kwartalna sprzeda elazek
|
|
- Edward Stachowiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Modele elowe MODELE NIELINIOWE Prłd. model low elow - orówe). Kwrl sred ele w lch wosł: Wc rogo rec wrł ro 999. Z wres wd, e red jes rosc lec cor wolejs wglde scee r) em ms red lowego le sosow red elow o mlejcm eme wros. model ogow < < ). Logrmjc model ogow ormm l l l o odswe ' l; ' l; ' l ormm model low ' ' ''. Wres r l, l) owerd rfo wrego model. sred s. s.) wrl sred ele,866 5,8 R,88 46,78,768 R, wrł l,69,,9,6,79,95,8,,,4,48,56,64 l,8,97 4,4 4, 4,6 4, 4,7 4, 4, 4, 4,8 4,5 4,9 4, Oscow model low m os:,846, 77 Oscow model ogow m os: 46,8,77,77 Zem rogo ow wese 5 46,8 5 75, 6 Prolem: wc rogo ow 6 wrł.
2 Modele elowe Model low wgldem rmerów. f,, f - fcje róowrocowe. Y f X ) X f ) Podswjc Z f X ),, ormm model low: Y Z Z Prłd. model rolc). Y odswjc Z X, Z X, ormm model low X X, Y Z Z Prłd. model herolc). Y X >, X odswjc Z /X, ormm model low Y Z Prłd. model logrmc). Y l X X, > odswjc Z lx, ormm model low Y Z
3 Modele elowe Model lerow. Model lerow o model dl órego seje jedoce resłcee o jego sro e, e ormm model low l low wgldem rmerów. Prłd. model włdc). X, >, Y ogóle Y X X Lercj oleg osrom logrmow model wjcowego jleej sosow logrm o odswe ) odswe ~ log, Z log Y, ormm model low Z ~ X X Prłd. model ogow). ogóle Y X, X >, X X Y X Lercj oleg osrom logrmow model wjcowego jleej sosow logrm rl - o odswe e) odswe ~ l, Z l X, Z ly, ormm model low Z ~ Z Z
4 Modele elowe 4 Esmcj rmerów fcj regresj rwolowej. Prmer wrej fcj elowej wc s e eoredo meod jmejsch wdrów, orsjc odowedego łd rów ormlch. Fcj welomow. Jej rmer,, wcm rowjc łd rów ormlch ór m os: Pows łd rów ormjem rrówjc do er ochode csowe fcj mech ) ) ) ) S,,,, W scególoc fcj wdrow. Jej rmer,, wcm rowjc łd rów ormlch ór m os: 4 Fcj ogow. Złoee >, >, >. Choc jes o eed scegól rde fcj welomowej o wro rorw go rówe oddele. Jej rmer, wcm re resłcee do osc lowej logrmjem oe sro). l l l Ułd rów ormlch m os: l l l l l l l l Rowjc ows łd rów lowch wgldem ' l ) olcm '. Sd e '. Prmer jes erreow jo wsółc elscoc,. jel me X wroe o %, o Y me s redo o %.
5 Modele elowe 5 Fcj włdc. Złoee >, >. Logrmjc oe sro ormm. l l l Ułd rów ormlch m os: l l l l l l Rowjc ows łd rów lowch wgldem ' l ' l) olcm ' '. Sd e ' e '. Prmer jes erreow jo red rros wgld,. jel me X wroe o jedos, o Y me s redo o - ) %. Fcj logsc. c e gde - cs, >, >, c >. Fcj logsc sł md m do os rogoow weloc sred rod wchodcego re. Prjmjem Njerw wcm wroc rmerów, c c l gde ) ) Nse orsjc olcoch c olcm c e,,, Prmer > gwrje see regc, rmer jes erreow jo oom sce smo oom).
6 Modele elowe Uwg. ) W rd elowm mr dosow model do dch sscch jes wsółc orelcj rwolowej ) ; R <, >. ) R ) Błd rogo dl model elowego resłcoego do model lowego omoc resłce ' f) gde f - fcj rócowl wr s worem S e ) Sτ d d W scególoc gd ' l o d τ d τ ' / o d τ d ) τ ' e o d τ τ e d c) Prłd. Mjc de τ τ ) Wcm wdrow fcj regresj. Korsjc sm w osej el łdm łd rów ormlch: sm
7 Modele elowe c c c 8 4 Rowem rlom) łd jes,464; -4,548; c,7 Zem fcj regresj wdrowej m os,464-4,548,7 Fcj jes dore dosow do dch sscch R,87, r,9). Zwm, e w m rd fcj low e jes dor fcj regresj rdo s wro wsółc orelcj Perso wdc o r leoc lowej e o r leoc jejolwe., , 5 4 8, 7 R, Y c s, 4 5, 4 R, 6 L. Kowls,
WIELORÓWNANIOWY MODEL LINIOWY. (MODEL REKURENCYJNY)
WIELORÓWNANIOW MODEL LINIOW. (MODEL REKURENCJN) W odelu wspu edoeruowe pow d e opóo e edogec. W prpdu sosue s progoowe łcuchowe. Błd progo wc s dl dego rów oddele logce w odelu edorówow. Prłd. Fr lecł
2 7k 0 5k 2 0 1 5 S 1 0 0 P a s t w a c z ł o n k o w s k i e - Z a m ó w i e n i e p u b l i c z n e n a u s ł u g- i O g ł o s z e n i e o z a m ó w i e n i u - P r o c e d u r a o t w a r t a P o l
Ó Ć Ó Ż Ó Ó Ó Ó Ż Ó Ę Ę Ę Ó Ź Ź Ę Ź Ź Ó Ź Ż Ó Ó Ę Ó Ń Ą Ó Ą Ź Ź Ó Ę Ź Ó Ż Ń Ź Ż Ż Ź Ę Ż Ł Ó Ź Ó Ń Ż Ę Ó Ź Ó Ż Ó Ć Ę Ó Ó Ó Ć Ż Ę Ę Ó ÓĘ Ż Ź Ż Ę Ó Ź Ź Ą Ó Ę Ź Ó Ź Ł Ń Ę Ę Ń Ó Ó Ę Ó Ó Ź Ż Ó Ó Ź Ź Ó Ó Ż Ó
Ę Ą Ę Ł Ł Ę ż Ł ż Ą ż ż ż ć ż ć Ł ż Ę Ą Ę Ł ż Ó ć ŚĆ Ś Ś Ń ż ż Ż Ć Ń Ę Ę ÓĘ ć ż ż Ó Ę Ó ć ć ż ż ż ż ż Ą ć Ł ż Ó ć ć Ł Ś ć Ż Ź Ś ć ć ż Ę ż ć ć ż ć Ą ż Ś Ł Ł ż ć ż ć Ą ż ć Ś ż ż ż ć ć ć ć Ć ż ć ż ć ż ż ż
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostką budżetową Zamawiającym Wykonawcą
W Z Ó R U M O W Y n r 1 4 k J Bk 2 0 Z a ł» c z n i k n r 5 z a w a r t a w G d y n i w d n i u 1 4 ro ku p o m i 2 0d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j ei d n o s t k» b
Większość obiektów można zapisać przy użyciu równań stanu:
. ÓWNNI SNU. ów Węość oów oż pć pr żc rówń : D dl łdów corch, o dl łdów corch cr ą lż od c,,, D N podw ch rówń wc ch loow low łd wlowrowgo (r..) gd: wor ch lżch, wor o wrch łdowch,,, wor wń wścowch, wor
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
ILOCZYNY WEKTORÓW. s równoległe wtedy i tylko wtedy. b =
St Kowls Włd mtemt dl studentów erunu Mehn włd ILOZYNY WEKTORÓW 3 { : } trówmrow prestre tór mon nterpretow n tr sposo: Jo ór puntów W te nterpret element prestren 3 nw s puntm Nps on e punt m współrdne
Wykład 6. Stabilność układów dynamicznych
Wyłd 6. Sblość ułdó dymcych Rożmy obe dymcy (uoomcy e poddy ymueom) d d d F( ) dm d Pu róog d F( ) r d Obe loy r r mcer( ) de Ułd e bly eżel yrącoy e u róog oe prodoy do u róog Defc blośc ee Lpuo Pu róog
2 p. d p. ( r y s. 4 ). dv dt
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X N U M E R Y C Z N Y O P I W Y S T R Z E L E N I A S I A T K I S P R O C E S U W A S P E K C I E I N T E R A K C J I D Y N A
Model MD14. Model MD8. Model MD13. Dostępne kolory: złoty. Cena: 3,52 zł. Dostępne kolory: złoty, srebrny, brąz. Cena: 8,10 zł
Model MD14 Dostępne kolory: złoty Cena: 3,52 zł Model MD8 70mm Cena: 8,10 zł Model MD13 40mm Cena: 1,80 zł 3 Model MD18 40mm Cena: 1,80 zł Model MD30 Cena: 2,34 zł Model MD42 Cena: 2,80 zł 4 Model MD47
Regresja liniowa. (metoda najmniejszych kwadratów, metoda wyrównawcza, metoda Gaussa)
Regresj low (metod jmejszch kwdrtów, metod wrówwcz, metod Guss) stot metod postult Guss współczk prostej kostrukcj prostej teoretczej trsformcj fukcj elowch przkłd Regresj low czm poleg? Jeśl merzoe dwe
Rozdział 1. Nazwa i adres Zamawiającego Rozdział 2. Informacja o trybie i stosowaniu przepisów Rozdział 3. Przedmiot zamówienia
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 0 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f S p r z» t a n i e i u t r z y m a n i e c z y s t o c i g d y
δ δ δ 1 ε δ δ δ 1 ε ε δ δ δ ε ε = T T a b c 1 = T = T = T
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 8 9 6-7 7 X M O D E L O W A N I E P A S Z C Z Y Z N B A Z O W Y C H K O R P U S W N A P O D S T A W I E P O M W S P R Z D N O C I O W Y C H
2 0 0 M P a o r a z = 0, 4.
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X A N A L I Z A W Y T R Z Y M A O C I O W A S Y S T E M U U N I L O C K 2, 4 S T O S O W A N E G O W C H I R U R G I I S Z C Z
Dziś: Pełna tabela loterii państwowej z poniedziałkowego ciągnienia
Dś: l l ń C D O 0 Ol : Z l N 40 X C R : D l ś 0 R 3 ń 6 93 Oź l ę l ę -H O D ę ź R l ś l R C - O ś ę B l () N H śl ź ę - H l ę ć " Bl : () f l N l l ś 9! l B l R Dl ę R l f G ęś l ś ę ę Y ń (l ) ę f ęś
Ń Ł Ń Ó Ł Ę Ó Ó Ę ĘŚ Ó ÓŚ Ó Ę Ć Ó Ć Ę Ł Ó Ę Ć Ś Ż Ś Ś Ó Ó Ś Ń Ś Ó Ę Ę Ż Ć Ś Ó Ę Ó Ę Ę Ę Ę Ó Ś Ę Ę Ł Ć Ć Ś Ó Ę Ź Ę Ż Ź Ś Ź Ę Ę Ę Ó Ó Ó Ę Ę Ę Ę Ó Ę Ę Ć Ę Ć Ł Ź Ę Ę Ś Ń Ę Ć Ź Ó Ź Ó Ó Ę Ć Ć Ć Ź Ę Ę Ć Ę Ę
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
Z a ł» c z n i k n r 5 d o S p e c y f i k a c j i I s t o t n y c h W a r u n k Zó aw m ó w i e n i a Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 1 1 2 0 14 W Z Ó R U M O W Y z a w a r t a w Gd y n
0 ( 1 ) Q = Q T W + Q W + Q P C + Q P R + Q K T + Q G K + Q D M =
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O P T Y M A L I Z A C J A K O N S T R U K C J I F O R M Y W T R Y S K O W E J P O D K Ą T E M E F E K T Y W N O C I C H O D
Spójne przestrzenie metryczne
Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł
r h SSE EKONOMETRIA - WZORY p pk Opracowała: Joanna Kisielińska 1 Metody doboru zmiennych Metoda Nowaka Metoda Hellwiga Metoda momentów
Opowł: Jo Kselńs EKONOMETRIA - WZORY Metod doou zmeh Metod Now * t I I I Metod Hellwg om L l l K p p pk h l l K p H l h pk Metod mometów e Regesj post Modele: MNK m s s Y X C s v Opowł: Jo Kselńs Współz:
(liniowy model popytu), a > 0; b < 0
MODELE EKONOMERYCZNE Model eoomercz o ops sochasczej zależośc adaego zjawsa eoomczego od czów szałującch go, wrażo w posac rówośc lu uładu rówośc. Jeśl p. rozparujem zjawso popu a oreślo owar lu grupę
Metody Numeryczne 2017/2018
Mod urcz 7/8 Ior Sosow III ro Iżr Oczow II ro Włd 5 Rodzj roscj 8 8 8 - - - - 3 8 8 6 8 roscj rocj roscj jdosj [ ] roscj śrdowdrow d Twrdz Wrsrss ów ż d dowoj ucj oż zźć wo o dowo ł odchu s od j ucj Br
r = ψ x ( 5 ) = x ψ ( 6 ) dn = q(x)dx ( 7 ) dt = μdn = μq(x)dx ( 8 ) M = M ( 1 )
M O D E L O W A N I E I N Y N I E R S K I E n r 4 7, I S S N 1 8 9 6-7 7 1 X O K R E L E N I E O S I O B R O T U M A Y C H R O B O T W G Ą S I E N I C O W Y C H D L A P O T R Z E B O P I S U M O D E L
kszta to aniu ono o z sn go kanonu i kna
doi: 10.15503/onis2017.385.396 Ro a syst Ó ks r ki h kszta to aniu ono o z sn go kanonu i kna A Dw j c I s S j, U s M j K. G 11, 87-100 T e-m l:. w j c @ m l.c m A strakt Te : W s m s m, m s j m m h (
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa w Gdyni Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 8 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e ro b ó t b u d o w l a n y c h w b u d y n k u H
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA Woskowe sttstcze - egesj koelcj teść Wpowdzee Regesj koelcj low dwóch zmech Regesj koelcj elow - tsfomcj zmech Regesj koelcj welokot Wpowdzee Jedostk zoowośc sttstczej mogą ć chktezowe
Instrukcja zarządzania systemem informatycznym przetwarzającym dane osobowe w Chorągwi Dolnośląskiej ZHP Spis treści
C h o r ą g i e w D o l n o l ą s k a Z H P Z a ł ą c z n i k 5 d o U c h w a ł y n r 2 2 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o 6 l ą s k i e j Z H P z d n i a 0 8. 0 62. 0 1 5 r. I n
ź Ł Ą Ę Ź Ę Ę Ą Ę Ę Ę Ę Ę Ź Ą Ę Ą Ź Ę Ź Ó ć Ź Ó Ę Ź Ź ć ć Ę ć Ó Ó Ę Ę Ę Ę Ó Ę Ę ć Ć Ł Ó Ź ć ć ć Ę ć Ę Ł Ź Ź Ł ć ź ź Ę ć Ś Ą ć ć Ą ć Ś Ę Ź Ę Ź Ę ć Ó Ń Ę Ś Ę ź Ź Ę Ę Ć Ę Ń Ę Ę ć Ą Ę ć Ę ć Ę Ź Ę Ć Ę ź ć
Podstawy praktycznych decyzji ekonomiczno- finansowych w przedsiębiorstwie
odswy pryczych decyzji eooiczo- fisowych w przedsiębiorswie l wyłdu - Wrość pieiądz w czsie 4 h - Efeywość projeów w iwesycyjych 3-4 h -Wżoy osz piłu u WACC h odswy pryczych decyzji eooiczo- fisowych w
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 03 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U d o s t p n i e n i e t e l e b i m ó w i n a g ł o n i e n i
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 2 02 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A U s ł u g a d r u k o w a n i a d l a p o t r z e b G d y s k i e g o
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
Miś Colargol [B] Choir. q=120 [A] lar -gol. Co Co. to się włas - Wam. -nia. kła -nia. spie. Mis wys. lecz kie choć bar - w_cyr wać chciał
rnżcj Pweł Stuczyńsk 8 10 12 14 q=120 [A] 16 18 Ms co zw sze ć 1 4 5 6 spe w_cyr wć chcł wcąz fł szo ł pos bę dze ce m wszys rod drzew dł ze spe z przed ke mu z b fle pr zdz w st ck wę ce zcz nę Mś lrgol
8 6 / m S t a n d a r d w y m a g a ń e g z a m i n m i s t r z o w s k i dla zawodu E L E K T R Y K K o d z k l a s y f i k a c j i z a w o d ó w i s p e c j a l n o ś c i d l a p o t r z e b r y n k
doi: /onis A strakt 64 Ogrody Nauk i Sztuk nr 2017 (7)
doi: 10.15503/onis2017.64.76 O raz si i ofiar rz o y szko n. Ana iza n ga i narra a h K l K c U s M C -S s j L b,. M. C -S s j 5, 20-031 L b E-m l: l.l ew c @p c. mc.l bl.pl A strakt Cel b. C m b b s b
INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA
prwch rękops do żytk słżboweo ISTYTUT RGOLKTRYKI POLITCHIKI WROCŁAWSKIJ Rport ser SPRAWODAIA r LABORATORIUM TORII I THCIKI STROWAIA ISTRUKCJA LABORATORYJA ĆWICI r 9 Sterowe optymle dyskretym obektem dymcym
SKALA PUNKT OW A DO ROZPAT R Y W A N I A WNIOS K Ó W SKŁADANYCH PRZE Z OSOB Y NIEPEŁNO S P R A W N E NA LIKWIDACJĘ BARIE R
Załącznik nr 3 do Zasad dofinansowania likwidacji barier architektonicznych, technicznych i w komunikowaniu się osób niepełno spra wny c h. w związku z indywidualnymi potrzebami SKALA PUNKT OW A DO ROZPAT
Def.12. Minorem stopnia k N macierzy nazywamy wyznacznik utworzony z elementów tej macierzy stojących na przecięciu dowolnie wybranych
Fk. Niech mciee i B ego smego sopi będą odrcle or iech R-{}, N. Wed mciee -, T, B,, są kże odrcle i prdie są róości:. de ( - )=(de ) -. ( - ) - =. ( T ) - =( - ) T. (B) - =B - -. ( ) - = ( - ). ( ) - =(
ć Ę ó ó Ź ó ó ć ź ć ć Ś ć Ź ó Ó ó ó Ś ó ó ć ó ć Ź ź ć ó ź ć ó ź ó ó ó ó ć Ą ó ó ź ó ó ó ć ź ć ć ź ź Ś ó ó ó ć ó Ź ó ó ć ó ó ó ó Ę ó ó ź Ę ó ó ó ć ó ó ź Ć Ź ź ó ó ó ó ó ó ó óź ź ó ź ó ó ó ó ć ó ó ć ó ó
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 02 02 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f Z a b e z p i e c z e n i e m a s o w e j i m p r e z y s p o r t
Mazurskie Centrum Kongresowo-Wypoczynkowe "Zamek - Ryn" Sp. z o.o. / ul. Plac Wolności 2,, Ryn; Tel , fax ,
R E G U L A M I N X I I I O G Ó L N O P O L S K I K O N K U R S M Ł O D Y C H T A L E N T Ó W S Z T U K I K U L I N A R N E J l A r t d e l a c u i s i n e M a r t e l l 2 0 1 5 K o n k u r s j e s t n
9 6 6 0, 4 m 2 ), S t r o n a 1 z 1 1
O p i s p r z e d m i o t u z a m ó w i e n i a - z a k r e s c z y n n o c i f U s ł u g i s p r z» t a n i a o b i e k t ó w G d y s k i e g o O r o d k a S p o r t u i R e ks r e a c j i I S t a d i
Opis i zakres czynności sprzątania obiektów Gdyńskiego Centrum Sportu
O p i s i z a k r e s c z y n n o c is p r z» t a n i a o b i e k t ó w G d y s k i e g o C e n t r u m S p o r t u I S t a d i o n p i ł k a r s k i w G d y n i I A S p r z» t a n i e p r z e d m e c
S z a nowni P a ń s t wo! t y m rok u p oj a wi ą s i ę p i e rws i a b s ol we nc i rz e m i e ś l ni c z e j na u k i z a wod u na wy s z k ol e ni e, k t ó ry c h m i s t rz om s z k ol ą c y m b ę
Przedmiotowy system oceniania w klasie III a rok szk. 2018/2019
dw ss w ls III s. 2018/2019 d d L I U ę ś ó w ds [1] Głs, h, wź, b Wwd sę l, d słw, bg słww. dsą [2] slb, bd wl, l ęśw s. Wwd sę d, h, wwdź dłżs s lg só, wdlw s d. ds [3] w, wl, ws f dlźć śl fg s. wwd
DOPASOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW
DOPAOWANIE ZALEŻNOŚCI LINIOWEJ DO WYNIKÓW POMIARÓW Jedm stotch gdeń l dch pomroch jest dopsoe leżośc teoretcej do kó pomró. Dotc oo stucj gd dokoo ser pomró pr elkośc które są e soą poąe leżoścą f... m
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y G C S D Z P I 2 7 1 0 1 12 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a ( u d o s t p n i e n i e ) a g r e g a t u p r» d o t w
Zestawienie porownawcze najpopularniejszych i darmowych programow GPS. dostepnych na smartfony i tablety
Zesee pre pplres r prr prr r ere, prr pree prr s sep sr ble ; > s r J Ž ˆ š š š š Ÿ š š rr e pr r p Ws ble e p ere ps rps Trs r sr l Dse r r r r r r r r ere ers prr..2 6.2..7 2. 2. 7. 8....2.2 2. 7...2
. O s 48, O
doi: 10.15503/onis2017.222.236 Stoso ani o o y dydakty zny h a kr aty n nau zani at atyki Ewel J U s O s. O s 48, 45-052 O ej5@wp.pl A strakt Cel b. C m b b s, j m s s s m j h m m. T m j m j m m, h ó m
6. K o ł a 7. M i s a
S U P 6 0 9 v. 2 0 16 G R I L L R U C H O M Y, P R O S T O K Ą T N Y, Z D O L N Ą I B O C Z N Ą P Ó Ł K Ą S U P 6 0 9 I N S T R U K C J A M O N T A 7 U I B E Z P I E C Z N E G O U 7 Y T K O W A N I A S
UBEZPIECZENIA GRUPOWE - status symetryczny a status łącznego życia i ostatniego przeżywającego AUTORZY: MICHAŁ BOCZEK MAŁGORZATA CZUPRYN
UEZPIECZENI GRUPOWE - sus srn sus łąngo żi i osnigo rżwągo UTORZY MICHŁ OCZEK MŁGORZT CZUPRYN Rowż gruę osób. Owiśi s lib nurlną więs od. Nih i on wi i osob dl i=,,... us gru sus łąngo żi sus osnigo rżwągo
1 Wynagrodzenie Wykonawcy zostanie podzielone na równe raty płatne cykliczne za okresy 2 tygodniowe w. okresie obowiązywania umowy.
W Z Ó R U M O W Y N r :: k J Bk 2 0 1 5 Z a ł» c z n i k n r 4 A z a w a r t a w G d y n i d n i a :::::: 2 0 1 5 r o k u p o m i d z y G d y s k i m C e n t r u m S p o r t u j e d n o s t k» b u d e
Spis świadectw wydanych przez COCH w 2006 r.
Numer świadectwa Spis świadectw wydanych przez COCH w 2006 r. Numer rejestracyjny (punkt 3 świadectwa) Uznaje się jako (punkt 6 świadectwa) Nr protokołu badań (punkt 7.2.3 świadectwa) Data waŝności świadectwa
Analiza obwodów elektrycznych z przebiegami stochastycznymi. Dariusz Grabowski
Aliz obwodów elekryczych z przebiegmi sochsyczymi Driusz Grbowski Pl wysąpiei Sochsycze modele sygłów Procesy sochsycze Przekszłcei procesów sochsyczych przez ukłdy liiowe Ciągłość i różiczkowlość sochsycz
W W Y D A N I E S P E C J A L N E S z a n o w n i P a ń s t w o! Spis t reści: y d arz e ni a c z e rw c ow e w 3 P oz nani u, r. Z
M 50-r o c z n i c a P o z n a ń s k i e g o C z e r w c a 56 r. KAZIMIERA IŁŁAKOWICZÓWNA Ro z s t r z e l a n o m o j e s e r c e C h c i a ł a m o k u l t u r z e n a p i s a ć n a p r a w d ę i n t
Technologia i Zastosowania Satelitarnych Systemów Lokalizacyjnych GPS, GLONASS, GALILEO Szkolenie połączone z praktycznymi demonstracjami i zajęciami na terenie polig onu g eodezyjneg o przeznaczone dla
Chorągiew Dolnośląska ZHP 1. Zarządzenia i informacje 1.1. Zarządzenia
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 0 l i s t o p a d a2 0 1 4 r. Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e
konkursó Z ta ab a i Z ta aba
doi: 10.15503/onis2017.179.191 Ty y zada o onisty zny h kszta tu y h t Ór z y ni u znió rs kty i sy hodydakty zn na rzyk adzi konkursó Z ta ab a i Z ta aba Z C ec w W F P s j K s j U s m. A m M P,. F 10,
Ogrody Nauk i Sztuk nr 2017 (7) F 10, P. A strakt. m critical discourse analysis. P b ó. Prix Goncourt des lycéens j s ó.
doi: 10.15503/onis2017.149.158 W adza nagrody it ra ki. Prix G nc urt o u duka i Al cj C w e W F P s j K s j (UAM),. F 10, 55-200 P e-m l: l c @.pl A strakt Cel b : A s s j N G ó m j Prix Goncourt des
z d n i a 2 3. 0 4.2 0 1 5 r.
C h o r ą g i e w D o l n o l ą s k a Z H P I. P o s t a n o w i e n i a p o c z ą t k o w e U c h w a ł a n r 1 5 / I X / 2 0 1 5 K o m e n d y C h o r ą g w i D o l n o l ą s k i e j Z H P z d n i a
Ó Ą Ó Ó Ó Ó Ż Ą Ę Ś Ż Ś Ó Ó Ó Ż Ś Ó Ó Ć Ż Ę Óż ż Ę Ó Ę Ś Ó Ó Ą Ż Ś Ż Ż Ź Ż ź Ż Ż ż Ó Ę Ę Ż Ó Ó Ó Ó Ó Ż Ó Ó Ż Ó Ę ÓĘ Ó Ó ż Ó Ó Ż ź ź ź ź Ó ż Ę Ó Ś Ó ź ż ź ó Ó Ó Ó Ż Ó Ż ź Ś Ś Ś Ż ż Ż Ś Ż Ż Ż Ż Ż Ó Ż Ż
Ą Ą Ą Ą Ą Ą Ą Ą Ł Ó Ę Ń Ą Ą Ę Ł Ę Ś Ś Ś Ś Ł Ą Ż Ś Ź Ł Ó Ł Ą Ł Ę Ł Ą Ą Ą Ą Ą Ą Ą ĄĄ Ą Ś Ć Ą Ę Ę Ć Ł Ł Ś Ź Ź Ó ĆŚ Ż Ł Ś Ś Ź Ź Ó Ę Ę Ę Ó Ś Ź Ą Ę Ą Ś Ę Ł Ś Ł Ś Ś Ń Ś Ę Ę Ż Ż Ó Ś Ą Ć Ą Ź Ń Ś Ś Ś Ć Ł Ś
RÓWNANIA RÓŻNICZKOWE WYKŁAD 7
RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 5 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r z e g l» d ó w k o n s e r w a c y j n o -
Spójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
S.A RAPORT ROCZNY Za 2013 rok
O P E R A T O R T E L E K O M U N I K A C Y J N Y R A P O R T R O C Z N Y Z A 2 0 1 3 R O K Y u r e c o S. A. z s i e d z i b t w O l e ~ n i c y O l e ~ n i c a, 6 m a j a 2 0 14 r. S p i s t r e ~ c
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)
VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)
ż ź ż Ś Ź Ś Ś ń ń Ś ń Ś Ś ż Ś Ś ż ćś ż ż ż Ł ć ć ć Ść ń Ś ż ż Ś ż ń Ź Ś ż ż ć Ś Ś Ś Ś Ś Ś Ś ź ż ń Ę ż ć Ś Ś ć ż Ś Ś ż ż ć Ś Ś ć Ś Ś ćś Ś Ś ń ż ń Ś ż ć ć Ć Ś ń Ź ń ć ć ć Ść ń ń Ś Ś ż ĘĄ Ś ż ć ć Ś ć ń ć
doi: /onis O s 48, O A strakt 168 Ogrody Nauk i Sztuk nr 2017 (7)
doi: 10.15503/onis2017.168.178 Odkry ani i s o agani roz o u zdo no i i ta ntó at aty zny h ród u znió T m S we U s O s. O s 48, 45-052 O e @ e.e A strakt Te. T j s m m. J s js j s j m m. P b j s, m m
Zajęcia pozalekcyjne w ZSSiH rok szk. 2015/16 semestr 1 tzw. "19"
Zajęcia pozalekcyjne w ZSSiH rok szk. 2015/16 semestr 1 tzw. "19" lp. nazwisko nauczyciela kod rodzaj zajęćjęć "19 godz" nazwa zajęć miejsce dzień godzina 1 M.ADAMCZYK YY ćwiczenia Sienkiewicza poniedziałek
Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01
WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r
POLA ELEKTROMAGNETYCZNE
5. Pro mie nio wa nie elek tro ma gne tycz ne (PEM) nie jo ni - zu ją ce wy stę pu je w po sta ci na tu ral nej (źró dła mi są Zie - mia, Słoń ce, zja wi ska at mos fe rycz ne) oraz sztucz nej (zwią za
Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej
Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz
1TEH Wychowawca: mgr Aleksandra Kozimor Poniedziałek Wtorek Środa Czwartek Piątek N P S N P S N P S N P S N P S
1TEH Wychowawca: mgr Aleksandra Kozimor 1 8:00-8:45 SK BHP-1/2 201 OE org-1/2 305 OE tpw-1/2 305 KK j.p 214 AM his 114 KA DzP-2/2 214 OW dzi-2/2 114 KA DzP-2/2 214 2 8:55-9:40 KK j.p 210 OE org-1/2 305
Ż Ż Ż ę ęć Ą Ł ż Ę ę Ą Ż ń ń Ś ę Ć Ó Ó Ó Ó Ó Ę Ó ż Ż ę ż ż ń ę Ń Ą ż Ł ń Ę @ o (^ l r 3 d } LO l'*!q..\ C d 9 =i,ti 6!> +!!- t '7 - o Ń =ń il Ęt :l! Ź t 6 U >,o!ó =l O >,r o o = r d! dl.9 t t U> :il
Wyniki pierwszego kolokwium Podstawy Programowania / INF
1 Ab Hasan 240917 B 0,8 0,7-1,5 50% 2 Ad Tomasz 241149 A 1,0 0,9 0,8 2,7 90% 3 Al Adam 241152 A 0,8 0,5 0,5 1,8 60% 4 An Jan 241780 C 0,3 0,0-0,3 10% 5 An Jakub 241133 A 0,8 0,9 1,0 2,7 90% 6 An Kacper
2.3. ROZCIĄGANIE (ŚCISKANIE) MIMOŚRODOWE
.. RZCĄGNE (ŚCSKNE) MMŚRDWE Rcągne (ścskne) mmśrdwe wstępuje wówcs gd bcążene ewnętrne redukuje sę d wektr sł prstpdłeg d prekrju pprecneg cepneg p jeg śrdkem cężkśc (rs. ). Rs. Złżene: se C r C są sm
Rozdział 1. Nazwa i adres Zamawiającego Gdyńskie Centrum Sportu jednostka budżetowa Rozdział 2. Informacja o trybie i stosowaniu przepisów
Z n a k s p r a w y G C S D Z P I 2 7 1 07 2 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f U s ł u g i s p r z» t a n i a o b i e k t Gó w d y s k i e g o C e n
n ó g, S t r o n a 2 z 1 9
Z n a k s p r a w y G O S I R D Z P I2 7 1 0 6 3 2 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A D o s t a w a w r a z z m o n t a e m u r z» d z e s i ł o w n i z
Zastosowania matematyki w chemii. Marek Kręglewski
Zsosow mem w em Mre Kręglews Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze.
... Op.;.!.?Q..., dnia.. JJ./;!.{::eie.!.i2...?.9.!.6. r. I. Zasoby pieniężne: dk. d 1 1 k. 11 ooa oa 21-
OŚWIADCZENIE MAJĄTKOWE wójta, zastępcy wójta, sekretarza gminy, skarbnika gminy, kierownika jednostki organizacyjnej gminy, osoby zarządzającej i członka organu zarządzającego gminną osobą prawną oraz
Gdyńskim Ośrodkiem Sportu i Rekreacji jednostka budżetowa
W Z Ó R U M O W Y z a w a r t a w G d y n i w d n i u 2 0 1 4 r po m i d z y G d y s k i m O r o d k i e m S p o r t u i R e k r e a c j i j e d n o s t k a b u d e t o w a ( 8 1-5 3 8 G d y n i a ), l
KLASYFIKACJA SZKÓŁ 2015/2016 SZKOŁY PODSTAWOWE. K o s. S i a t k ó w k a. r ę c. y k ó w k a. r ę c. n a. n a. c h ł
Lp B g I d B g f 4 - b j U j U j r ę r ę K K T T C ż H W ż B g um d L d d d d d d d A 1 Dbr 27 18 37 8 10 14 18 8 11 16 16 14 11 11 31 6 256 2 p 7 6 10 24 10 8 11 9 11 8 31 18 9 9 10 10 11 7 202 3 Kd 6
Ł ś ą ś ż ą Ż ż ż ó ó ó ó ś ą ą Ś ą ą ó ą ś Ż ą ż ż ż ą ą Ś ą ą ą ż ś ą ó ą Ę ą ą ś ą ą ó ś ą ś Ą ż ż ą ą Ś ą Ż ą ż Ł ó ą ś ą ó ó Ę ą ą Ś ą ą ó ą ą ż ś ą ą Ę ż Ąą ą ś ą ą ą ą ś Ż ó ą ą ż ż ą ą Ś ą Ę ó
Rozdział 1. Nazwa i adres Zamawiającego Gdyński Ośrodek Sportu i Rekreacji jednostka budżetowa Rozdział 2.
Z n a k s p r a w y G O S I R D Z P I 2 7 1 0 2 32 0 1 4 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f O b s ł u g a o p e r a t o r s k a u r a w i s a m o j e z d n
SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA
Z n a k s p r a w y GC S D Z P I 2 7 1 0 1 42 0 1 5 S P E C Y F I K A C J A I S T O T N Y C H W A R U N K Ó W Z A M Ó W I E N I A f W y k o n a n i e p r a c p i e l g n a c y j n o r e n o w a c y j n
Ocena wpływu niepewności estymacji parametrów modeli czujników pomiarowych na wartości maksymalnych błędów dynamicznych
Polech rows Wydzł Iżyer Elerycze operowe edr oy ech Iforcyych Oce wpływ epewośc esyc prerów odel czów porowych wrośc sylych łędów dyczych Dr ż. rzyszof oczy rów 5.3.5 Pl wysąpe. Błędy w porch welośc słych
N.I!.,{..d:"~/.o./??.!?;if..-!fJ.:
OŚWIADCZENIE MAJĄTKOWE radnego powiatu - ~(!)I@& 4 dnia??
Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś
TeSys styczniki Model D
Dobór styczników Sys styczniki Model D Zastosowanie Wszystkie typy systemu sterowania Znamionowy pràd àczeniowy Ie max AC-3 (Ue 0 V) Ie AC-1 (θ 60 C) Znamionowe napi cie àczeniowe Liczba biegunów 9 A 12
Rozkaz L. 7/ Kary organizacyjne 11. Odznaczenia Odznaczenia harcerskie
C h o r ą g i e w D o l n o l ą s k a Z H P W r o c ł a w, 3 1 l i p c a 2 Z w i ą z e k H a r c e r s t w a P o l s k i e g o K o m e n d a n t C h o r ą g w i D o l n o 6 l ą s k i e j Z H P i m. h m.
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zdń zmkniętc i scemt ocenini zdń otwrtc Klucz odpowiedzi do zdń zmkniętc 4 7 9 0 4 7 9 0 D D D Scemt ocenini zdń otwrtc Zdnie (pkt) Rozwiąż nierówność x x 0 Oliczm wróżnik i miejsc
Baza Porad Serwisowych Baza Porad Serwisowych Baza Porad Serwisowych Baza Porad Serwisowych SIDE PIN. R678 10k Q605 2SC1815. R694 10k.
ELEKTRONIKI ELEKTRONIKI I O G O I G T T HV G G G V L HOL TG ST TO.V SIDE PIN P KEYSTONE V VENTER HSIZE VSIZE HPHSE P S S S S V V H K TO POWER ORD R TL PW T p kv R (W) /V R (/W) Q SD R (/W) Q S. V R k R
Zastosowania matematyki w chemii. Marek Kręglewski
Zsosow mem w em Mre Kręglews Progrm zjęć. Czm są meod umerze? Tworzee lgormu.. Ierje rozwąze rówe pu =().. Rozwązwe rówń jedej zmeej: meod sej, Newo sez.. Cłowe umerze: meod rpezów Smpso. 5. Różzowe umerze.
Ł Ś Ą ó ó ó ś ó ó ś ó ó ó ó ó Ó ś ó ś ó ó ś Ó ó Ó ś ó ś ó ó ó Ź ó ó ś ó ó ó ś ó ść ó ó ó Ą ó ś ó ó ó ś śó ó ó ź ó ó ś ó Ź ś ó ć ó ś Ę Ą ó ś óź ó ó ś ó ś Ę ó Ó ź ść ó ó ś ś ś Ó ó ź ó ś Ó ó ó ó ó ó ś Ó ó