Problem fazowy w optyce rentgenowskiej
|
|
- Elżbieta Wilczyńska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Problem fazowy w optyce rentgenowskiej
2 Poprzednie wykłady Na poprzednich wykładach pokazaliśmy, że dla pewnej geometrii rozpraszania zespolona amplituda fali rozproszonej na obiekcie E(q) jest proporcjonalna do transformaty Fouriera jego gęstości elektronowej r(r) k r R r(r) q=k-k
3 Problem fazowy: sformułowanie* Związek między amplitudą rozproszenia i strukturą obiektu W eksperymencie mierzymy tylko natężenie. Informacja o fazach zostaje utracona. Amplituda jest zespolona! Dysponujemy tylko modułem amplitudy: Odwracalności transformacji Fouriera: Nie możemy odzyskać struktury obiektu! Możemy odzyskać strukturę: Obliczanie obrazu dyfrakcji dla znanej struktury jest proste. Wyznaczenie struktury na podstawnie obrazu rozproszenia jest trudne! *Dla prostoty zapisu, na tym wykładzie, znak proporcjonalności zamienimy na równość: jest to możliwe poprzez dobór odpowiednich jednostek. Dlatego używamy symbolu F(q) a nie E(q)
4 Problem fazowy Dla kryształu: (periodyczność) Im r r(0) Re r 1) Bez faz nie wiemy jak dodać wszystkie wektory 2) Pewne ułatwienie: w rezultacie musimy wylądować w dodatniej części osi rzeczywistej
5 Informacja zawarta w fazie Co tracimy? przykład 1 moduł Obiekt tylko moduł faza tylko faza
6 Informacja zawarta w fazie Co tracimy? przykład 2 obiekt moduł faza rekonstrukcja obiektu zamieniamy tylko fazy 2010
7 Metody rozwiązywania problemu fazowy Metody matematyczne numeryczne [dodatkowa wiedza o strukturze] fizyczne [bezpośredni pomiar faz] Obiekty periodyczne [kryształy] nieperiodyczne [nanostruktury układy biologiczne] Często inne podejście!
8 Rozwiązania problemu fazowego - kryształy Q. Shen, Q. Hao, S.M. Gruner, Macromolecular Phasing, Physics Today 59, 46 (2006) Hauptman, Karle, Nobel 1985 Bragg, Nobel 1915 D. Hodkin, Nobel 1964 Kendrew, Perutz, Nobel 1962
9 Autokorelacja i funkcja Pattersona Zobaczmy co przyniesie bezpośrednia transformacja obrazu rozproszenia [natężeń] Pamiętamy, że: Nazwijmy nasze wyrażenie P(r) Teraz je rozpiszmy: Po uporządkowaniu: Wykonujemy całkę po d 3 q Ostatecznie: Jest to tzw. funkcja autokorelacji (w krystalografii jest ona nazywana funkcją Pattersona i ma periodyczność sieci)
10 Autokorelacja i funkcja Pattersona - interpretacja Prosta molekuła Niektóre punkty funkcji Pattersona Molekuła i jej kopia przesunięta o r (0,0) ) Piki w funkcji P(r) odpowiadają wektorom łączącym parę atomów. 2) Intensywność: iloczyn liczb atomowych pary. Niektóre piki odpowiadają wielu parom. 3) Bardzo silne maksimum dla r=0. Suma kwadratów liczb atomowych wszystkich atomów
11 Autokorelacja i funkcja Pattersona - interpretacja Molekuła r(r) F(q) 2 Autokorelacja P(r) Dla prostych struktur znajomość funkcji Pattersona pozwala na odgadnięcie struktury. Liczba pików dla molekuły składającej się z N atomów wynosi N 2. Dla skomplikowanych struktur jest to mission-impossible. Dodatkowo dla dużych molekuł funkcja Pattersona staję się kompletnie rozmyta zbyt dużo wektorów między atomowych.
12 Autokorelacja skomplikowany obiekt Molekuła r(r) Autokorelacja P(r)
13 Ciężki atom Molekuła r(r) Autokorelacja P(r) Zwiększony kontrast Dla pojedynczego ciężkiego atomu (w małej molekule) funkcja Pattersona jest w przybliżeniu obrazem molekuły widzianym z pozycji ciężkiego atomu (+ jej punktowym odbiciem)
14 Ciężkie atomy Prosta molekuła z ciężkimi atomami Molekuła r(r) Autokorelacja P(r) W takim przypadku dominującymi pikami w autokorelacji są piki ciężki-cięzki. Można od razu wyznaczyć ich względne położenia
15 MIR Multiple isomorphous replacement wielokrotne podstawienie izomorficzne Do molekuły dodajemy ciężkie atomy lub kompleksy molekularne zawierające atomy [np. Au, Hg, U] i krystalizujemy. Uwaga: nazwa zamiana jest nieco myląca. Zakładamy (lub oczekujemy), że nie zmienia to struktury molekuły. Stąd przymiotnik izomorficzny. Pomiary możemy wykonać dla kryształów zawierających natywne i pochodne molekuły. Natywna molekuła (P) Ciężkie atomy (H) Pochodna izomorficzna (PH) Przykład: mioglobina. Kendrew&Perutz, Nobel z Chemii 1962
16 MIR pozycja ciężkich atomów W pierwszym kroku musimy wyznaczyć położenia ciężkich atomów. Ponieważ ciężkich atomów jest niewiele to wystarczy wyznaczyć ich funkcję Pattersona. Molekuła natywna Funkcja Pattersona Molekuła pochodna Funkcja Pattersona ciężkie atomy Ponieważ liczba atomów w naszej molekule jest duża to w funkcji Pattersona P PH nie można zazwyczaj zidentyfikować pików ciężki-cięzki
17 Różnica funkcji Pattersona Widoczne piki dla wektorów: atom molekuły atom molekuły Widoczne piki dla wektorów: atom molekuły atom molekuły atom ciężki atom ciężki atom ciężki atom molekuły Widoczne piki dla wektorów: atom ciężki atom ciężki atom ciężki atom molekuły Taka jakość nie zawsze wystarcza!
18 Różnicowa mapa Pattersona Na podstawie zmierzonych obrazów dyfrakcji, tworzymy następującą funkcję: Wyraźne prążki + szum Następnie definiujemy różnicową mapę Pattersona: W wyniku otrzymaliśmy nieco zaszumioną funkcję Pattersona P H ciężkich atomów. Na jej postawie możemy stosunkowo łatwo wyznaczyć względne pozycje ciężkich atomów a w efekcie zespoloną amplitudę F H. Uwaga nie jest to trywialne [patrz Drenth] : Widzimy, że:
19 MIR- Różnicowa mapa Pattersona natywna Papaina enzym trawienny + 1 atom Hg pochodna izomorficzna Principles of protein x-ray crystallography J. Drenth [pewna część dostępna przez googlebooks]
20 MIR- wyznaczenie struktury molekuły Do pełnego wyznaczenia struktury musimy znać Z pomiarów dyfrakcyjnych znamy: Potrafimy wyznaczyć: Jak wyznaczyć? Wiemy, że: Zatem: Dlatego: Rozpisujemy: kosinus to funkcja parzysta = nie znamy znaku tej różnicy
21 MIR- wyznaczenie struktury molekuły (obrazowo) diagram Arganda Im Im F P F PH F PH -F H F P F H Re -F H Re Dwa przecięcia dwie możliwe fazy
22 M(ultiple!)IR Potrzebujemy jeszcze jedną pochodną izomorficzną Im -F H2 -F H Re Jedno przecięcie!
23 Dyspersja - przypomnienie Na tym wykładzie zakładaliśmy, że rozproszenie na krysztale jest spójną superpozycją rozproszenia na swobodnych elektronach opisanym przez Thomsona. Dla pojedynczego oscylatora Wymuszony, tłumiony oscylator harmoniczny elektron w atomie jest związany tłumienie np. promieniste Poprawki dyspersyjne do amplitudy rozpraszania na związanym elektronie. Całkowitą poprawkę uzyskuje się traktując atom jako zespół oscylatorów
24 MAD multiple-wavelength anomalous diffraction Niezwykle ważna metoda fazowania wykorzystująca dyspersję. Poprawki dyspersyjne do amplitudy rozpraszania są ważne w pobliżu krawędzi absorpcji. Makromolekuły (białka itp) są zwykle złożone z lekkich pierwiastków Popularny przykład Metionina jeden z aminokwasów budujących białka [zawiera siarkę] Można w niej podmienić selen za siarkę bez znacznej zmiany w strukturze białka
25 MAD multiple-wavelength anomalous diffraction Krawędź K selenu Z=34 Idea metody: Przez zmianę energii w pobliżu krawędzi absorpcji możemy zmieniać fazę fal rozproszonych na atomach selenu. Powoduje to zmianę intensywności i faz obserwowanych refleksów!
26 MAD anomalna dyfrakcja - równania Szereg Fouriera dla kryształu Współczynniki szeregu [czyli zespolone amplitudy refleksów] liczymy sumując po wszystkich atomach wszystkie normalne atomy anomalne Nierezonansowy czynnik struktury wszystkich atomów Nierezonansowy czynnik struktury anomalnych atomów
27 MAD anomalna dyfrakcja - pomiar znane nieznane Nierezonansowy czynnik struktury wszystkich atomów Nierezonansowy czynnik struktury anomalnych atomów Wykonując pomiary dla trzech energii (długości fali) możemy jednoznacznie wyznaczyć 3 niewiadome. Później trochę podobnie jak z ciężkimi atomami w MIR. Metodę można stosować jedynie na synchrotronach. Potrzeba przestrajalnego źródła X a sygnał jest mały J.Als-Nielsen, Modern x-ray physics
28 Inne metody fazowania dla kryształów 1) METODY BEZPOŚREDNIE Karle & Haumptman Nobel Chemia 1985 czysto matematyczno/statystyczne małe molekuły 2) Molecular Replacement -wielkie molekuły znamy mały fragment struktury. Próbujemy go obracać i przesuwać w obrębie molekuły. Przestrzeń poszukiwań 6D. Na szczęście można odseparować translację od rotacji.
29 Dyfrakcyjna mikroskopia rentgenowska fazowanie spekli
30 Twierdzenie Shannona o próbkowaniu If an function f(r) (object) is known to vanish outside the interval (-a,a) then its Fourier transform is completely specified by the values sampled at k n =ndk, where Dk=p/a, n=0,±1,.., ±. Hence, we can reconstruct the object from disretely sampled Fourier transform F n =F(nDk). Sampling with Dk is reffered to as Nyquist ctitical sampling. 0
31 Próbkowanie nadmiarowe Obraz dyfrakcyjny [zespolony] 2k max Dk FFT -1 Dk= Dk Nqst =p/r max Obiekt 2r max r max =p/dk Próbkując obraz dyfrakcyjny zgodnie z kryterium Nyquista jesteśmy w stanie go w pełni odtworzyć. Pamiętamy, że stosują próbkowanie niedomiarowe jesteśmy narażeni na aliasing Co się stanie jeżeli zastosujemy bardziej gęste próbki tj. próbkowanie nadmiarowe? FFT -1 Odtwarzamy obiekt i pusty obszar wokół niego! Dk= Dk Nqst /2 Tu zero!
32 Skończony nośnik Jeżeli wiemy, że nasz obiekt ma skończony nośnik (tj. ograniczony do pewnego) obszaru. To ta dodatkowa informacja, przy zastosowaniu, nadmiarowego próbkowania może posłużyć do rozwiązania problemu fazowego. Strata części informacji o obiekcie, zawartej w fazie, jest rekompensowana przez dodatkową informacje o jego nośniku! Warunki: 1) Nadpróbkowanie powinno być znaczne. [tym większe im większy szum] 2) Musimy użyć koherentnego promieniowania. Droga koherencji musi być większa niż obiekt + cała pusta przestrzeń wokół obiektu. 3) Metody tej nie da się zastosować dla kryształów. Okazuje się, że piki Bragga odpowiadają próbkowaniu Nyqista, komórki elementarnej.
33 Przykładowy iteracyjny algorytm odzyskiwania fazy Wiemy, że obiekt zajmuje obszar S przestrzeń odwrotna przestrzeń rzeczywista W każdej iteracji zerujemy ten obszar! przestrzeń odwrotna przestrzeń rzeczywista S
34 Demonstracja
35 Spekle rentgenowskie koherentna dyfrakcja na obiektach nieperiodycznych Układy biologiczne. Nie wszystko da się skrystalizować! Bakteria [E.Coli] Eukariota [drożdże] Ludzki chromosom
36 Ptychografia Najbardziej obiecująca i rozwijana metoda obrazowania rentgenowskiego w ciągu ostanich lat kilku lat
37 Ptychochrafia
38 KONIEC
Rozpraszanie i dyfrakcja promieniowania X
Rozpraszanie i dyfrakcja promieniowania X Przypomnienie rozpraszanie Thomsona na swobodnym elektronie Padająca fala płaska Emitowana jest fala kulista Klasyczny promień elektronu Będziemy używać przybliżenia
Rozpraszanie i dyfrakcja promieniowania X część II. Jak eksplorować przestrzeń odwrotną - eksperymenty dyfrakcyjne
Rozpraszanie i dyfrakcja promieniowania X część II Jak eksplorować przestrzeń odwrotną - eksperymenty dyfrakcyjne Poprzedni wykład Dyfrakcja a transformacja Fouriera k r R r(r) q=k-k Obraz dyfrakcji (rozproszenia)
Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną
INSTRUKCJA DO ĆWICZEŃ Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną I. Cel ćwiczenia Wyznaczenie struktury krystalicznej
Transformacje Fouriera * podstawowe własności
Transformacje Fouriera * podstawowe własności * podejście mało formalne Funkcja w domenie czasowej Transformacja Fouriera - wstęp Ta sama funkcja w domenie częstości Transformacja Fouriera polega na rozkładzie
Krystalografia. Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji
Krystalografia Analiza wyników rentgenowskiej analizy strukturalnej i sposób ich prezentacji Opis geometrii Symetria: kryształu: grupa przestrzenna cząsteczki: grupa punktowa Parametry geometryczne współrzędne
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Rentgenowska analiza strukturalna Synteza Fouriera. Synteza Pattersona. Rozwiązywanie modelowych struktur na podstawie analizy map Pattersona.
entgenowska analiza strukturalna Synteza Fouriera. Synteza Pattersona. ozwiązywanie modelowych struktur na podstawie analizy map Pattersona. Zakres materiału do opanowania Tranformacja Fouriera i odwrotna
Obrazowanie rentgenowskie. tomografia, mikroskopia, kontrast fazowy
Obrazowanie rentgenowskie tomografia, mikroskopia, kontrast fazowy Radiografia Timm Weitkamp XTOP2006 Detektor Prześwietlany obiekt Roentgen 1895 Wiązka rentgenowska Podstawowy mechanizm obrazowania kontrast
Synteza Fouriera. Synteza Pattersona. Rozwiązywanie modelowych struktur na podstawie analizy map Pattersona.
entgenowska analiza strukturalna Synteza Fouriera. Synteza Pattersona. ozwiązywanie modelowych struktur na podstawie analizy map Pattersona. Zakres materiału do opanowania Tranformacja Fouriera i odwrotna
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ
SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku
Metody numeryczne I Równania nieliniowe
Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem
Pasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Natęż. ężenie refleksu dyfrakcyjnego
Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM
ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
3 Podstawy teorii drgań układów o skupionych masach
3 Podstawy teorii drgań układów o skupionych masach 3.1 Drgania układu o jednym stopniu swobody Rozpatrzmy elementarny układ drgający, nazywany też oscylatorem harmonicznym, składający się ze sprężyny
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Metody numeryczne Wykład 4
Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
1. Liczby zespolone. Jacek Jędrzejewski 2011/2012
1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać
Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu
J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie
Przetwarzanie obrazów wykład 6. Adam Wojciechowski
Przetwarzanie obrazów wykład 6 Adam Wojciechowski Przykłady obrazów cyfrowych i ich F-obrazów Parzysta liczba powtarzalnych wzorców Transformata Fouriera może być przydatna przy wykrywaniu określonych
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
Wykład VI. Teoria pasmowa ciał stałych
Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra
Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania
Do etapów uzyskiwania białka odpowiedniego do badań krystalograficznych, a następnie określania struktury krystalograficznej należą:
Strukturę przestrzenną białek złożonych maksymalnie z ok 370 aminokwasów możemy uzyskać dzięki badaniom NMR W przypadku większych białek stosuje się metody krystalograficzne Odległości między obiektami
Wykład III. Teoria pasmowa ciał stałych
Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie
10. Analiza dyfraktogramów proszkowych
10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Transformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne
Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE
PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe
Programowanie w Baltie klasa VII
Programowanie w Baltie klasa VII Zadania z podręcznika strona 127 i 128 Zadanie 1/127 Zadanie 2/127 Zadanie 3/127 Zadanie 4/127 Zadanie 5/127 Zadanie 6/127 Ten sposób pisania programu nie ma sensu!!!.
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Oddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Wykład VI Dalekie pole
Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie
INTERFERENCJA WIELOPROMIENIOWA
INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
h λ= mv h - stała Plancka (4.14x10-15 ev s)
Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę
Pomiar rezystancji metodą techniczną
Pomiar rezystancji metodą techniczną Cel ćwiczenia. Poznanie metod pomiarów rezystancji liniowych, optymalizowania warunków pomiaru oraz zasad obliczania błędów pomiarowych. Zagadnienia teoretyczne. Definicja
Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE
Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Struktury i symetrie ciała stałego Rok akademicki: 2013/2014 Kod: JFT-2-011-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: Poziom studiów:
Definicja i własności wartości bezwzględnej.
Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności
Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Ćwiczenie 11. Wprowadzenie teoretyczne
Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia
1. Wykład NWD, NWW i algorytm Euklidesa.
1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.
Wykład FIZYKA I. 11. Fale mechaniczne. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 11. Fale mechaniczne Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html FALA Falą nazywamy każde rozprzestrzeniające
Mikroskop teoria Abbego
Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.
Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)
Liczby zespolone. x + 2 = 0.
Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą
Stara i nowa teoria kwantowa
Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż
Drgania wymuszone - wahadło Pohla
Zagadnienia powiązane Częstość kołowa, częstotliwość charakterystyczna, częstotliwość rezonansowa, wahadło skrętne, drgania skrętne, moment siły, moment powrotny, drgania tłumione/nietłumione, drgania
Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu
Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
= sin. = 2Rsin. R = E m. = sin
Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i
Krystalografia. Dyfrakcja
Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej
LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. MTiSP pomiary częstotliwości i przesunięcia fazowego MTiSP 003 Autor: dr inż. Piotr Wyciślok Strona 1 / 8 Cel Celem ćwiczenia jest wykorzystanie
Rentgenografia - teorie dyfrakcji
Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia
Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych
Arytmetyka liczb całkowitych Wykład 1 Na początku zajmować się będziemy zbiorem liczb całkowitych Z = {0, ±1, ±2,...}. Zakładamy, że czytelnik zna relację
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 6/14 Sumy Oto dwie konwencje zapisu skończonych sum wyrazów: (notacja Sigma, Fourier, 1820) Czasami stosowana jest ogólniejsza notacja,
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan
NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,
Rys. 1 Schemat układu obrazującego 2f-2f
Ćwiczenie 15 Obrazowanie. Celem ćwiczenia jest zbudowanie układów obrazujących w świetle monochromatycznym oraz zaobserwowanie różnic w przypadku obrazowania za pomocą różnych elementów optycznych, zwracając
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera
ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę
PRAWO OHMA DLA PRĄDU PRZEMIENNEGO
ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa
Wykład II Sieć krystaliczna
Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo
Elementy rachunku różniczkowego i całkowego
Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
Zadania treningowe na kolokwium
Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Szereg i transformata Fouriera
Analiza danych środowiskowych III rok OŚ Wykład 3 Andrzej Leśniak KGIS, GGiOŚ AGH Szereg i transformata Fouriera Cel wykładu: Wykrywanie i analiza okresowości w szeregach czasowych Przepływ wody w rzece
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.
Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.
S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony
Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą
S. Baran - Podstawy fizyki materii skondensowanej Pasma energetyczne. Pasma energetyczne
Pasma energetyczne Niedostatki modelu gazu Fermiego elektronów swobodnych Pomimo wielu sukcesów model nie jest w stanie wyjaśnić następujących zagadnień: 1. różnica między metalami, półmetalami, półprzewodnikami
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Rozdział 2. Liczby zespolone
Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział
Uniwersytet Śląski w Katowicach str. 1 Wydział
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Krystalografia (024) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator