Metody Numeryczne 2017/2018
|
|
- Krzysztof Nawrocki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Mod urcz 7/8 Ior Sosow III ro Iżr Oczow II ro Włd 5 Rodzj roscj roscj rocj roscj jdosj [ ] roscj śrdowdrow d Twrdz Wrsrss ów ż d dowoj ucj oż zźć wo o dowo ł odchu s od j ucj Br od ogóch zz jszgo wou so jdosj rzżjącgo dą ucję
2 Aroscj dsr śrdowdrow ch ędą d wrośc ucj w uch ucję ędz rosowć ą ucją zwą ucją rosującą u rzż ucj Aroscj Aroscj sorułow w owższ sosó og doru rrów sło ło orśo rru docząc zcj wor j wor odchł udowodć ż d
3 Aroscj ucj jczęścj osć ocj owj ucj zowch o o Podswow ucj zow użw w roscj o: - jdo { 3 } - wo Czszw - wo gdr s s s - ucj rgoorcz { } Aroscj ow roscjśrdowdrow od jjszch wdrów w j j w j H Wrż sojąc o rwj sro osgo wzoru js ucją rrów oż ć ozczo jo H A zźć jj u H
4 Aroscj H j j j j j j Po rosch rzszłcch orzuj: Aroscj G d ch T G j j j
5 Aroscj W zs crzow rów rzjuj osć G T GG T d Moż udowodć ż wzcz crz G T G js róż od zr s ułd js osow zś jgo rozwąz dj u ucj H Podo z uwg o ż crz js crzą srczą dod orśoą rozwąz djąc or ułd wsółczów js jdozcz j j j Aroscj Aroscj ow Po wożu orzuj W W W W W W W
6 Aroscj Aroscj uów w R 3 łszczzą z Rów odu czgo Gd w zs crzow osć: Ułd rówń orch j sosó rozwązw są ogcz j w wdu roscj łszczź W rc sosuj sę roscję wo s rzcgo so u owrzch druggo so d zgdń roscj w rzsrz R 3 Aroscj wo wższch so rzdo uzsd zcz odo oż rowdzć do złgo uwruow crz G T G d d d Aroscj d w roscj so sę z zgd dooru rrów j ż ow ucj órj osć js z ror Moż o ć rzłd jd z ucj: 5 3
7 Aroscj Moż w wdu sosowć od roscj owj rzszłcjąc owższ oruł do osc owj o zogrzowu wzoru ozczjąc Y A orzuj ucję ową Y A wsółcz rów ocz z zżośc A Podo ogrzując drug wzór orzuj o odswu Y X orzuj ucję ową Y ABX Koj dw wzor oż srowdzć do osc owj wrowdzjąc ozcz Y d 3 X d W os rzdu odsw X W rzch osch wzorch wsółcz są ocz w sosó zośrd Aroscj rgoorcz J wdoo ucję orsową u orśoą w rzdz [] oż rosowć z oocą ułdu ucj rgoorczch: { sω ω s ω ω } o gdz ω js zwą częsowoścą odswową rówą ω T gdz T - Ułd ch ucj js zą owj rzsrz ucjj gdż ucj są wzj orogo j ocz sr dwóch dowoch js rów zro: s ω ω o s ω ω d ω s ω sω o s ω o s 7ω o ω o ω o 7ω o
8 Aroscj rgoorcz ω ω s d T d T ω d T s ω Js o roscj cągł ucj cągłj Wru zżośc szrgu d < Aroscj rgoorcz Złóż z o ż wrośc ucj są d w uch rówo od s odgłch j - h Do roscj ucj orzs z ułdu ucj zowch: { sω ω s ω ω s ω ω } o T T gdz ω u d rzsch ω s ω s
9 Aroscj rgoorcz Jż cz ucj zowch użch do roscj js rów ośc uów o wzór js w soc wzor roując gdż wrość szrgu ourr w uc js rów wrośc ucj rosowj w uc Jż d uów zos użch ucj zowch gdz < orśogo j wżj wrośc ucj w żd uc zosą rzżo o z orśoą dołdoścą Ozcz o ż ucj rosuj wrośc orzo j s Aroscj rgoorcz Moż udowodć ż gd usoą czę ucj zowch o zcj śrdowdrow wrż rowdz do ułdu rówń orch z órch oż oczć wrośc wsółczów Oż sę ż orzuj wrż dcz z wzor orśjąc wsółcz szrgu ourr j [ ] H s
10 c s Zsoo szrg ourr Jś rzj ż d rzczwsch cągów ws ourr { } { } o orzuj: > c Dowód: c s Część rzczws js rów: s s s s s s Proszę sodz udowodć ż część urojo js rów Dsr rsorcj ourr ω ω ω ω ω d d Cągł r rsor ourr Dsr r rsor ourr Złóż ż sz zd js ocz dsrj rsorcj ourr z cągu -owgo Porz w cu ożń so dodwń Trsorcj ros Trsorcj odwro Trsorcj odwro js odowd szrgu zsoogo z orzdj sro
11 Sz rsorcj ourr T s ourr Trsor Cąg dz dw odcąg z żd o / wrzów rz cz rwsz o wrz rzs cągu drug wrz rzs Y z Z Iość węzłów d órch oż sosowć rzszłc Dsr rsorcj ourr Powż z orz - oż zsć z Y Z
12 Dsr rsorcj ourr Y Z Π Z z z z Z Y Y Y Z j js d Dsr rsorcj ourr Procdur T srowdz sę do go ż dsoując rsor ourr róch odcągów oż sosruowć rsorę długch cągów Moż udowodć ż cz suoożń orzch do wo rocdur T js rzędu og suoożń zsooch
Ł Ł Ń Ą Ę Ó Ś ę Ż żń ĆŻ Ż ś ść Ż Ó Ż Ż ń ść ń ę Ź ż Ż Ż ż ń ż ń Ż ÓŻ Ś Ó Ź Ż Ż Ź Ż ń Ż ś Ż Ż Ż Ż ść ż Ż Ż ń ń ść Ż ś Ż ś ż ś Ó ę ś ś Ż ż śż ś ż ę ę Ó Ż Ś Ó Ż Ó Ż ń ż ś Ż ń ż Óż ń ś ę ć Ż Ż ś żż Ż ś Ś Ż
Szeregi trygonometryczne Fouriera. sin(
Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś
Pochodne cząstkowe wyższych rzędów
Auo Robo Alz Wł 7 r A Ćl cl@ghul Pocho cząsow wższch rzęów Nch uc : R D R D owr os ochoą cząsową w ż uc D Js węc orślo uc : R D Jżl owższ uc ochoą cząsową o - z w uc o zw ą rugą ochoą cząsową uc o zch
Ł Ą Ń
Ł Ą Ń Ł Ł ź ź Ż Ż Ą Ł ź ź Ł Ź Ż Ź ź Ż Ż Ż ź Ć Ą ź Ł Ć Ż Ż Ż Ź Ć ź Ń Ż Ż Ć Ć ź Ż Ć ź Ź Ć Ć ź Ź Ć Ź Ż ź Ź Ż Ć ź Ń Ź Ć Ć ź Ż Ź Ź Ż Ć Ź Ż Ż Ż Ż Ż Ń Ą Ź ź Ć Ż Ż Ż Ż Ż ź Ż Ż Ź ź Ć Ć Ź Ż Ł Ą Ń ź Ń Ż Ć Ą Ź Ą
Ł Ł ŁÓ Ę ó ź ś óź ś ó Ó ż Ł Ł Ń Łó ó Ś ó ó ż ó Ó ś ś ż ż ż śó Ó ó ś ó ś ś Ó ś ś Ś ó Ś Ż ż Ó Ć ó Ó Ź Ż ż ś Ó Ó ż ś Ż Ż Ż ó Ź śó ó Ż Ż ż ó ż ó ś ś ć ó Ś Ó ż Ć Ż ś ó ć Ż ż Ó Ś ó ś ó Ó Ż Ż Ż Ś ó ć ś Ó Ż Ż
ś ś ż ó ś ń ż Ś ść ś ś ć Ś ć ż ó ż ś ż ś ć ż ż ó ż ś ż ż ż ś ó
ś ś ń ó ó ć ś ś ś ś ż ó ś ń ż Ś ść ś ś ć Ś ć ż ó ż ś ż ś ć ż ż ó ż ś ż ż ż ś ó ć Ą ś ś Ś ż ś ś ś ś ż ś ż ż ć ś ś ś ś ś ś ż ż ś ż ż ś ó ć ż ś ż ó ż Ń ś ż ś ś ś ś ó ć ś ś ś ć ż ó ó ń ś ś ś ó ó ń ż ó Ń ść
ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó ż Ó ż ó ą ą Ą ś ą ż ó ó ż ę Ć ż ż ż Ó ó ó ó ę ż ę Ó ż ę ż Ó Ę Ó ó Óś Ś ść ę ć Ś ę ąć śó ą ę ęż ó ó ż Ś ż
Ó śó ą ę Ę śćś ść ę ą ś ó ą ó Ł Ó ż Ś ą ś Ó ą ć ó ż ść śó ą Óść ó ż ż ą Ś Ś ż Ó ą Ó ą Ć Ś ż ó ż ę ąś ó ć Ś Ó ó ś ś ś ó Ó ś Ź ż ą ó ą żą śó Ś Ó Ś ó Ś Ś ąś Ó ó ę ą ż ż ś ść Ó Ś ż Ó Ś ę ą żć ó ż Ó ż Ó ó ó
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
śą ś ć Ą Ó ó Ę ń ó
ć Ł Ś Ó ó ś ą ś Ł ń Ą Ę ń śą ś ć Ą Ó ó Ę ń ó Ę ń Źą ń ó Ą ś ś ń Ń ó ń ń ń ń ę ś Ę ń ń ś ą ą ą ę śó ń Ó Ś ę Ź ę ść ń ó ę Ę ń ó ą ó ą ą ą ę ą ó ń ń ę ć ń ó ó ń ą ń ę ó ś ą ś Ł ą ń ą ń Źą ń ę ś ń Ź ó ę ń
ć Ó Ó Ż
Ą Ą Ł Ą Ą ć Ó Ó Ż ć ć Ó ć Ó Ó Ó Ó Ó Ż Ą Ó Ż Ż Ż Ó Ó Ó Ó Ź Ó Ż Ó Ż Ą Ó Ó Ż ż Ż Ż Ż Ó Ó Ó Ó ÓĘ Ó Ż ż Ć Ż Ż Ż Ż Ł Ż Ó Ó Ó Ż Ó Ó Ó Ó Ć Ó Ó Ż ć Ó Ó Ż ŻĄ Ż Ó Ó Ż Ż Ż ć Ą ż ż Ź Ż Ź Ź Ż Ż Ó Ź Ó Ą Ó Ó Ó Ż Ó Ż Ó
Ż Ę ć Ć ć ć Ą
Ś Ł Ż Ą Ż Ę ć Ć ć ć Ą ŚĘ Ż ź Ś Ż Ś Ś Ń Ę Ą Ś Ł Ś Ł Ż Ż ź ż Ą Ś Ż Ż Ś Ł Ą Ą Ó Ż Ż ż ć Ż ż ć ż Ó Ż ż ć ż ć ż Ą Ę ż Ó Ó ż ż Ó ć Ż ć Ż ć ć ź Ę Ę Ę ć Ż Ź Ż ż ć ż Ź Ę Ż ż ć Ś ć Ż Ę ż Ę ż ż ż Ż ż ż ż ż ĘŁ ż ż
ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź
Ł Ł ć ć Ś Ź Ć Ś ć ć ż ć ź ż ż ź ź ŚĆ Ź ź ć Ź ź ź ź ź Ś Ą Ć Ć ć Ź ź Ś Ć Ć Ś ź Ć ż ż ź ż Ć ć ż Ć Ć ż ż ź Ć Ś Ś ż ż ć ż ż Ć ż Ć Ś Ś Ź Ć Ę ż Ś Ć ć ć ź ź Ś Ć Ś Ć Ł Ś Ź Ś ć ż Ś Ć ć Ś ż ÓŹ Ś Ś Ź Ś Ś Ć ż ż Ś ż
ć Ę ó ż ć
Ą Ł ż ż Ę ó ó ó ć ó ć ó ż ó ó ż ó ć Ę ó ż ć ó ź ó ó ó ć ó ć ó ć ó ó ó ó ó Ę ó ó ó ż ó Ę ó ó ż ó óż ó ó ć ć ż ó Ą ó ó ć ó ó ó ó ó ż ó ó ó ó Ą ó ó ć ó ó ź ć ó ó ó ó ć ó Ę ó ż ż ó ó ż ż ó ó ó ć ó ć ó ć ó
Ł Ł ć
Ą Ł Ł Ł Ś Ł Ś Ć Ł Ł ć ź ć ż ć ź ź Ą Ś ż ć Ż ż Ą Ż Ś ćż Ą ż Ż ć Ś ć ć ć Ł Ą ź ź Ł Ż Ź ć ć ć Ż Ś ż ż ć Ł ć ź ż ż ż ć Ą ź ż ć ż ż ż ź ż Ą Ż Ż ż Ż Ą ż ć ź ż ź ć Ż Ł ż Ś ć Ż ć ć ż ć Ć ć ć ć ć ż ć Ż Ł Ł Ż Ź
impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos
Rów Scrodgr Fucj flow wow rprcj jdo wrow pułp lroów fucj flow sońco sońco sud pocjłu o wodoru rów Scrodgr wprowd rową lro swobod lro w sońcoj sud pocjłu PRZYPOMNINI: Fl bżąc sojąc w pęj sru Hlld, Rsc,
ć ż ż ć Ą ż ż Ł ć Ż ż Ż Ż Ż Ż
Ł Ę Ł ż Ż ć ż ż ć ż ż ć Ą ż ż Ł ć Ż ż Ż Ż Ż Ż ż ż Ł ż Ż Ł Ż Ż Ż Ż ż ż Ż Ż Ż ć ć ż ć ż ż ŻĄ ć ć ż Ż Ż ż Ż Ż ć Ż ź ć ż Ę Ż Ę Ż ć Ż Ż ć Ż ć ż Ż Ż ż Ż Ą Ż ć ż ć Ś Ą ż Ż Ż Ż ż Ż Ż Ż Ż Ż Ż Ż Ż ż ż Ż ż ż Ż Ż
Pojęcie modelu. Model ekonometryczny. Przykład modelu ekonometrycznego. Klasyfikacja modeli ekonometrycznych. Etapy analizy ekonometrycznej
Poęc modlu Modl s o uproszczo przdsw rzczwsośc Lwrc R Kl: Modl s o schmcz uproszcz pomąc so sp w clu wś wwęrzgo dzł form lub osruc brdz somplowgo mchzmu Główą zlą modlu s możlwość go bzpczgo przprowdz
ŁĄ
Ś ĄŻ ŁĄ Ź Ą ÓŹ Ś Ś Ą Ą Ś Ó ŚÓ Ó Ą Ó Ż Ź Ś Ż Ó Ó Ó Ż Ó Ą Ż Ó Ż Ż Ż Ż Ś Ą Ż Ć Ą Ć Ą Ż Ł Ś Ś Ź Ó Ś Ó Ó Ó Ś Ż Ź Ż Ż Ę Ą Ó Ś ź Ó Ę Ą Ź Ą Ż Ó Ś Ć Ę Ś Ą Ś Ś Ś Ą Ó Ę Ó Ę Ą Ż Ż Ó Ż ź Ą Ó Ś Ź Ż Ó Ż Ż Ź Ó Ó Ś Ś Ó
Ć Ź ć Ę ć Ę Ć Ź Ź Ć
Ź Ć Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ł Ą Ę Ć ć ćź ć Ź Ź Ź Ź Ą Ć ć Ł Ł Ł Ę ć ć Ź Ą ć Ę ć Ź Ź Ź Ź ć Ź Ź ć Ź ć Ł ć Ą Ć Ć Ć ć Ź Ą Ź ć Ź Ł Ł Ć Ź Ą ć Ć ć ć ć ć Ć Ć ć Ć ć ć Ł Ę Ź ć Ć ć Ź Ź Ć Ź Ź ć ć Ź ć Ź Ź Ź Ą Ę Ń Ź Ć Ą
z r.
C h o r ą g i e w D o l n o l ą s k a Z H P U c h w a ł a n r 9 / I X / 2 0 1 5 i m. h m. S t e f a n a M i r o w s k i e g o z d n i a 2 0. 0 9. 2 0 1 5 r. w s p r a w i e H o n o r o w e j O d z n a
latarnia morska wę d elbląg malbork an o el a z o i s olsztyn zamek krzyżacki w malborku Wisła płock żelazowa wola ęży z a me k ól.
T ę Ł ó 499 ż Y ę ą T T ą ść ż B ę ó ąż ę ąż żą ó ę ż ę ś Ś SZ ź ź S żó ż śó ś ść E ó E ń ó ó ó E ó ś ż ó Ł Gó ę ó SZ ś ż ę ę T 6 5 ó ż 6 5 : 685 75 ą ę 8 Ó ńó ę: : U 5 ó ż ó 5 Śą Gó 4 ść ę U żę ż ć Z
Ł Ś Ś Ń Ń
Ą Ą Ć ź Ł Ł Ł Ś Ł Ś Ś Ń Ń Ł Ó ź ź ź Ą ź Ś Ś ź Ź Ź Ź Ż Ź Ś Ż Ć Ź Ż Ż Ó Ś Ż Ń Ą Ó Ź Ś Ś ź Ł Ą ź Ź Ć Ź Ą Ż ź Ż Ó Ś Ą Ą Ż Ź Ó Ś Ś Ż Ą ź ź ÓŻ Ś Ż Ź Ł Ż Ś Ś Ś Ż Ż Ś Ł Ź Ś ź ź Ą ź Ź Ż Ó Ś Ż Ż Ź Ź Ź Ż ź Ź Ł Ń
Ę Ł Ż Ż ŻŻ Ą Ą ć ż Ó ć ż ć Ż Ś ż Ż ć Ć Ó Ż Ś ć ÓŹ Ź Ó Ż Ó Ż Ś Ą Ó Ś Ąć Ż Ż Ó ć Ż ć Ę Ż Ó Ó Ó Ó Ż ć Ó Ó Ó Ż Ó Ó Ó Ł Ź Ó Ó Ó Ó Ó Ł Ś ć ć ć Ó Ó Ó Ó Ó Ś Ó Ó Ż Ó Ż Ś ż ć Ę ż Ż Ę Ż Ż ć ż ż Ż ć Ę ć ż ż ż ć ć
Ł ź ź ź
Ń ź Ó Ć Ą Ą Ń Ą Ą Ą Ą ź Ż Ł ź ź ź Ń Ń Ą Ą ź ź ź Ń Ł Ź Ł Ż Ń Ó Ł Ż Ś Ó Ą Ń Ł Ż Ś ź ź Ż ź ź ź Ą ź Ą Ą ź Ć ź ź Ń Ą Ą Ń Ł Ś Ą Ą Ł Ł Ą Ń Ń Ń Ł Ą Ą Ą Ż Ą Ą Ą ź Ą Ą Ą Ł Ł ź Ó Ń Ł Ś Ż Ą Ą ź Ł Ó Ż Ł Ń Ś Ż ź
ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą
ć ć ń ń ć ć ć ć ń ć ń ć ć ć ć ć ć ć ź ć ź ć Ć Ó Ż Ó Ć Ł ć ć ć ć ć Ą ć Ó Ż ÓŻ ć Ó Ó Ż Ó Ż Ó ń Ó Ż ć Ż ń ź ć ć ć ć ć ć ć ń ź ń Ż ć Ł Ź ć ć ź ź ć ć Ż Ś Ż Ż Ó ć ź ć ć ń ć ń Ą ń Ą Ó ć Ó ć Ś ć ć ć ń Ś ć ć Ż
ć Ł Ą Ź Ś Ó Ó ŚĆ Ó Ż ż Ó Ó Ć Ó Ś Ą Ą Ź Ś Ś Ź Ź Ó ż Ó Ź Ś ż Ę ć ż Ę Ź ÓŻ Ś ż Ą Ó Ą Ś ż ź Ó ż ć Ż Ź Ó Ó ć ż ć ć ż ć Ą Ż Ż Ó ć Ź Ż ć Ę ć Ó Ż ć Ś ć ć Ó Ó Ą ć ć Ść ć ć Ż ż ż Ó Ż ż ć Ż ć ć ć ć ć Ó Ż ć Ę ć Ó
Ą Ą Ł ś ś Ł ś Ę Ę Ś Ś Ó Ę ź ś ś ś ś ś ń Ł Ą Ę ś ś ś Ś ń Ś ś Ę Ó Ź ś ś ś ś Ś ń ń ś ś Ś ń ź Ą ś ś Ł ź Ź Ś ś Ś ś ś ń ś Ś Ś ś Ł ś Ć ź ź ś Ś ś ś Ś ń Ć Ł Ą Ę ś ś ś Ś ść Ź ś Ś ś ś ś ń Ę ś Ś ś Ą Ó ś ś Ę Ł Ź ś
Ś ś Ę Ę Ó Ę Ą Ę ż Ż Ż
Ń Ż ć Ż ć Ż Ż ś Ż Ą Ł Ł Ś ś Ę Ę Ó Ę Ą Ę ż Ż Ż Ą Ł ć Ń ż Ś ś ż Ś Ś Ś Ś ż ś ć ż ż ć ć Ł Ó ś Ę ś ś ż ś ś ś ż Ę ś ś ś ś ś ż ć ż ś ż ś ż ś ć ś ć Ł Ż ś ś Ń Ż ś Ż Ł Ń ś ć ć ż ś ś ż ś Ą ż ż ż ż Ą Ż ć ż ś ć Ę ć
ó Ć Ó Ż Ó ó Ó Ę Ź Ź Ź Ź ó
ż Ż Ż ó Ć Ó Ż Ó ó Ó Ę Ź Ź Ź Ź ó Ż ć ó Ó ó ó ó ń ń ó ń Ż Ż ó ó ó ć ó ń Ą Ż ó Ź Ł Ż ć Ó Ó ó Ż Ż ó ć ń ń Ź Ź ó Ź Ź Ż ó Ó Ź Ż Ź ó Ż ó ó ó ó Ó Ź ć ó Ż Ż Ż ó ó Ź ó Ż ó ź Ż ć ć ó ń ó Ź Ć Ą Ż ć ć ó Ż Ż ó ż ć Ż
ż ą ż ż ż ż Ł ż ż Ą Ł ż ż ż ą ż ń ą ń ą ż ż ż ż ż ż
ż Ó Ę ż ą ż ż ż ż Ł ż ż Ą Ł ż ż ż ą ż ń ą ń ą ż ż ż ż ż ż Ł Ć Ę ż Ł ż Ć ż ż ż ń ą ą ż ą ą ń ż ą ą ą ą ą ż ń ż ż ż ż ż ż ż ż ą ż ą ż ą ż ż ż ą ą ą ą ą ż ż ż ż ń ż ą ą ą ż żą ą ń ą ą ą ż ą ż ą żą ą ż Ą ą
ń ń Ź ź ń ć Ó ć ń ć ć ź ń Ź Ś ń ź Ć Ć ć ń Ć Ź ć ć ń
Ą Ł Ś ń ć ń ń ń ń Ź ź ń ć Ó ć ń ć ć ź ń Ź Ś ń ź Ć Ć ć ń Ć Ź ć ć ń ń ć Ś ń ć ć Ź ć ć Ź ć ź Ź ć ć ć ć ź Ą ć Ź Ą Ą ć ń Ź ń ć Ć Ź Ź Ź Ź Ź ć Ź ć ć ń ń ć ń ć ć ń ź ć ń ć ć ć ń Ą ć ć ć ć ć Ó ń Ś ź ź Ź ń Ć Ź Ź
Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó
Ą Ł ć Ę Ę Ł Ź Ł ż ż ż ż Ó Ł Ś Ó Ó Ś ż Ś Ó Ś ŚÓ Ó ż Ż Ó Ż Ś ć ć ż Ś Ż Ó Ż Ó ż ż Ż ż ż Ż Ż Ą ć Ż Ó ż Ż Ż ż ż Ż Ó ż Ż Ś Ć ż Ł Ę Ę Ź ć Ó ć Ś Ż ż ż Ę ż ż Ę Ż Ś ż Ś Ż ż Ś Ż Ż ż ż Ż Ż Ż Ż ż Ś Ż Ż ż Ż ż ż Ź Ż
Ę ź Ż Ę ź ć ź ć Ą ć ć ć ć ć ż ź
ć ź ź ż ć ż ż ć ć ż ż ć ć ć Ź ż ć ż ź Ź Ź ć Ę ź Ż Ę ź ć ź ć Ą ć ć ć ć ć ż ź ź ż ć ć Ę ć Ą ć ż ć ż Ę Ź ż ź ż ć ź ż ć ź ż Ż ż Ź ć Ą Ś Ż Ń ż Ń ć Ń Ń ż Ą Ś Ł ć ż ż ż Ę ż Ń Ą ż ć Ł Ą ż ć ż Ą ż Ę Ę Ą ż ź Ą Ę
Ł ś ś ś Ą ż Ą Ń Ł Ł
Ł Ł Ń Ń Ł ś ś ś Ą ż Ą Ń Ł Ł Ł ż Ę ż ż ś ś ż ć ż ś ś Ę ż Ę ż ś ś ż ż ś ś ś ż ż ż ś ść ż ś ż ż ż ż ż ź ś ż ż ś ż ż ś ś ś ż ć ż ż ć ś ż ś ś ż ś ż ż Ę ż ż Ź ź ź ś ź ż ż ż ź ż ż ść ż ś ś ś ż ź ż ś Ń ź ż ź ż
ć
Ń Ś ć ć Ż Ą Ś Ż Ż ć ć ć ć Ć Ą Ś ć ć ć ć ć ć Ś Ł Ś Ą Ś Ą Ą Ą Ą Ń ŻĄ Ą ć ć ć ć ć ć Ś Ś Ą Ś Ą Ń ć Ó ć Ą Ó Ą Ą ć Ć ć ć Ł Ą ć Ś ŚĆ Ś ć ć ć Ą Ń Ś ć ć Ą Ł Ł Ś ć Ś Ś Ą ć Ś Ż ć Ó Ś Ś Ś ć Ż Ś ć Ł Ń Ń Ń Ń Ń Ń Ń
Ę Ę ĘŚ Ą Ł Ę ł ł ś ą ź ż ź ą ż ć ąż ą ś ą
Ń Ę ł ó ó ł ż ć ó ś ą ą ż ą ą ń ł ś ś ąż ą Ę łó Ą Ę Ą Ó ą ż ą ł ą ź ć Ę ą ś ą ą Ł Ł ł ą Ą Ę Ą Ł ą ąż ą ż ć ą Ż ć ą Ę Ę ĘŚ Ą Ł Ę ł ł ś ą ź ż ź ą ż ć ąż ą ś ą ó ó ż ą ą ż ś ż Ę ź Ą ł ł ł ą ó ń ń Ę ż ż ń
ć ć ż ż ć Ą Ż ć Ż Ż Ż Ż Ż ż Ż ż ż ć Ł
Ł ż Ż Ż Ż ć Ż Ż Ż ć Ż ź ć Ą ć ż Ż Ż Ż Ż Ż ć ć ż ż ć Ą Ż ć Ż Ż Ż Ż Ż ż Ż ż ż ć Ł Ź Ż ć Ż ż ć Ą Ż Ż ć Ż ż ć Ż Ż Ż ź Ż Ż ż ć Ł Ą Ż ź ż ż Ż Ż Ł Ż Ż Ż Ż ŻŁ ć ć Ż Ł ż Ł ć Ż Ż ć Ż Ą Ż ć ć Ż Ż ż Ż Ż ć ć ż ż ć
Ó Ś
Ł ć ć Ż Ó Ś Ł Ż Ż ć Ż ć Ż Ż Ą Ż ć Ż ć ć Ż ć ć Ł Ź Ź ć Ż Ż Ż Ż Ż Ż Ż Ż Ź Ł Ł Ż ć Ą ć ć Ź Ż Ź Ż Ś Ł Ą Ą Ą Ł Ą Ś ć Ł Ż Ż ć Ż ć Ń Ś Ż ć ź ć Ą Ł ź Ż ć ź Ł ć Ż ć ć ć Ą Ś Ł Ń Ć Ł ŚĆ Ś Ó Ż Ą ź Ą Ą Ą ź Ś Ś Ł Ź
ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż
ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż ż ż Ń ż ż Ń Ń Ń ż ć ż ż ć ż ż ż ć Ą Ń ż ć ć ż ż ż ż ć ćż ż Ń Ń Ł ż Ń Ń Ń ć Ń ć ć Ń ż Ń Ń ż ż ż ć Ń ć ż ć ć ć ć Ń ż Ń Ń ć Ń Ę ż Ń ż ż ż Ł ż ć ż ć ż ż ż ż ć ć ż ż ć ź ż ż
ń ź ń ń ć Ń ź ż ń ż ż Ń Ą ń ń Ę ń ń ń ż Ł ż Ł ż ń ć ź Ą źż ć ń Ę Ł ż Ą ć ż Ą ń Ł ż ń ż ń Ą ż ń ń ż ź ż ń ń ŚÓ ń Ś ź Ó Ł ć Ą Ń ż Ś ń Ą ń ń ń ż ń ź ń ż ź ń ń ż ż ń ń ż Ń ń ń ź ź Ą ń Ę Ń ń ń ń Ę ż Ś Ę ć Ń
Ę ó ą ż Ę Ń ó ś ź ń ś ś Ę óń ż ńó Ę ń ń ń ą ń ź ż ń ś ó Ż ó ąż ż łś ż żń ż ź ó ż ę ż ó ł Ń ń ń Ń ą Ńź óś ńńóń ń ń ń ż śż ó ś ż ż ą ó Ą Ń ż ł ń ą ż ą ż
Ę ą Ę Ń ś ź ś ś Ę Ę ą ź ś Ż ą ś Ń ź ę Ń Ń ą Ńź ś ś ś ą Ą Ń ą ą Ę ą ą Ę ąą ą Ś ą ę ą Ś ą Ł Ś ś Ń Ą ź ź Ę ź Ć ą ą ś Ść Ą Ż Ł ś ęę ę ś ś ś ć ą ą Ń ę ęś ęść ą ęść ą ą ść ź ć ć ą ś ą ę ć ź ęść ę ć ą ęść ś ść
6. *21!" 4 % rezerwy matematycznej. oraz (ii) $ :;!" "+!"!4 oraz "" % & "!4! " )$!"!4 1 1!4 )$$$ " ' ""
Memy fow 09..000 r. 6. *!" ( orz ( 4 % rezerwy memycze $ :;!" "+!"!4 orz "" % & "!4! " $!"!4!4 $$$ " ' "" V w dowole chwl d e wzorem V 0 0. &! "! "" 4 < ; ;!" 4 $%: ; $% ; = > %4( $;% 7 4'8 A..85 B..90
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 2. Układy liniowe i niezmienne w czasie (układy LTI) y[n] x[n]
Toi Sgłów II ok Goizki III ok Ioki Sosowj Wkłd Ukłd liiow i izi w czsi ukłd LTI Kilk uwg: LTI jpopulijsz odl ilcji LTI odl pocsów izczch [] Ukłd liiow [] gdzi ozcz sgł wjściow do ukłdu zś sgł wjściow.
Ż ń Ż
Ó Ł Ż ń Ż Ę ć Ź Ę ź ć ć ć ć Ł ć ć ć Ż ć ć ć ć ć Ę ź Ż Ż ć ć ć Ą Ł ć Ż ć ć Ę ć ć ć ć ź Ę ć Ę Ę ć ć ć ć Ę ć ć Ż Ę Ę ć Ż ć Ę ć Ę Ż ć ń ć ć Ż Ż ć Ż ć ń ć ć Ż ń ń ź ć ń ń ć Ę ć ć ć ń ć ć ć Ę ń Ę ć ć ć ź Ę ń
Ą ś Ę ń ń ń Ć ś ć Ę Ę ż ę ę ż ż ż ź ć ż Ę ś ż ż ż ń ź ż ę Ą ę ę Ć ż ć Ę Ę ż Ó ś ż ż ż ś ż ź ć Ą ś ź ę Ę ń śł ż ę ż ń Ą Ó ń Ę Ż Ę ę ę ż ć ż ń ś ń Ć ń ć żę ś Ę ń ę ś Ę Ę ż ćż ć ę ż Ę ż ś Ę ń ć ś ż Ą ń ż
ź ż ć ć Ę ż ż ż ż ż ż ż ć ż ź Ę ć ż ż ż Ę ż ż ż ż ż ż ż ź ź ż ż ć ź ź ż ź ź ć ź ż ź ć ź ź ć ź Ę ź ż ź ż ć Ę ż ż ż ć ż ż ż ź ż ż ż ż ż ż ż ć ć ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ż ć ć ć ć ć ć Ę ż Ę ż ż
Ł Ą ż ż Ś Ą ż ż Ń Ę ż Ą ż ż Ą ć Ą ż ż Ą Ń ż ż Ę ż ż ż ż ćż ż Ś Ź ż Ź ć ż ż ż ż ż ć ż ż ć ż ć ż ż Ś ż ć ż ż ż ć ż ż ż ż ż ż ż Ź ż ć ż ż ż ć Ź ćż ż ć ż ż ż ż Ż Ń ż ż ż ż Ź ć ż ć ż ć ż ż ż ż ż ć ż ż ż Ź ć
ć Ą ź ć ć Ż ź ź Ą ź ć ź ć ź
Ż ź ź ź Ę Ą Ł ć Ą ź ć ć Ż ź ź Ą ź ć ź ć ź Ś Ź Ń Ź Ę Ę ź Ł ź Ż Ę ź Ż Ż Ż Ź Ź Ń ź Ź ź ć Ż Ę ć ć Ą ź ź Ź Ż Ś ź Ę Ę Ż Ż Ś Ę Ę ć Ż Ż Ń Ł Ń Ż Ż ź Ą Ą ź ź ź ć Ą ć ź Ż ć Ż Ę Ń Ę Ż Ż Ż Ó Ż Ż Ż Ż Ą Ł Ż Ł Ł Ł Ż Ż
Spójne przestrzenie metryczne
lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ
2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =.
Obwody SLS prąd orsowgo SLS PO Obwody SLS prąd orsowgo o obwody SLS prcjąc w s soy przy pobdzch orsowych. Obwody zywy obwod prąd orsowgo OPO b obwod prąd odszłcogo OPO od sygł ssodgo. Mody posępow z OPO:
Ą Ź ć Ń Ą ć Ź Ź
Ó Ó Ż Ę ć Ą Ź ć Ń Ą ć Ź Ź Ń Ą Ą Ź Ź Ń ć Ś Ł ć ć ć ź ć ć ć ć ć ć ć Ź ź ć ć Ł ć Ź ć ć ź ć ć Ą ć ć ć ć ź ć Ą Ż Ż ć ć ć ć ć ć ć ć Ź Ź ć ć Ń ć ć ć ć Ą ć ć ć ć ć ć Ź ć ć ć Ć Ń Ż Ź ć ć Ń ć ć ć ć Ą Ń ć ć ć Ą ć