Inżynieria chemiczna. Przepływ płynów rzeczywistych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inżynieria chemiczna. Przepływ płynów rzeczywistych"

Transkrypt

1 rzływ łynów rzczywistyc

2 kość - tarci wwnętrzn łyn łaszczyzna rcoma F F A y y łaszczyzna nircoma x t F A y. γ ównani Nwtona t - narężni styczn, N/m = a - szybkość ścinania, s - - wsółczynnik roorcjonalności nazywany wsółczynnikim lkości ynamicznj (lkość ynamiczna) Wykła nr. rzływ łynów rzczywistyc

3 - wsółczynnik lkości ynamicznj Jnostka lkości ynamicznj w kłazi SI: [kg / m s]=[ a s ] Inn jnostki : (az) c (cntiaz) kość woy i owitrza w C: HO c, ow 8 - c c= a s/ = m a s - wsółczynnik lkości kinmatycznj (lkość kinmatyczna) Miano w kłazi SI [m /s] St - stoks St = cm /s Wykła nr. rzływ łynów rzczywistyc

4 łyny nwtonowski - cicz stosjąc się o równania Nwtona rękość ścinania w ciczac nwtonowskic jst równoznaczna z graintm rękości warstwki łyn - wsółczynnik lkości ynamicznj ni zalży o wilkości narężnia styczngo tg= t y. γ inia łynięcia ciczy nwtonowskic

5 łyny ni słniając równania Nwtona to łyny ninwtonowski. Zajmj się nimi rologia tj. naka o okształcniac i rzływi matriałów. łyny ninwtonowski cicz, któryc własności rologiczn ni zminiają się w czasi - rękość ścinania jst fnkcją narężnia ścinającgo: - cicz bingamowska ( cicz lastyczna) - cicz, która zaczyna łynąć oiro wówczas, gy narężni styczn t mięzy wima warstwkami ciczy rzkroczy wną wartość graniczną t gr. o rzkroczni t gr strktra wwnętrzna lga zniszczni i cicz zacowj się jak cicz nwtonowska. Gy narężni styczn zmnijszy się oniżj t gr to strktra wwnętrzna zostaj obowana. (asty, zawisiny it.) - cicz solastyczna (rozrzzana ścinanim) - ni ma granicy łynięcia, lkość ozorna malj z wzrostm rękości ścinania. Cicz o nisymtrycznj bowi (n. o wyłżonym kształci liniowym), mlsj. W miarę zwiększania rękości ścinania cząstki t rzyjmją orząkowan łożni zmnijszają się oory tarcia malj lkość ozorna. - cicz ylatancyjna (zagęszczan ścinanim) - ni ma granicy łynięcia. kość ozorna rośni w miarę wzrost rękości ścinania (stężon zawisiny). oczas szybkigo ścinania zawisiny, cicz słniająca rolę smar mięzy cząstkami zawisiny zostaj wyarta i oory ścinania rosną. cicz, któryc własności rologiczn zminiają się w czasi - rękość ścinania jst fnkcją narężnia ścinającgo i czas: cicz tiksotroowa - o wływm ścinania nastęj roza strktry wwnętrznj. Cicz roksyjn - o wływm ścinania nastęj tworzni strktry wwnętrznj. cicz lkosrężyst, wykazjąc orócz własności lkościowyc i fkty srężyst n. żywic, smoły, asfalty

6 Mol otęgowy Ostwala- Wal'a t k n a t Krzyw łynięcia ciczy ninwtonowskic - cicz bingamowska, - cicz solastyczna, - cicz nwtonowska, 4 - cicz ylatancyjna a k n k - wsółczynnikim konsystncji. Jst on miarą lkości ozornj a. n - wskaźnik łynięcia. Jst miarą ocylnia ciczy o ciczy nwtonowskij: la n= obrazm graficznym owyższj fnkcji jst linia rosta, a cicz jst ciczą nwtonowską, k = la ciczy solastycznyc n la ciczy ylatancyjnyc n

7 I ównani Brnolligo la łynów rzczywistyc H g łyn rzczywisty- w czasi rc oawany jst ziałani sił masowyc, sił owirzcniowyc i sił tarcia wwnętrzngo (lkości) - założnia o owracalności rocs, brak yssyacji nrgii są niaktaln α - wsółczynnik Coriolisa wzglęniający nirównomirny rozkła rękości w rzkroj strminia. Fizyczny sns wsółczynnika Coriolisa jst taki, ż rzstawia on stosnk rzczywistj kinmatycznj nrgii masy strminia ciczy rzływającj w jnostc czas rzz rozatrywany rzkrój o mownj śrnij kintycznj nrgii, obliczanj la śrnij rękości.

8 ównani Brnolligo la łynów rzczywistyc H g g g g g g g g gzi: H - - oór yraliczny łyn na ocink -, m - - sak ciśninia łyn na ocink -, a

9 H - ; - - niowracaln straty ciśninia, któryc znajomość jst nizbęna o obor oowinic rzązń omjącyc i ocny konomicznj rocs W szczgólnym rzyak rzływ bz zmiany oziomów wlot i wylot ( = ) w stałym rzkroj, czyli bz zmiany rękości liniowj ( = ) : g H, H, g Oór yraliczny jst równoznaczny różnicy ciśninia łyn W innyc kłaac nalży rozwiązywać łn r. Brnolligo: sak ciśninia bęzi zalżał ni tylko o oorów, al tż o zmian rękości i oziomów

10 II Wyznaczani strat ciśninia łyn w oarci o analizę wymiarową: f,,,, - śrnica rzwo, m - łgość rzwo, na którj nastąił sak ciśninia łyn, m - śrnia liniowa rękość rzływ łyn, m/s - gęstość łyn, kg/m - lkość ynamiczna łyn, as

11 c b a A Zasay analizy wymiarowj szkaną zalżność rzstawia się w ostaci iloczyn otęg wszystki symbol nalży rozmić jako wymiary fizyczn a ni wilkości rocsow c b a s m kg m kg s m m m A s m kg

12 s m kg A : s m kg m kg s m m m A s m kg c b a s m kg s m kg m kg s m m m A c c b a rzy m c b a rzy m rzy s rzy kg c b a c c b a b a b a

13 b c b a A b b A b a b a c D D A b : A b, f

14 f, E oobiństwo gomtryczn, simlks gomtryczny iczba krytrialna Elra, oobiństwo yroynamiczn: stosnk sił ciśninia (Δ wyraża różnicę ciśniń w wóc owolnyc nktac strminia) o sił bzwłaności (ciśnini ynamiczn oowiaając nrgii kintycznj jnostki objętości łyn), czyli okrśla oobiństwo rzływ łyn w różnyc kłaac o ziałanim różnicy ciśniń Δ. iczba krytrialna ynolsa, oobiństwo yroynamiczn: wyraża stosnk sił bzwłaności o sił lkości (tarcia wwnętrzngo) i okrśla oobiństwo yroynamiczn w rzyak rzływ łyn rzczywistgo.

15 f f, f - bzwymiarowy wsółczynnik oorów jst fnkcją liczny ynolsa i szorstkości rry ównani Darcy - Wisbaca,m g H,a

16 ównani Darcy - Wisbaca,a wymiar gomtryczny, caraktrystyczny la ango rzływ A r O 4 r 4 A O A ol rzkroj orzczngo rzwo, którym rzływa łyn, m O obwó rzwo omywany rzz łyn, m r romiń yraliczny, m śrnica zastęcza, m

17 iczba ynolsa - jj wartość mówi nam o caraktrz rzływ łynów la rc laminarny (lki, warstwiony) la < rc rzjściowy la rc brzliwy (trblntny)

18 III Wyznaczani wsółczynnika oor : f, IIIa rzływ laminarny - szorstkość ni ogrywa roli i zalżność na bzwymiarowy wsółczynnik oor rzyjmj ostać: a Wartość aramtr a: 64 la rzkrojów kołowyc 57 la rzkrojów kwaratowyc 96 la rzkrojów irściniowyc

19 rzływ laminarny : ównani oisilla

20 IIIb rzływ brzliwy : Inżyniria cmiczna Wyznaczani wsółczynnika oor : f, a a, b, n stał, caraktrystyczn la różnyc zakrsów liczb ynolsa 5 4 b n, 64, 5 Wzór Blasisa 4 4, 7 6, 6,, 6,, 7 Wzór Gnrax Wzór Nikraas

21 lg lg

22 IV Oory lokaln Sak ciśninia łyn na oorac lokalnyc - zmiany rzkroj (nagł zwężni lb rozszrzni rzkroj), zmiany kirnk rzływ (n. kolanka), oatkow lmnty aaratry i armatiy zamontowan na rzwozi (zawory, krki, zaswy, rzływomirz it..) tr ol

23 Sak ciśninia łyn na oorac lokalnyc. łgość zastęcza rzwo rostgo, na którym to ocink sak ciśninia łyn jst taki sam jak na anym oorz lokalnym, m n ol n

24 Sak ciśninia łyn na oorac lokalnyc. wsółczynnik oor lokalngo, caraktrystyczny la ango oor lokalngo, - ol wlot,5 5 i wylot 5 ozaj oor Wsółczynnik ξ Wsółczynnik n nagł rozszrzni rzwo (A / A ol rzkroj węższj /szrszj części) A kolanko 9 o,7 5 kolanko 45 o, 5 zawór, 5 zaswa,5 7 krk o obirania rób A

25 g g

26 g D D H, H g g g g

27 V ozkła rękości łyn w rzwozi:. rzływ laminarny: rofil rozkła rękości łyn w rzwozi oczas rzływ rcm laminarnym

28 Siła arcia łyn Siła tarcia t t r r t r r= r t t r r= r t r t r= ozkła narężń ścinającyc

29 r t t r r r r r r r r r r r r r 4 r r rękość lokalna w olgłości r o osi rzwo W osi rzwo r = max 4

30 . rzływ brzliwy: rofil rozkła rękości łyn w rzwozi oczas rzływ rcm brzliwym r max r /n r max r / 7

31 . rzływ brzliwy: Inżyniria cmiczna

32 rr A V r A V A V VI rękość śrnia. rzływ laminarny: rr rr r rr rr 4 4 r r

33 r r rr r r r 8 4 max max

34 . rzływ brzliwy: r max r 7 5, 8 max

35 8V 5 rgjąc z tgo wyrażnia za omocą 8V V Dysonjąc wykrsm λ=f(), możmy łatwo skonstrować nowy wykrs λ 5 =f(). f,

36 VII omy, wntylatory. Wysokość ssania rzkrój - la zwirciała ciczy rzkrój - rz omą, H g graniczna wartość wysokości ssania Dla = atm, la woy m H O

37 Czynniki wływając na sak wartość :. Waania ciśninia atmosfryczngo - ok. m sła woy. Na życ wysokościac zmnijsza się wartość ciśninia atmosfryczngo. Wysokość ssania malj z wzrostm szybkości omowania gg H 4. tmratry ciczy - ciśnini rz omą ni moż saść oniżj rężności ary nasyconj Kawitacja - wrzni ciczy w rzwozi na sktk sak ciśninia, oniżj rężności ary nasyconj - rowazi to o zakłócń lb rzrwania racy omy. 5. Z wzrostm tmratry rośni rężność ary, a ciężar właściwy ciczy niznaczni malj.

38 . Ciśnini wytwarzan rzz omę H g H H - całkowit ciśnini wytwarzan rzz omę, wyrażon w m sła rzsyłanj ciczy na ocink ssawnym omy H g H H na ocink tłocznym omy

39 H H H H c g H g H g H c - różnica ciśniń łyn w mijsc tłocznia i ssania, wyrażona w m sła łyn H - gomtryczna wysokość tłocznia, m Całkowit ciśnini wytwarzan rzz omę, wysokość omowania i t s g H t s H - ciśnini zżywan na okonani wszystkic oorów w rzwozi tłocznym i ssawnym, m

40 . Moc omy N N c V H c V c V raca omy na jnostkę czas - iloczyn różnicy ciśniń na omi i natężnia objętościowgo rzływ srawność omy

41 4. Wyajność omy H H H c V f H nkt racy omy n=const n n H H c c Krzywa a - caraktrystyka sici V f H V f H c Krzywa b - caraktrystyka omy n n V V n n N N H

42 H H H >H H

43 rzływ rzz warstwę orowatą oczas filtracji w aaratac kontaktowyc (absorcja, asorcja, rktyfikacja, kstrakcja) oczas ssznia oczas zamrażania

44 VII rzływ łyn rzz warstwę wyłninia D D - zastęcza śrnica kanalików w rzstrzni mięzyziarnowj, m - rękość rzływ łyn w kanalikac o śrnicy D, m/s - wsółczynnik oor K n K n rzływ laminarny, n=: rzływ brzliwy, n=,75: K 4 K

45 ównani va n n z z - zastęcza śrnica ojynczgo lmnt wyłninia, zfiniowana jako śrnica kli o objtości równj objętości lmnt wyłninia, m jako śrnica kli o objtości równj objętości lmnt wyłninia, m 6 z z V 6 z z V - rękość rzływ łyn liczona na sty aarat, rękość ozorna, m/s 4 k k D V A V

46 - orowatość warstwy wyłnionj finiowana jako stosnk objętości swobonj Vsw (mięzyziarnowj) o objętości całkowitj złoża V c Vsw V z V V c c nas z nas m V z c ε min la jnakowyc kl w kłazi romboralnym (=,595) szorstkość wyłninia - ε zróżnicowani lmntów - ε ε caraktryzj warstwę orowatą

47 5 / z z z A, A A A - czynnik kształt ziarna, finiowany jako stosnk owirzcni ziarna Az o owirzcni kli A k o tj samj objętości co ziarno / z z k V A la cząstk klistyc sfryczność

48 - wsółczynnik oor, - n wsółczynnik zalżny o liczby, - f n K z - gęstość łyn - lkość łyn rzływ laminarny: <, n= rzływ rzjściowy: < < 4 rzływ brzliwy: >, n=f() b=f(szorstkości owirzcni wyłninia) b n n b=7, głaki b=,5; śrnioszorstki b=6; szorstki

49 ównani va la rzływ laminarngo z 4 4 n n n z z z K rzszczalność warstwy orowatj K

OPERACJE JEDNOSTKOWE w CHEMII BUDOWLANEJ

OPERACJE JEDNOSTKOWE w CHEMII BUDOWLANEJ OPERACJE JEDNOSTKOWE w CEMII BUDOWLANEJ Postawow ojęcia, finicj, rawa i zasay oracji jnostkowych o charaktrz hyroynamicznym rof. Marian Kamiński Pojęcia i wilkości ostawow - ich o-wilokrotności (cy /0,

Bardziej szczegółowo

Inżynieria Chemiczna i Bioprocesowa IBP W 3-4

Inżynieria Chemiczna i Bioprocesowa IBP W 3-4 Inżyniia Chmiczna i Bioocsowa IBP W -4 Pawo Nwtona - lkość ynamiczna / kinmatyczna Płyny nwtonowski / ni-nwtonowski Analiza wymiaowa - Pojęci liczb kytialnych Pawo Bnoili go z wzglęninim ooów zływ la zływ

Bardziej szczegółowo

Techniki Rozdzielania

Techniki Rozdzielania Tchniki Rozzilania -- powtórzni wybranych zasa inżynirii procsowj prof. M. Kaioski 017-18 sstr ziowy Przpływ płyn w rrociągach / warstwach porowatych -- opory przpływ / ysprsja asy -- w części przyponini,

Bardziej szczegółowo

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji.

Wartość ciśnienia wiatru działającego na powierzchnie zewnętrzne (w e ) i wewnętrzne (w i ) konstrukcji. Zbrani obciążń a) Stał: Ciężar własny okrycia dachu: Pokryci dachówką kariówką odwójni. Przyjęto ciężar okrycia wraz z konstrukcją dachu: g 0,95 ; b) Zinn: Śnig wg EC: s ) C i i C s t k,gdzi: s wartość

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

Wykład Przemiany gazu idealnego

Wykład Przemiany gazu idealnego Wykład 4 2.6 Przmiany gazu idalngo Zmiana stanu gazu idalngo moż odbywać się rzy różnych warunkach narzuconych na odstawow aramtry oisując stan gazu. Ogólną rzmianę gazu rzy zmiani rzynajmnij dwóch aramtrów

Bardziej szczegółowo

Inżynieria chemiczna

Inżynieria chemiczna Literatra ostawowa. M. Serwiński: Zasay inżynierii cemicznej. WNT 98.. J. Ciborowski: Postawy inżynierii cemicznej. WNT 965... Selecki, L. Graoń: Postawowe rocesy rzemysł cemiczneo. WNT 985. 4. P. Lewicki:

Bardziej szczegółowo

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 10. Elementy fizyki statystycznej klasyczny gaz doskonały. Janusz Brzychczyk, Instytut Fizyki UJ Trodynaika Część 1 Elnty fizyki statystycznj klasyczny gaz doskonały Janusz Brzychczyk, Instytut Fizyki UJ Użytczn całki ax2 dx = 1 2 a x ax2 dx = 1 2a ax2 dx = a a x 2 ax2 dx = 1 4a a x 3 ax2 dx = 1 2a

Bardziej szczegółowo

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne

PLAN WYKŁADU. Sposoby dochodzenia do stanu nasycenia. Procesy izobaryczne PLAN WYKŁADU Sooby dochodznia do tanu naycnia Procy izobaryczn Ochładzani izobaryczn (mratura unktu roy) Ochładzani rzz izobaryczn i adiabatyczn wyarowani/kondnację wody (mratura wilgotngo trmomtru, mratura

Bardziej szczegółowo

DOBÓR ZESTAWU HYDROFOROWEGO

DOBÓR ZESTAWU HYDROFOROWEGO DOBÓR ZESTAWU YDROFOROWEGO Pierwszym etaem doboru Z jest wyznaczenie obliczeniowego unktu racy urządzenia: 1. Wymaganego ciśnienia odnoszenia zestawu = + min min ss 2. Obliczeniowej wydajności Q o Q 0

Bardziej szczegółowo

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych

J. Szantyr Wykład nr 16 Przepływy w przewodach zamkniętych J. Szantyr Wykład nr 6 Przeływy w rzewodach zamkniętych Przewód zamknięty kanał o dowolnym kształcie rzekroju orzecznego, ograniczonym linią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

Projektowanie Systemów Elektromechanicznych. Przekładnie dr inż. G. Kostro

Projektowanie Systemów Elektromechanicznych. Przekładnie dr inż. G. Kostro Projektowanie Systemów Elektromechanicznych Przekłanie r inż. G. Kostro Zębate: Proste; Złożone; Ślimakowe; Planetarne. Cięgnowe: Pasowe; Łańcuchowe; Linowe. Przekłanie Przekłanie Hyrauliczne: Hyrostatyczne;

Bardziej szczegółowo

Mechanika płynów. Wykład 9. Wrocław University of Technology

Mechanika płynów. Wykład 9. Wrocław University of Technology Wykład 9 Wrocław University of Technology Płyny Płyn w odróżnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia. Płyny od tą nazwą rozumiemy

Bardziej szczegółowo

Wykład 2. Przemiany termodynamiczne

Wykład 2. Przemiany termodynamiczne Wykład Przemiany termodynamiczne Przemiany odwracalne: Przemiany nieodwracalne:. izobaryczna = const 7. dławienie. izotermiczna = const 8. mieszanie. izochoryczna = const 9. tarcie 4. adiabatyczna = const

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 2 Wyznaczanie współczynnika oporów liniowych i współczynnika strat miejscowych w ruchu turbulentnym. Celem ćwiczenia jest zapoznanie się z laboratoryjną metoą

Bardziej szczegółowo

Inżynieria chemiczna i bioprocesowa

Inżynieria chemiczna i bioprocesowa Inżynieria chemiczna i biorocesowa W- Postawowe jenostki fizyczne Natężenie rzeływ / strmień / rękość rzeływ Równanie ciąłości stri Płyn oskonały Prawa ois ynamiki łynów oskonałych Pomiar natężenia / rękości

Bardziej szczegółowo

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m.

1. Dane : DANE OGÓLNE PROJEKTU. Poziom odniesienia: 0,00 m. 1. Dane : DANE OGÓLNE PROJEKTU Poziom odniesienia: 0,00 m. 4 2 0-2 -4 0 2. Fundamenty Liczba fundamentów: 1 2.1. Fundament nr 1 Klasa fundamentu: ława, Typ konstrukcji: ściana, Położenie fundamentu względem

Bardziej szczegółowo

1. Dane do ćwiczenia. n3 n2. hp n4

1. Dane do ćwiczenia. n3 n2. hp n4 . Dane o ćwiczenia - szerokość tunelu w świetle : a t 5 [cm] - grubość ścian tunelu : b 8 [cm] - grubość łyty ennej : c 0 [cm] - grubość łyty stroowej : 5 [cm] 0,5 [m] - wysokość tunelu w świetle : h t

Bardziej szczegółowo

Dobór zestawu hydroforowego Instalacje wodociągowe i kanalizacyjne 2. Wrocław 2014

Dobór zestawu hydroforowego Instalacje wodociągowe i kanalizacyjne 2. Wrocław 2014 Instalacje wodociągowe i kanalizacyjne 2 Wrocław 2014 Wyznaczenie unktu racy Wyznaczenie obliczeniowego unktu racy urządzenia 1. Wymagane ciśnienie odnoszenia zestawu min min ss 2. Obliczeniowa wydajność

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

MerFlex PF 03. Metalowe węże do chłodzenia T F

MerFlex PF 03. Metalowe węże do chłodzenia T F MrFlx Mtalow węż o chłoznia PF 0 T. + 22 2551 F. + 22 2 MERCATOR@MERCATOR.COM.P WWW.MERCATOR.COM.P MrFlx Mtalow węż o chłoznia T. + 22 2551 F. + 22 2 MERCATOR@MERCATOR.COM.P WWW.MERCATOR.COM.P A/O MrFlx

Bardziej szczegółowo

Bud. Mieszk. TBS seg B poz.14

Bud. Mieszk. TBS seg B poz.14 Dobór naczynia wzbiorczgo wg wytycznych normy PN-EN-12828 Nazwa inwstycji: Oracował: Data oracowania: Bud. Miszk. TBS sg B oz.14 20-07-2017 6:40 Paramtry do doboru naczynia wzbiorczgo: 1) T max - maksymalna

Bardziej szczegółowo

( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0, Dobór zestawu hydroforowego PN-9/B-176 Wyznaczenie obliczeniowego unktu racy urzdzenia: 1. Wydajnoci / strumienia rzeływu wody Q O Obl ( ) 45 3 3, 68 14; dm s, m h Q = q =, Σ q, ( ), 1 3 3 Q = q = 1, 7

Bardziej szczegółowo

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego. ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości.

Mechanika cieczy. Ciecz jako ośrodek ciągły. 1. Cząsteczki cieczy nie są związane w położeniach równowagi mogą przemieszczać się na duże odległości. Mecanika cieczy Ciecz jako ośrodek ciągły. Cząsteczki cieczy nie są związane w ołożeniac równowagi mogą rzemieszczać się na duże odległości.. Cząsteczki cieczy oddziałują ze sobą, lecz oddziaływania te

Bardziej szczegółowo

Fizyka promieniowania jonizującego. Zygmunt Szefliński

Fizyka promieniowania jonizującego. Zygmunt Szefliński Fizyka prominiowania jonizującgo ygmunt Szfliński 1 Wykład 10 Rozpady Rozpady - warunki nrgtyczn Ściżka stabilności Nad ściżką znajdują się jądra prominiotwórcz, ulgając rozpadowi -, zaś pod nią - jądra

Bardziej szczegółowo

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

Transport i sedymentacja cząstek stałych

Transport i sedymentacja cząstek stałych Slajd 1 Slajd 2 Slajd 3 Slajd 4 Slajd 5 Akademia Rolnicza w Krakowie WIŚiG Katedra Inżynierii Wodnej dr inż. Leszek Książek Transport i sedymentacja cząstek stałych wykład 1, wersja 4.4 USM Inżynieria

Bardziej szczegółowo

BeStCAD - Moduł INŻYNIER 1

BeStCAD - Moduł INŻYNIER 1 BeStCAD - Moduł INŻYNIER 1 Ścianki szczelne Oblicza ścianki szczelne Ikona: Polecenie: SCISZ Menu: BstInżynier Ścianki szczelne Polecenie służy do obliczania ścianek szczelnych. Wyniki obliczeń mogą być

Bardziej szczegółowo

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21

PLAN WYKŁADU. Równanie Clausiusa-Clapeyrona 1 /21 PAN WYKŁADU Równani Clausiusa-Clapyrona 1 /1 Podręczniki Salby, Chaptr 4 C&W, Chaptr 4 R&Y, Chaptr /1 p (mb) 1 C Fusion iquid Solid 113 6.11 Vapor 1 374 (ºC) Kropl chmurow powstają wtdy kidy zostani osiągnięty

Bardziej szczegółowo

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły

6. Dynamika Stan równowagi. ρb(x, y, z) V n t d. Siły 6. Dynamika P.Pluciński 6. Dynamika 6.1. tan równowagi t ρb d x, y, z P ρüx, y, z ρbx, y, z z n t d x y iły ρb wktor gęstości sił masowych [N/m 3 ] ρb d wktor gęstości sił masowych tłuminia [N/m 3 ] ρü

Bardziej szczegółowo

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Producent Rur Preizolowanych

Producent Rur Preizolowanych Producent Rur Preizolowanych Katalog wyrobów ELZAS ul. Krzywińska 2, 64-113 Osieczna tel. 65 53 50 413 fax 65 53 50 398 info@elzas.pl www.elzas.pl 3 Rodzaj rury Średnica Norma EN Materiał ze szwem - zgrzewana

Bardziej szczegółowo

Ekscytony Wanniera Motta

Ekscytony Wanniera Motta ozpatrzmy oddziaływani lktronu o wktorz falowym bliskim minimum pasma przwodnictwa oraz dziury z obszaru blisko wirzcołka pasma walncyjngo. Zakładamy, ż oba pasma są sfryczni symtryczn, a ic kstrma znajdują

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Ø355. D R mm. D mm. C mm

Ø355. D R mm. D mm. C mm Ø25 - Ø355 WNTYLATORY ŚINN Ø25 Ø3 Ø355 ŚINN Ø25 245 25 25 335 85,4 kw 13 Ø3 295 3 32 42 85,6 kw 135 Ø355 35 355 37 49 85,6 kw 135 WNTYLATORA WYAJNOŚĆ PRĄ MAX. TMP. 1 25/R/6-6/5/23 135 144,4,55 44 4 4 54

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 2 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki łynów ĆWICZENIE NR OKREŚLENIE WSPÓLCZYNNIKA STRAT MIEJSCOWYCH PRZEPŁYWU POWIETRZA W RUROCIĄGU ZAKRZYWIONYM 1.

Bardziej szczegółowo

ZASADY WYZ ACZA IA PARAMETRU KRYTERIAL EGO OCE Y E ERGETYCZ O-EKOLOGICZ EJ KOTŁÓW MAŁEJ MOCY Autorzy: Krystyna Kubica, Andrzj Szlęk Instytut Tchniki Cilnj, ul. Konarskigo 22 44-100 Gliwic krystyna.kubica@olsl.l;

Bardziej szczegółowo

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I

J. Szantyr Wykład nr 25 Przepływy w przewodach zamkniętych I J. Szantyr Wykład nr 5 Przeływy w rzewodach zamkniętych I Przewód zamknięty kanał o dowonym kształcie rzekroju orzecznego, ograniczonym inią zamkniętą, całkowicie wyełniony łynem (bez swobodnej owierzchni)

Bardziej szczegółowo

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu. 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego

Makroekonomia Gospodarki Otwartej Wykład 6 Model Dornbuscha przestrzelenia kursu walutowego Makrokonomia Gosodarki Otwartj Wykład 6 Modl Dornbuscha rzstrzlnia kursu walutowgo Lszk Wincnciak Wydział Nauk Ekonomicznych UW 2/25 Plan wykładu: Założnia modlu Formaln rzdstawini modlu Równowaga na rynku

Bardziej szczegółowo

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology

Mechanika płynp. Wykład 9 14-I Wrocław University of Technology Mechanika łyn ynów Wykład 9 Wrocław University of Technology 4-I-0 4.I.0 Płyny Płyn w odróŝnieniu od ciała stałego to substancja zdolna do rzeływu. Gdy umieścimy go w naczyniu, rzyjmie kształt tego naczynia.

Bardziej szczegółowo

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html

http://www.viamoda.edu.pl/rekrutacja/studia-podyplomowe_s_37.html O Strona 1/288 01-07-2016 09:00:13 F Strona 2/288 01-07-2016 09:00:13 E Strona 3/288 01-07-2016 09:00:13 R Strona 4/288 01-07-2016 09:00:13 T Strona 5/288 01-07-2016 09:00:13 A Strona 6/288 01-07-2016

Bardziej szczegółowo

I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian)

I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łącznie na powtórzenie i sprawdzian) koniczn rozszrzając ponad I. PIERWSZE SPOTKANIE Z FIZYKĄ (6 godzin + 2 godziny łączni na powtórzni i sprawdzian) Czym zajmuj się fizyka; Wilkości fizyczn, jdnostki i pomiary; Jak przprowadzać doświadcznia

Bardziej szczegółowo

Płytowe wymienniki ciepła. 1. Wstęp

Płytowe wymienniki ciepła. 1. Wstęp Płytowe wymienniki cieła. Wstę Wymienniki łytowe zbudowane są z rostokątnych łyt o secjalnie wytłaczanej owierzchni, oddzielonych od siebie uszczelkami. Płyty są umieszczane w secjalnej ramie, gdzie są

Bardziej szczegółowo

Obliczanie pali obciążonych siłami poziomymi

Obliczanie pali obciążonych siłami poziomymi Obliczanie ali obciążonych siłami oziomymi Obliczanie nośności bocznej ali obciążonych siłą oziomą Srawdzenie sztywności ala Na to, czy dany al można uznać za sztywny czy wiotki, mają wływ nie tylko wymiary

Bardziej szczegółowo

Egzamin z MGIF, I termin, 2006 Imię i nazwisko

Egzamin z MGIF, I termin, 2006 Imię i nazwisko 1. Na podstawie poniższego wykresu uziarnienia proszę określić rodzaj gruntu, zawartość głównych frakcji oraz jego wskaźnik różnoziarnistości (U). Odpowiedzi zestawić w tabeli: Rodzaj gruntu Zawartość

Bardziej szczegółowo

4. Statystyka elektronów i dziur

4. Statystyka elektronów i dziur 4. Statystya ltroów i ziur Gęstość staów Koctracja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i acptory Półprzwoi omiszoway, zalżość octracji swoboyc ośiów i poziomu

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH

WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH Ć w i c z n i 34 WYZNACZANIE WSPÓŁCZYNNIKA POCHŁANIANIA PROMIENIOWANIA γ W METALACH 34.1 Opis tortyczny Prominiowani γ jst prominiowanim towarzyszącym przmianom prominiotwórczym α i β. Są to kwanty prominiowania

Bardziej szczegółowo

Kolokwium z mechaniki gruntów

Kolokwium z mechaniki gruntów Zestaw 1 Zadanie 1. (6 pkt.) Narysować wykres i obliczyć wypadkowe parcia czynnego wywieranego na idealnie gładką i sztywną ściankę. 30 kpa γ=17,5 kn/m 3 Zadanie 2. (6 pkt.) Obliczyć ile wynosi obciążenie

Bardziej szczegółowo

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny

Eikonał Optyczny.doc Strona 1 z 6. Eikonał Optyczny Eikonał Optyczny.doc Stona z 6 Eikonał Optyczny µ µ Rozpatzmy ośodk bz ładunków i pądów z polm o pulsacji ω Uwaga: ni zakłada się jdnoodności ośodka: ε ε xyz,,, Równania Maxwlla: H iωε ε E ikc ε ε E E

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury -

Budowa materii Opis statystyczny - NAv= 6.022*1023 at.(cz)/mol Opis termodynamiczny temperatury - ermoynamika Pojęcia i zaganienia ostawowe: Buowa materii stany skuienia: gazy, ciecze, ciała stale Ois statystyczny wielka liczba cząstek - N A 6.0*0 at.(cz)/mol Ois termoynamiczny Pojęcie temeratury -

Bardziej szczegółowo

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III

TERMODYNAMIKA. Przedstaw cykl przemian na wykresie poniższym w układach współrzędnych przedstawionych poniżej III Włodzimierz Wolczyński 44 POWÓRKA 6 ERMODYNAMKA Zadanie 1 Przedstaw cykl rzemian na wykresie oniższym w układach wsółrzędnych rzedstawionych oniżej Uzuełnij tabelkę wisując nazwę rzemian i symbole: >0,

Bardziej szczegółowo

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna

W Wymiana ciepła. Opór r cieplny Przewodzenie ciepła Konwekcja Promieniowanie Ekranowanie ciepła. Termodynamika techniczna W0 56 Opó ciplny Pzwodzni cipła Konwkcja Pominiowani Ekanowani cipła w0 Waunkim pzpływu cipła a między dwoma ośodkami o jst óŝnica tmpatu Cipło o pzpływa z ośodka o o tmpatuz wyŝszj do ośodka o o tmpatuz

Bardziej szczegółowo

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2

J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2 J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można

Bardziej szczegółowo

zbiór punktów o idealnej sprężystości i braku wzajemnych oddziaływań, spełnia prawa Boyle a-mariotta, Gay-Lussaca-Charlesa, Clapeyrona

zbiór punktów o idealnej sprężystości i braku wzajemnych oddziaływań, spełnia prawa Boyle a-mariotta, Gay-Lussaca-Charlesa, Clapeyrona DYNAMIKA PŁYNÓW DOKONAŁYCH Płyny: ciecze, azy Ciecze oskonałe: ęstość cieczy na całej łości rzewo się nie zmienia, brak tarcia wewnętrzneo, cząstki iealnie rchliwe, cząstki nieściśliwe, sełnia rawa Elera,

Bardziej szczegółowo

Materiały pomocnicze z Aparatury Przemysłu Chemicznego

Materiały pomocnicze z Aparatury Przemysłu Chemicznego Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA

Bardziej szczegółowo

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA

ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA ZAKŁAD POJAZDÓW SAMOCHODOWYCH I SILNIKÓW SPALINOWYCH ZPSiSS WYDZIAŁ BUDOWY MASZYN I LOTNICTWA POLITECHNIKA RZESZOWSKA im. IGNACEGO ŁUKASIEWICZA Al. Powstańców Warszawy 8, 35-959 Rzeszów, Tel: 854-31-1,

Bardziej szczegółowo

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1)

POLE ELEKTROSTATYCZNE W PRÓŻNI - CD. Dipol charakteryzuje się przez podanie jego dipolowego momentu elektrycznego p (5.1) POL LKTROTATYCZN W PRÓŻNI - CD Dio ktyczny q + q Dio ktyczny to ukła ównych co o watości unktowych łaunków ktycznych zciwngo znaku ozmiszczonych w stałj ogłości o sibi Dio chaaktyzuj się zz oani jgo ioowgo

Bardziej szczegółowo

Rozwiązanie równania różniczkowego MES

Rozwiązanie równania różniczkowego MES Rozwiązani równania różniczkowgo MES Jrzy Pamin -mail: jpamin@l5.pk.du.pl Instytut Tchnologii Informatycznych w Inżynirii Lądowj Wydział Inżynirii Lądowj Politchniki Krakowskij Strona domowa: www.l5.pk.du.pl

Bardziej szczegółowo

Parametry układu pompowego oraz jego bilans energetyczny

Parametry układu pompowego oraz jego bilans energetyczny Parametry układu pompowego oraz jego bilans energetyczny Układ pompowy Pompa może w zasadzie pracować tylko w połączeniu z przewodami i niezbędną armaturą, tworząc razem układ pompowy. W układzie tym pompa

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się

PŁYN Y RZECZYWISTE Przepływy rzeczywiste różnią się od przepływów idealnych obecnością tarcia (lepkości): przepływy laminarne/warstwowe - różnią się PŁYNY RZECZYWISTE Płyny rzeczywiste Przeływ laminarny Prawo tarcia Newtona Przeływ turbulentny Oór dynamiczny Prawdoodobieństwo hydrodynamiczne Liczba Reynoldsa Politechnika Oolska Oole University of Technology

Bardziej szczegółowo

Płyny newtonowskie (1.1.1) RYS. 1.1

Płyny newtonowskie (1.1.1) RYS. 1.1 Miniskrypt: Płyny newtonowskie Analizujemy cienką warstwę płynu zawartą pomiędzy dwoma równoległymi płaszczyznami, które są odległe o siebie o Y (rys. 1.1). W warunkach ustalonych następuje ścinanie w

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Aerodynamika I Efekty lepkie w przepływach ściśliwych.

Aerodynamika I Efekty lepkie w przepływach ściśliwych. Aerodynamika I Efekty lepkie w przepływach ściśliwych. przepłw wokół profilu RAE-2822 (M = 0.85, Re = 6.5 10 6, α = 2 ) Efekty lepkie w przepływach ściśliwych Równania ruchu lepkiego płynu ściśliwego Całkowe

Bardziej szczegółowo

Zespół Szkół Nr 1 im. Jana Kilińskiego w Pabianicach Przedmiot: Proces projektowania części maszyn

Zespół Szkół Nr 1 im. Jana Kilińskiego w Pabianicach Przedmiot: Proces projektowania części maszyn Obliczenia wytrzymałościowe zębów rostych Obliczenia wytrzymałościowe uzębień olegają na: - iczeniu wymiarów zębów z warunku na zginanie, z uwzględnieniem działania sił statycznych i dynamicznych, - iczeniu

Bardziej szczegółowo

Analiza wymiarowa i równania różnicowe

Analiza wymiarowa i równania różnicowe Część 1: i równania różnicowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Plan Część 1: 1 Część 1: 2 Część 1: Układ SI (Système International d Unités) Siedem jednostek

Bardziej szczegółowo

AMD. Układy trójfazowe

AMD. Układy trójfazowe Wykład 7 kłady rójazow. Gnraory rójazow. kłady ołączń źródł. Wilkości azow i rzwodow 4. ołącznia odbiorników w Y(gwiazda i w D (rójką 5. Analiza układów rójazowych Gnraor naięcia sinusoidalngo rójazowgo

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

Opory przepływu powietrza w instalacji wentylacyjnej

Opory przepływu powietrza w instalacji wentylacyjnej Wentylacja i klimatyzacja 2 -ćwiczenia- Opory przepływu powietrza w instalacji wentylacyjnej Przepływ powietrza w przewodach wentylacyjnych Powietrze dostarczane jest do pomieszczeń oraz z nich usuwane

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Pomiar siły parcie na powierzchnie płaską

Pomiar siły parcie na powierzchnie płaską Pomiar siły parcie na powierzchnie płaską Wydawać by się mogło, że pomiar wartości parcia na powierzchnie płaską jest technicznie trudne. Tak jest jeżeli wyobrazimy sobie pomiar na ściankę boczną naczynia

Bardziej szczegółowo

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa

Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

KONSTRUKCJE DREWNIANE I MUROWE

KONSTRUKCJE DREWNIANE I MUROWE POLITECHNIKA BIAŁOSTOCKA WBiIŚ KATEDRA KONSTRUKCJI BUDOWLANYCH ZAJĘCIA 2 KONSTRUKCJE DREWNIANE I MUROWE Mgr inż. Julita Krassowska POKRYCIE DACHU gont bitumiczny, papa na dskowaniu, dachówka karpiówka,

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1. Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje

Bardziej szczegółowo

Parametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym

Parametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym Parametry reologiczne hydrożeli a dostępność farmaceutyczna substancji leczniczych na przykładzie modelowej postaci leku o działaniu przeciwzapalnym Justyna Kołodziejska Zakład Technologii Postaci Leku

Bardziej szczegółowo

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977.

Komitet Główny Olimpiady Fizycznej, Waldemar Gorzkowski: Olimpiady fizyczne XXIII i XXIV. WSiP, Warszawa 1977. XXV OLMPADA FZYCZNA (1974/1975). Stopiń, zadani doświadczaln D Źródło: Nazwa zadania: Działy: Słowa kluczow: Komitt Główny Olimpiady Fizycznj, Waldmar Gorzkowski: Olimpiady fizyczn XX i XXV. WSiP, Warszawa

Bardziej szczegółowo

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną

Bardziej szczegółowo

Przenośnik zgrzebłowy - obliczenia

Przenośnik zgrzebłowy - obliczenia Przenośnik zgrzebłowy - obliczenia Katedra Maszyn Górniczych, Przeróbczych i Transportowych Przenośnik zgrzebłowy - obliczenia Dr inż. Piotr Kulinowski pk@imir.agh.edu.pl tel. (67) 0 7 B- parter p.6 konsultacje:

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz

Bardziej szczegółowo

Położenie wylotu wentylatora (układ wylotu) Położenie wlotu kolanowego. Oznaczenia położenia silnika

Położenie wylotu wentylatora (układ wylotu) Położenie wlotu kolanowego. Oznaczenia położenia silnika Wstęp Wentylatory promieniowe, jednostrumieniowe typoszeregu WWOax to wysokosprawne wentylatory ogólnego i specjalnego przeznaczenia. Stosowane są m.in. do wentylacji pomieszczeń, podmuchu kotłów i wyciągu

Bardziej szczegółowo

4. Statystyka elektronów i dziur

4. Statystyka elektronów i dziur 4. Statystya ltroów i ziur Gęstość staów Kotraja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i aptory Półprzwoi omiszoway, zalżość otraji swoboy ośiów i poziomu

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice.

Wykład 6 Pochodna, całka i równania różniczkowe w praktycznych zastosowaniach w elektrotechnice. Wykład 6 Pochodna, całka i równania różniczkow w prakycznych zasosowaniach w lkrochnic. Przypomnini: Dfinicja pochodnj: Granica ilorazu różnicowgo-przyros warości funkcji do przyrosu argumnów-przy przyrości

Bardziej szczegółowo

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32

(r) (n) C u. γ (n) kn/ m 3 [ ] kpa. 1 Pπ 0.34 mw ,5 14,85 11,8 23,13 12,6 4,32 N r Rodzaj gruntu I /I L Stan gr. K l. Ф u (n) [ ] Ф u (r) [ ] C u (n) kpa γ (n) kn/ m γ (r) kn/m γ' (n) kn/ m N C N N 1 Pπ 0.4 mw - 9.6 6.64-16,5 14,85 11,8,1 1,6 4, Пp 0.19 mw C 15.1 1.59 16 1,0 18,9

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Policnika Gdańka Wydział Elkrocniki i Auomayki Kadra Inżynirii Symów Srowania Podawy Auomayki Przygoowani zadania rowania do analizy i ynzy zawini cmau blokowgo Mariały omocnicz do ćwiczń - rmin T3 Oracowani:

Bardziej szczegółowo