.2 Podstawy programowania strukturalnego
Wykład 3: Matlab cz.2 Podstawy programowania strukturalnego Opracował: Dr inż. Zbigniew Rudnicki Tematyka wykładu 3 Tryby użytkowania Matlaba Elementy języka - wyrażenia i instrukcje Wyrażenia arytmetyczne
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej
Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych
Wprowadzenie do środowiska MATLAB z zastosowaniami w modelowaniu i analizie danych Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl tel. 022
2.Prawo zachowania masy
2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco
P 0max. P max. = P max = 0; 9 20 = 18 W. U 2 0max. U 0max = q P 0max = p 18 2 = 6 V. D = T = U 0 = D E ; = 6
XL OLIMPIADA WIEDZY TECHNICZNEJ Zawody II stopnia Rozwi zania zada dla grupy elektryczno-elektronicznej Rozwi zanie zadania 1 Sprawno przekszta tnika jest r wna P 0ma a Maksymaln moc odbiornika mo na zatem
Funkcje. Część druga. Zbigniew Koza. Wydział Fizyki i Astronomii
Funkcje Część druga Zbigniew Koza Wydział Fizyki i Astronomii Wrocław, 2015 GRANICA I CIĄGŁOŚĆ FUNKCJI Granica funkcji Funkcja f: R A R ma w punkcie x 0 granicę g wtedy i tylko wtedy gdy dla każdego ciągu
Matematyka. rok akademicki 2008/2009, semestr zimowy. Konwersatorium 1. Własności funkcji
. Własności funkcji () Wyznaczyć dziedzinę funkcji danej wzorem: y = 2 2 + 5 y = +4 y = 2 + (2) Podać zbiór wartości funkcji: y = 2 3, [2, 5) y = 2 +, [, 4] y =, [3, 6] (3) Stwierdzić, czy dana funkcja
Matematyka dla liceum/funkcja liniowa
Matematyka dla liceum/funkcja liniowa 1 Matematyka dla liceum/funkcja liniowa Funkcja liniowa Wstęp Co zawiera dział Czytelnik pozna następujące informacje: co to jest i jakie ma własności funkcja liniowa
Kurs z matematyki - zadania
Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie
Modelowanie obiektów 3D
Synteza i obróbka obrazu Modelowanie obiektów 3D Modelowanie Modelowanie opisanie kształtu obiektu. Najczęściej stosuje się reprezentację powierzchniową opis powierzchni obiektu. Najczęstsza reprezentacja
GRAFIKA PROGRAMOWANA W PASCALU ==================================
GRAFIKA PROGRAMOWANA Cg to kompletne środowisko programistyczne do szybkiego tworzenia efektów specjalnych i grafiki o kinowej jakości w czasie rzeczywistym dla wielu platform. Ponieważ język jest niezależny
KRAJOWY REJESTR SĄDOWY. Stan na dzień 28.05.2016 godz. 18:49:52 Numer KRS: 0000013661
Strona 1 z 6 CENTRALNA INFORMACJA KRAJOWEGO REJESTRU SĄDOWEGO KRAJOWY REJESTR SĄDOWY Stan na dzień 28.05.2016 godz. 18:49:52 Numer KRS: 0000013661 Informacja odpowiadająca odpisowi aktualnemu Z REJESTRU
Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika
Wyk lad 4 Dzia lania na macierzach Określenie wyznacznika 1 Określenie macierzy Niech K bedzie dowolnym cia lem oraz niech n i m bed a dowolnymi liczbami naturalnymi Prostokatn a tablice a 11 a 12 a 1n
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymaga egzaminacyjnych Zdaj cy posiada umiej tno ci w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Maxima i Visual Basic w Excelu
12 marca 2013 Maxima - zapoznanie z programem Maxima to program - system algebry komputerowej. Podstawowa różnica w stosunku do klasycznych programów obliczeniowych jest możliwość wykonywania obliczeń
Programowanie w C++ Wykład 3. Katarzyna Grzelak. 12 marca K.Grzelak (Wykład 1) Programowanie w C++ 1 / 35
Programowanie w C++ Wykład 3 Katarzyna Grzelak 12 marca 2018 K.Grzelak (Wykład 1) Programowanie w C++ 1 / 35 Zakres ważności obiektów K.Grzelak (Wykład 1) Programowanie w C++ 2 / 35 Zakres ważności obiektów
PowerShell. Sławomir Wawrzyniak 05.11.2010
PowerShell Sławomir Wawrzyniak 05.11.2010 Czym jest PowerShell - Czym jest PowerShell - Do czego może się przydać - Zalety PowerShell - Podobieństwo do basha Wprowadzenie - Jak uruchomić PowerShell - Główne
PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ
Nie wystarczy mieć rozum, trzeba jeszcze umieć z niego korzystać Kartezjusz Rozprawa o metodzie PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ II KLASA LICEUM OGÓLNOKSZTAŁCĄCE 1 Opracowała : Dorota
GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej.
1 GNU Octave GNU Octave (w skrócie Octave) to rozbudowany program do analizy numerycznej. Octave zapewnia: sporą bibliotęke użytecznych funkcji i algorytmów; możliwośc tworzenia przeróżnych wykresów; możliwość
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1:
PRZYKŁADOWE SKRYPTY (PROGRAMY W MATLABIE Z ROZSZERZENIEM.m): 1) OBLICZANIE WYRAŻEŃ 1: clear % usunięcie zmiennych z pamięci roboczej MATLABa % wyczyszczenie okna kom % nadanie wartości zmiennym x1 i x2
Bazy danych. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15
Bazy danych Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl www.uj.edu.pl/web/zpgk/materialy 9/15 Przechowywanie danych Wykorzystanie systemu plików, dostępu do plików za pośrednictwem systemu operacyjnego
Macierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
KRAJOWY REJESTR SĄDOWY. Stan na dzień 23.04.2016 godz. 15:25:05 Numer KRS: 0000039767
Strona 1 z 5 CENTRALNA INFORMACJA KRAJOWEGO REJESTRU SĄDOWEGO KRAJOWY REJESTR SĄDOWY Stan na dzień 23.04.2016 godz. 15:25:05 Numer KRS: 0000039767 Informacja odpowiadająca odpisowi aktualnemu Z REJESTRU
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014 Kierunek studiów: Inżynieria Biomedyczna Forma
3ds Max Design Bazowy
3ds Max Design Bazowy Informacje o usłudze Numer usługi 2016/02/16/7154/4064 Cena netto 1 200,00 zł Cena brutto 1 476,00 zł Cena netto za godzinę 66,67 zł Cena brutto za godzinę 82,00 Możliwe współfinansowanie
Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek:
Nazwa przedmiotu: PODSTAWY TEORII ZBIORÓW ROZMYTYCH I ARYTMETYKI PRZEDZIAŁOWEJ Foundations of fuzzy set theory and interval arithmetic Kierunek: Forma studiów: Informatyka Stacjonarne Rodzaj przedmiotu:
Elementy metod numerycznych - zajęcia 9
Poniższy dokument zawiera informacje na temat zadań rozwiązanych w trakcie laboratoriów. Elementy metod numerycznych - zajęcia 9 Tematyka - Scilab 1. Labolatoria Zajęcia za 34 punktów. Proszę wysłać krótkie
UCHWAŁA NR... RADY GMINY WIĄZOWNA. z dnia... 2016 r. w sprawie wyrażenia zgody na zamianę nieruchomości oraz przyjęcie darowizny nieruchomości
Projekt z dnia 21 czerwca 2016 r. Zatwierdzony przez... UCHWAŁA NR... RADY GMINY WIĄZOWNA z dnia... 2016 r. w sprawie wyrażenia zgody na zamianę nieruchomości oraz przyjęcie darowizny nieruchomości Na
SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA
Zał. nr 5 do SIWZ SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA prowadzonego w trybie przetarg nieograniczony na usługa przeprowadzenia szkoleń CNC oraz CAE w ramach Centrum Transferu Technologii Zadanie nr Nazwa
EGZAMIN MATURALNY Z INFORMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20
Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY
REGULAMIN KONKURSU MATEMATYCZNEGO
Matematyka jest alfabetem, za pomocą, którego Bóg opisał wszechświat. Galileusz REGULAMIN KONKURSU MATEMATYCZNEGO MATEMATYCZNY ŚWIAT DLA UCZNIÓW SZKÓŁ GIMNAZJALNYCH GMINY PIASECZNO W ROKU SZKOLNYM 2015/2016
1 Podstawy c++ w pigułce.
1 Podstawy c++ w pigułce. 1.1 Struktura dokumentu. Kod programu c++ jest zwykłym tekstem napisanym w dowolnym edytorze. Plikowi takiemu nadaje się zwykle rozszerzenie.cpp i kompiluje za pomocą kompilatora,
Ćwiczenie 5 Hologram gruby
Ćwiczenie 5 Hologram gruby 1. Wprowadzenie: Na poprzednim ćwiczeniu zapoznaliśmy się z hologramem Fresnela, który daje nam moŝliwość zapisu obiektu przestrzennego. Wadą jego jednak jest to, iŝ moŝemy go
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.
Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie
Pracownia internetowa w ka dej szkole (edycja 2004/2005)
Instrukcja numer SPD3/13_01/Z6 Pracownia internetowa w ka dej szkole (edycja 2004/2005 Opiekun pracowni internetowej cz. 3 (PD3 Pisanie skryptów wiersza polece - p tle Zadanie 06 P tle w skryptach wiersza
Wyznaczniki, macierz odwrotna, równania macierzowe
Wyznaczniki, macierz odwrotna, równania macierzowe Adam Kiersztyn Katolicki Uniwersytet Lubelski Jana Paw a II Lublin 013 Adam Kiersztyn (KUL) Wyznaczniki, macierz odwrotna, równania macierzowe marzec
InsERT GT Własne COM 1.0
InsERT GT Własne COM 1.0 Autor: Jarosław Kolasa, InsERT Wstęp... 2 Dołączanie zestawień własnych do systemu InsERT GT... 2 Sposób współpracy rozszerzeń z systemem InsERT GT... 2 Rozszerzenia standardowe
Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013
Wymagania edukacyjne z matematyki dla klasy I TM w roku szkolnym 2012/2013 Uczeń otrzymuje ocenę celującą, gdy: a) w 100% opanował treści zawarte w programie nauczania. Uczeń otrzymuje ocenę bardzo dobrą,
Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012
Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta przedmiotu Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Kierunek studiów: Matematyka Profil: Ogólnoakademicki
PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI
ARKUSZ 6 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do. sà podane 4 odpowiedzi:
Matematyka z plusem dla szkoły ponadgimnazjalnej ROZKŁAD MATERIAŁU DLA KLASY II
1 ZAŁOśENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres podstawowy z rozszerzeniem) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki
Excel 2016 PL : policz w Excelu kroki do celu / Witold Wrotek. Gliwice, cop Spis treści
Excel 2016 PL : policz w Excelu kroki do celu / Witold Wrotek. Gliwice, cop. 2016 Spis treści Rozdział 1. Idealny pracownik, czyli przeznaczenie arkusza kalkulacyjnego 11 Liliput i Guliwer 11 Na cebulkę
WNIOSEK W SPRAWIE PRZEKSZTAŁCENIA PRAWA UŻYTKOWANIA WIECZYSTEGO W PRAWO WŁASNOŚCI NIERUCHOMOŚCI GRUNTOWEJ
DOTYCZY NIERUCHOMOŚCI GRUNTOWEJ STANOWIĄCEJ WŁASNOŚĆ GMINY MIASTO KOSZALIN / SKARBU PAŃSTWA * ZABUDOWANEJ BUDYNKAMI MIESZKALNYMI LUB GARAŻAMI STANOWIĄCYMI WŁASNOŚĆ SPÓŁDZIELNI MIESZKANIOWEJ N-07-02 PREZYDENT
wstrzykiwanie "dodatkowych" nośników w przyłożonym polu elektrycznym => wzrost gęstości nośników (n)
UKŁADY STUDNI KWANTOWYCH I BARIER W POLU LEKTRYCZNYM transport podłużny efekt podpasm energia kinetyczna ruchu do złącz ~ h 2 k 2 /2m, na dnie podpasma k =0 => v =0 wstrzykiwanie "dodatkowych" nośników
Niezależnie od rodzaju materiału dźwiękowego ocenie podlegały następujące elementy pracy egzaminacyjnej:
W czasie przeprowadzonego w czerwcu 2012 roku etapu praktycznego egzaminu potwierdzającego kwalifikacje zawodowe w zawodzie asystent operatora dźwięku zastosowano sześć zadań. Rozwiązanie każdego z zadań
KRAJOWY REJESTR SĄDOWY. Stan na dzień 17.05.2016 godz. 11:30:57 Numer KRS: 0000368063
Strona 1 z 6 CENTRALNA INFORMACJA KRAJOWEGO REJESTRU SĄDOWEGO KRAJOWY REJESTR SĄDOWY Stan na dzień 17.05.2016 godz. 11:30:57 Numer KRS: 0000368063 Informacja odpowiadająca odpisowi aktualnemu Z REJESTRU
SZABLONY KOMUNIKATÓW SPIS TREŚCI
SZABLONY KOMUNIKATÓW SPIS TREŚCI Zarządzanie zawartością stron... 2 Dodawanie komunikatu... 3 Lista komunikatów... 6 Lista komunikatów na stronie głównej... 9 ZARZĄDZANIE ZAWARTOŚCIĄ STRON Istnieją dwa
MATLAB skalary, macierze, liczby zespolone, standardowe funkcje
MATLAB skalary, macierze, liczby zespolone, standardowe funkcje Czym jest MATLAB? Jest to proste rodowisko ł cz ce obliczenia, wizualizacj i programowanie. MATLAB = MATrix LABoratory (matrix macierz) Typowe
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
KRAJOWY REJESTR SĄDOWY. Stan na dzień 16.05.2016 godz. 12:37:04 Numer KRS: 0000232616
Strona 1 z 6 CENTRALNA INFORMACJA KRAJOWEGO REJESTRU SĄDOWEGO KRAJOWY REJESTR SĄDOWY Stan na dzień 16.05.2016 godz. 12:37:04 Numer KRS: 0000232616 Informacja odpowiadająca odpisowi aktualnemu Z REJESTRU
KRAJOWY REJESTR SĄDOWY. Stan na dzień 10.05.2016 godz. 18:57:41 Numer KRS: 0000190231
Strona 1 z 5 CENTRALNA INFORMACJA KRAJOWEGO REJESTRU SĄDOWEGO KRAJOWY REJESTR SĄDOWY Stan na dzień 10.05.2016 godz. 18:57:41 Numer KRS: 0000190231 Informacja odpowiadająca odpisowi aktualnemu Z REJESTRU
Funkcje wielu zmiennych
Funkcje wielu zmiennych 8 Pochodna kierunkowa funkcji Definicja Niech funkcja f określona bȩdzie w otoczeniu punktu P 0 = (x 0, y 0 ) oraz niech v = [v x, v y ] bȩdzie wektorem. Pochodn a kierunkow a funkcji
MATHCAD Obliczenia symboliczne
MATHCAD 000 - Obliczenia symboliczne Przekształcenia algebraiczne UWAGA: Obliczenia symboliczne można wywoływać na dwa różne sposoby: poprzez menu Symbolics poprzez przyciski paska narzędziowego Symbolic
Plan połączenia poprzez przejęcie. UNNA Sp. z o.o. oraz Pretium Farm Sp. z o.o.
Plan połączenia poprzez przejęcie UNNA Sp. z o.o. oraz Pretium Farm Sp. z o.o. uzgodniony i sporządzony w dniu 20 kwietnia 2016r. roku przez Zarządy łączących się Spółek: I. DANE OGÓLNE DOTYCZĄCE ŁĄCZĄCYCH
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 013/014 Wydział Prawa, Administracji i Stosunków Miedzynarodowych
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/014 Wydział Zarządzania i Komunikacji Społecznej Kierunek studiów:
KRAJOWY REJESTR SĄDOWY. Stan na dzień 06.05.2016 godz. 03:59:58 Numer KRS: 0000401024
Strona 1 z 5 CENTRALNA INFORMACJA KRAJOWEGO REJESTRU SĄDOWEGO KRAJOWY REJESTR SĄDOWY Stan na dzień 06.05.2016 godz. 03:59:58 Numer KRS: 0000401024 Informacja odpowiadająca odpisowi aktualnemu Z REJESTRU
Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D