Analiza wymiarowa i równania różnicowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza wymiarowa i równania różnicowe"

Transkrypt

1 Część 1: i równania różnicowe Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5

2 Plan Część 1: 1 Część 1: 2

3 Część 1: Układ SI (Système International d Unités) Siedem jednostek podstawowych: wielkość jednostka symbol długość metr m masa kilogram kg czas sekunda s prad elektryczny amper A temperatura kelwin K natężenie światła kandela cd ilość substancji mol mol

4 Część 1: pochodne wielkość jednostka symbol siła niuton N (kg m s 2 ) energia dżul J (kg m 2 s 2 ) moc wat W (J s 1 lub kg m 2 s 3 ) częstotliwość herc Hz (s 1 ) ciśnienie paskal Pa (N m 2 lub kg m 1 s 2 )

5 Mnożniki Część 1: mnożnik prefiks symbol tera T 10 9 giga G 10 6 mega M 10 3 kilo k 10 2 centy c 10 3 mili m 10 6 mikro µ 10 9 nano n

6 Plan Część 1: 1 Część 1: 2

7 Wymiary Część 1: W mechanice, wszystkie wielkości można wyrazić w kategoriach podstawowych wielkości: masy (M), długości (L) oraz czasu (T). Każda inna wielkość fizyczna będzie ich kombinacja, a konkretna kombinację nazywa się wymiarem danej wielkości. [pole] = L 2 [prędkość] = LT 1 [gęstość] = ML 3 Zauważyć, że wymiary sa niezależne od jednostek.

8 Wymiary Część 1: Każde poprawne równanie musi być wymiarowo spójne, tzn. musi zachodzić [lewa strona] = [prawa strona] Przykładowo, modelowanie siły tarcia spowodowanej oporem powietrza prowadzi do zależności skad czyli F = kv 2 = [F] = [kv 2 ] MLT 2 = [k][lt 1 ] 2 = [k]l 2 T 2 [k] = ML 1 tzn. k musi być mierzone w kg m 1.

9 Część 1: Pytanie Jaki wymiar ma a w wyrażeniach exp(at) oraz sin(at)? Przykład Przypuśćmy, że budujemy model który będzie przewidywał okres wahadła t. Lista czynników może obejmować długość l, masę m, przyspieszenie ziemskie g oraz amplitudę θ. Załóżmy, że t = kl a m b g c θ d gdzie: a, b, c, d oraz k liczby rzeczywiste. Dla wymiarów musi zachodzić [t] = [kl a m b g c θ d ]

10 Część 1: Pytanie Jaki wymiar ma a w wyrażeniach exp(at) oraz sin(at)? Przykład Przypuśćmy, że budujemy model który będzie przewidywał okres wahadła t. Lista czynników może obejmować długość l, masę m, przyspieszenie ziemskie g oraz amplitudę θ. Załóżmy, że t = kl a m b g c θ d gdzie: a, b, c, d oraz k liczby rzeczywiste. Dla wymiarów musi zachodzić [t] = [kl a m b g c θ d ]

11 Część 1: Przykład c.d. Oznacza to, że T = L a M b (LT 2 ) c (k i θ sa bezwymiarowe). Przyrównanie potęg daje skad a + c = 0, b = 0, 2c = 1 t = kl 1/2 g 1/2 θ d Powyżej d może przyjać dowolna wartość, ale możemy to wyrazić ogólniej jako t = f (θ)l 1/2 g 1/2 Funkcję f (θ) trzeba będzie znaleźć w inny sposób.

12 Część 1: Przykład c.d. Uwzględnijmy dodatkowo siłę oporu powietrza R: t = kl a m b g c θ d R e Prowadzi to do M 0 L 0 T 1 = L a M b (LT 2 ) c (MLT 2 ) e = M b+e L a+c+e T 2c 2e i, w konsekwencji, do warunków b + e = 0 a + c + e = 0 2c 2e = 1 d dowolne

13 Część 1: Przykład c.d. Jednym z rozwiazań jest e = b c = b 1 2 co daje a = 1 2 ( ) l 1/2 ( ) mg b t = kl 1/2 m b g b 1/2 R b θ d = k θ d g R ( ) l 1/2 ( = f 1 θ, mg ) g R dla pewnej funkcji f 1.

14 Część 1: Przykład c.d. Alternatywnym rozwiazaniem jest e = c 1 2 a = 1 2 co daje dla pewnej funkcji f 2. b = c t = kl 1/2 m c+1/2 g c R c 1/2 θ d ( ) ml 1/2 ( = f 2 θ, mg ) R R

15 Plan Część 1: 1 Część 1: 2

16 Część 1: Warianty dynamiki populacji miasta 1 Populacja wzrasta o 1000 osób rocznie: P n+1 = P n Populacja rośnie o 1% rocznie: P n+1 = (1.01)P n 3 Populacja wzrastałaby o 2% gdyby nie emigracja 100 osób rocznie: P n+1 = (1.02)P n 100

17 Część 1: Podstawowe rodzaje równań Jednorodne: równanie będzie spełnione po podstawieniu zer pod wszystkie X, np. X n+2 3X n+1 + X n = 0 jest jednorodne, ale nie jest równanie O stałych współczynnikach: jest nim ale nie jest X n+1 2X n = 3n + 1 X n+2 3X n+1 + X n = 0 X n+2 3nX n+1 + X n = 0

18 Część 1: Podstawowe rodzaje równań Pierwszego rzędu, drugiego rzędu,... : Rzad jest różnica maksymalnego i minimalnego indeksu, np. X n+3 3X n+2 X n = 0 jest trzeciego rzędu. Rzad determinuje liczbę niezbędnych wartości poczatkowych. Liniowe: jest nim np. X n+1 = 2X n + 3X n 1 + n 2 + 7

19 Przykład Część 1: Przykład Niech P n wielkość produkcji w roku n. Załóżmy, że ta produkcja podwaja się każdego roku, tzn. P n+1 = 2P n Jeżeli P 0 produkcja w roku 0, to P 1 = 2P 0 P 2 = 2P 1 = 2(2P 0 ) = 2 2 P 0 P 3 = 2P 2 = 2(2 2 P 0 ) = 2 3 P 0 itd. Widzimy więc, że rozwiazaniem ogólnym jest P n = 2 n P 0

20 Przykład Część 1: Przykład c.d. Analogicznie, gdy produkcja rośnie o 25% rocznie, otrzymujemy równanie P n+1 = (1.25)P n i rozwiazanie P n = (1.25) n P 0. W ten sam sposób też, gdy blokujemy na koncie kwotę P 0 z roczna stopa procentowa r%, po n latach otrzymamy sumę spełniajac a równanie P n+1 = którego rozwiazaniem jest P n = ( 1 + r ) P n 100 ( 1 + r ) n P 0 100

21 Przykład Część 1: Przykład c.d. Analogicznie, gdy produkcja rośnie o 25% rocznie, otrzymujemy równanie P n+1 = (1.25)P n i rozwiazanie P n = (1.25) n P 0. W ten sam sposób też, gdy blokujemy na koncie kwotę P 0 z roczna stopa procentowa r%, po n latach otrzymamy sumę spełniajac a równanie P n+1 = którego rozwiazaniem jest P n = ( 1 + r ) P n 100 ( 1 + r ) n P 0 100

22 Przypadek ogólny Część 1: Rozważmy X n+1 = ax n Rozwiazaniem jest (sprawdzić!) X n = a n X 0 Jak zachowuje się rozwiazanie dla poniższych przypadków? 1 a > < a < < a < 0 4 a < 1

23 Plan Część 1: 1 Część 1: 2

24 Część 1: Rozważmy Startujac od X 0 otrzymujemy X 1 = ax 0 + b X n+1 = ax n + b X 2 = ax 1 + b = a(ax 0 + b) + b = a 2 X 0 + (a + 1)b X 3 = ax 2 + b = a(a 2 X 0 + (a + 1)b) + b = a 3 X 0 + (a 2 + a + 1)b Kontynuujac w ten sam sposób mamy X n = a n X 0 + (a n a 2 + a + 1)b = a n X 0 + an 1 a 1 b o ile a 1. (A co dla a = 1?) Przeanalizować również przypadki a < 1 oraz a > 1.

25 Część 1: Przykład W jeziorze jest aktualnie ryb. Gdyby ich nie odławiano, populacja wzrastałaby o 15% rocznie. Proponuje się, żeby jednak odławiać 2000 ryb na rok. Oznaczajac F n liczba ryb po n latach od teraz, otrzymujemy model F n+1 = (1.15)F n 2000, F 0 = Daje to w kolejnych latach 9500, 8925, 8264, 7503,... Po ilu latach populacja ryb zniknie?

26 Część 1: Zadanie Jezioro zawiera m 3 wody zanieczyszczonej w 5%. Każdego dnia do jeziora wpływa 1000 m 3 czystej wody, a wypływa 1000 m 3 wody zanieczyszczonej. Jak długo potrwa obniżenie poziomu zanieczyszczenia do 1% objętości? Rozwiazanie Zauważmy, że objętość wody z jeziorze pozostaje stała. Przyjmujemy krok czasowy jako jeden dzień i oznaczamy P n objętość zanieczyszczenia w jeziorze w n-tym dniu. Mamy P 0 = = 5000 m 3

27 Część 1: Zadanie Jezioro zawiera m 3 wody zanieczyszczonej w 5%. Każdego dnia do jeziora wpływa 1000 m 3 czystej wody, a wypływa 1000 m 3 wody zanieczyszczonej. Jak długo potrwa obniżenie poziomu zanieczyszczenia do 1% objętości? Rozwiazanie Zauważmy, że objętość wody z jeziorze pozostaje stała. Przyjmujemy krok czasowy jako jeden dzień i oznaczamy P n objętość zanieczyszczenia w jeziorze w n-tym dniu. Mamy P 0 = = 5000 m 3

28 Część 1: Rozwiazanie c.d. W n-tym dniu każdy m 3 wody zawiera P n / m 3 zanieczyszczenia, a to oznacza, że z jeziora tego dnia wypłynie 1000 P n / m 3 zanieczyszczenia. Stad P n+1 = P n 1000 P n / = (1 0.01)P n = (0.99)P n czyli P n = (0.99) n P 0 = (0.99) n Zatem P n osiagnie wartość 1000 gdy 1000 = (0.99) n 5000, tzn. n = ln(0.2)/ ln(0.99) 161 dni.

29 Część 1: Rozwiazanie c.d. Załóżmy teraz, że zanieczyszczenie nadal wpływa do jeziora z szybkościa 5 m 3 na dzień, podczas gdy równocześnie wpływa 995 m 3 czystej wody i wypływa 1000 m 3 wody zanieczyszczonej. Modelem jest wówczas P n+1 = P n 1000 P n / = (0.99)P n + 5 Powyższe równanie ma rozwiazanie P n = (0.99) n n = 500[9(0.99)n + 1] Warunek 1000 = 500[9(0.99) n + 1] daje n = ln(9)/ ln(0.99) 219 dni.

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 02. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 02 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Wektory ujęcie analityczne Definicja Wektor = uporządkowana trójka liczb (współrzędnych kartezjańskich) a = a x a y a z długość wektora: a = a 2 x +

Bardziej szczegółowo

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp.

Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki.

Zbiór wielkości fizycznych obejmujący wszystkie lub tylko niektóre dziedziny fizyki. Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1.. Własność ciała lub cecha zjawiska fizycznego, którą można zmierzyć, np. napięcie elektryczne, siła, masa, czas, długość itp. 2. Układ wielkości.

Bardziej szczegółowo

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Równania różniczkowe. Dariusz Uciński. Wykład 7. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 7 Plan Model wzrostu populacji 1 Część 1: Równania pierwszego rzędu, jedna zmienna Model wzrostu populacji 2 Model skoku

Bardziej szczegółowo

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Konspekt lekcji z fizyki w klasie I LO

Konspekt lekcji z fizyki w klasie I LO mgr Sylwia Rybarczyk esryba@poczta.onet.pl nauczyciel fizyki i matematyki XLIV LO w Łodzi Konspekt lekcji z fizyki w klasie I LO TEMAT: Zjawisko fizyczne, wielkość fizyczna, jednostki - utrwalenie zdobytych

Bardziej szczegółowo

Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015

Fizyka. w. 03. Paweł Misiak. IŚ+IB+IiGW UPWr 2014/2015 Fizyka w. 03 Paweł Misiak IŚ+IB+IiGW UPWr 2014/2015 Jednostki miar SI Jednostki pochodne wielkość nazwa oznaczenie definicja czestotliwość herc Hz 1 Hz = 1 s 1 siła niuton N 1 N = 1 kgm 2 s 2 ciśnienie

Bardziej szczegółowo

Podstawowe umiejętności matematyczne - przypomnienie

Podstawowe umiejętności matematyczne - przypomnienie Podstawowe umiejętności matematyczne - przypomnienie. Podstawy działań na potęgach założenie:. założenie: założenie: a>0, n jest liczbą naturalną założenie: Uwaga:. Zapis dużych i małych wartości w postaci

Bardziej szczegółowo

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz

3. Podstawowe wiadomości z fizyki. Dr inż. Janusz Dębiński. Mechanika ogólna. Wykład 3. Podstawowe wiadomości z fizyki. Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 3 Podstawowe wiadomości z fizyki Kalisz Dr inż. Janusz Dębiński 1 Jednostki i układy jednostek Jednostką miary wielkości fizycznej nazywamy wybraną w sposób

Bardziej szczegółowo

KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM

KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Anna Kierzkowska nauczyciel fizyki i chemii w Gimnazjum Nr 2 w Starachowicach KONSPEKT LEKCJI FIZYKI DLA KLASY I GIMNAZJUM Temat lekcji: Pomiary wielkości fizycznych. Międzynarodowy Układ Jednostek Miar

Bardziej szczegółowo

Zestawienie wzorów fizycznych dla uczniów gimnazjum

Zestawienie wzorów fizycznych dla uczniów gimnazjum Zestawienie wzorów fizycznych dla uczniów gimnazjum opracowała dr Beata Tyszka-Skorek Podstawowe jednostki w Układzie SI (Système International d'unités)- Międzynarodowy Układ Jednostek Miar Nazwa wielkości

Bardziej szczegółowo

Zajęcia wstępne. mgr Kamila Rudź pokój C 116A / C KONSULTACJE. Poniedziałki

Zajęcia wstępne. mgr Kamila Rudź pokój C 116A / C KONSULTACJE. Poniedziałki Zajęcia wstępne mgr Kamila Rudź pokój C 116A / C 145 KONSULTACJE Poniedziałki 15.00 16.00 Wtorki 11.00 12.00 http://kepler.am.gdynia.pl/~karudz kamilar@am.gdynia.pl Kurtki zostawiamy w szatni. Zakaz wnoszenia

Bardziej szczegółowo

LEGALNE JEDNOSTKI MIAR. podstawowe jednostki SI

LEGALNE JEDNOSTKI MIAR. podstawowe jednostki SI LEGALNE JEDNOSTKI MIAR Obowiązujące w Polsce legalne jednostki miar ustalone zostały rozporządzeniem Rady Ministrów z dnia 17.10.1975 r. i doprecyzowane zarządzeniem Prezesa Polskiego Komitetu Normalizacji

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Redefinicja jednostek układu SI

Redefinicja jednostek układu SI CENTRUM NAUK BIOLOGICZNO-CHEMICZNYCH / WYDZIAŁ CHEMII UNIWERSYTETU WARSZAWSKIEGO Redefinicja jednostek układu SI Ewa Bulska MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA MIERZALNE WYZWANIA ŚWIATA

Bardziej szczegółowo

Zajęcia wstępne. mgr Kamila Rudź pokój C 145.

Zajęcia wstępne. mgr Kamila Rudź pokój C 145. Zajęcia wstępne mgr Kamila Rudź pokój C 145 http://kepler.am.gdynia.pl/~karudz Kurtki zostawiamy w szatni. Zakaz wnoszenia jedzenia i picia. Praca z urządzeniami elektrycznymi: włączamy tylko za zgodą

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Miernictwo elektroniczne

Miernictwo elektroniczne Miernictwo elektroniczne Policz to, co można policzyć, zmierz to co można zmierzyć, a to co jest niemierzalne, uczyń mierzalnym Galileo Galilei Dr inż. Zbigniew Świerczyński p. 112A bud. E-1 Wstęp Pomiar

Bardziej szczegółowo

Legalne jednostki miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych

Legalne jednostki miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych Legalne miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych Legalne miar: 1). naleŝące do układu SI : podstawowe, uzupełniające pochodne 2). legalne, ale spoza układu SI Ad.

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp. Definicja 1. Operatorem

Bardziej szczegółowo

I. Przedmiot i metodologia fizyki

I. Przedmiot i metodologia fizyki I. Przedmiot i metodologia fizyki Rodowód fizyki współczesnej Świat zjawisk fizycznych: wielkości fizyczne, rzędy wielkości, uniwersalność praw Oddziaływania fundamentalne i poszukiwanie Teorii Ostatecznej

Bardziej szczegółowo

Dariusz Uciński. Wykład 4

Dariusz Uciński. Wykład 4 Umiejętność modelowania Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wykład 4 Plan 1 2 Istotne pytania o przebiegu y(t) 1 Co dzieje się dla dużych t? 2 Co dzieje się dla małych

Bardziej szczegółowo

Wykład 3 Równania rózniczkowe cd

Wykład 3 Równania rózniczkowe cd 7 grudnia 2010 Definicja Równanie różniczkowe dy dx + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to równanie (1) czyli równanie dy dx + p (x) y = 0 nazywamy

Bardziej szczegółowo

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY

Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 ETAP OKRĘGOWY Kuratorium Oświaty w Lublinie ZESTAW ZADAŃ KONKURSOWYCH Z FIZYKI DLA UCZNIÓW GIMNAZJUM ROK SZKOLNY 2014/2015 KOD UCZNIA ETAP OKRĘGOWY Instrukcja dla ucznia 1. Arkusz zawiera 6 zadań. 2. Przed rozpoczęciem

Bardziej szczegółowo

Analityczne metody detekcji uszkodzeń

Analityczne metody detekcji uszkodzeń Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)

Bardziej szczegółowo

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg

CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m

Bardziej szczegółowo

Modelowanie układów dynamicznych

Modelowanie układów dynamicznych Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 11 Równania Eulera-Lagrange a Rozważmy układ p punktów materialnych o współrzędnych uogólnionych q i i zdefiniujmy lagranżian

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,

Bardziej szczegółowo

FIZYKA. Wstęp cz. 1. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

FIZYKA. Wstęp cz. 1. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wstęp cz. 1 FIZYKA Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski Zasady zaliczenia przedmiotu Obecność i aktywność na zajęciach

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika.

Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. p. 329, Mechatronika. Sprawy organizacyjne Dr inż. Michał Marzantowicz,Wydział Fizyki P.W. marzan@mech.pw.edu.pl p. 329, Mechatronika http://adam.mech.pw.edu.pl/~marzan/ http://www.if.pw.edu.pl/~wrobel Suma punktów: 38 2 sprawdziany

Bardziej szczegółowo

Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych.

Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych. Analiza wymiarowa Prof. dr hab. Małgorzata Jaros, prof. SGGW Analiza wymiarowa jest działem matematyki stosowanej, którego zadaniem jest wyznaczenie, poprawnej pod względem wymiarowym, postaci wzorów fizycznych.

Bardziej szczegółowo

Równania różniczkowe zwyczajne analityczne metody rozwiazywania

Równania różniczkowe zwyczajne analityczne metody rozwiazywania Równania różniczkowe zwyczajne analityczne meto rozwiazywania Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 8 Plan Określenia podstawowe 1 Wstęp Określenia podstawowe

Bardziej szczegółowo

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi.

Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa fizyki i wielkości fizyczne Fizyka (z stgr. φύσις physis "natura") nauka o przyrodzie w najszerszym znaczeniu tego słowa. Prawa fizyki wyrażają związki między różnymi wielkościami fizycznymi. Prawa

Bardziej szczegółowo

Równania różniczkowe metody numeryczne

Równania różniczkowe metody numeryczne Instytut Sterowania i Systemów Informatycznyc Universytet Zielonogórski Wykład 9 Metoda Eulera Rozważmy równanie różniczkowe dy(t) = f (t, y(t)), y(t 0 ) = y 0 którego rozwiazanie ccemy wyznaczyć w przedziale

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Fizyka i wielkości fizyczne

Fizyka i wielkości fizyczne Fizyka i wielkości fizyczne Fizyka: - Stosuje opis matematyczny zjawisk - Formułuje prawa fizyczne na podstawie doświadczeń - Opiera się na prawach podstawowych (aksjomatach) Wielkością fizyczną jest każda

Bardziej szczegółowo

lim Np. lim jest wyrażeniem typu /, a

lim Np. lim jest wyrażeniem typu /, a Wykład 3 Pochodna funkcji złożonej, pochodne wyższych rzędów, reguła de l Hospitala, różniczka funkcji i jej zastosowanie, pochodna jako prędkość zmian 3. Pochodna funkcji złożonej. Jeżeli funkcja złożona

Bardziej szczegółowo

Definicje i przykłady

Definicje i przykłady Rozdział 1 Definicje i przykłady 1.1 Definicja równania różniczkowego 1.1 DEFINICJA. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie F (t, x, ẋ, ẍ,..., x (n) ) = 0. (1.1) W równaniu tym t jest

Bardziej szczegółowo

Równanie Schrödingera

Równanie Schrödingera Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]

Bardziej szczegółowo

Metodologia modelowania

Metodologia modelowania Metodologia modelowania Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski Wykład 3 Plan 1 2 Umiejętność modelowania Przykład 1 Idea Centrum Zdrowia Władze małego miasta otrzymały

Bardziej szczegółowo

Energetyka w Środowisku Naturalnym

Energetyka w Środowisku Naturalnym Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 1-6.X.2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/

Bardziej szczegółowo

Pomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce

Pomiary fizyczne. Wykład II. Wstęp do Fizyki I (B+C) Rodzaje pomiarów. Układ jednostek SI Błedy pomiarowe Modele w fizyce Pomiary fizyczne Wykład II: Rodzaje pomiarów Wstęp do Fizyki I (B+C) Wykład II Układ jednostek SI Błedy pomiarowe Modele w fizyce Rodzaje pomiarów Zliczanie Przykłady: liczba grzybów w barszczu liczba

Bardziej szczegółowo

Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria

Fizyka dla inżynierów I, II. Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Fizyka dla inżynierów I, II Semestr zimowy 15 h wykładu Semestr letni - 15 h wykładu + laboratoria Wymagania wstępne w zakresie przedmiotu: - Ma wiedzę z zakresu fizyki oraz chemii na poziomie programu

Bardziej szczegółowo

Elektrotechnika Skrypt Podstawy elektrotechniki

Elektrotechnika Skrypt Podstawy elektrotechniki UNIWERSYTET PEDAGOGICZNY Wydział Matematyczno-Fizyczno-Techniczny Instytut Techniki Edukacja Techniczno-Informatyczna Elektrotechnika Skrypt Podstawy elektrotechniki Kraków 2015 Marcin Kapłan 1 Spis treści:

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 10. Ruch drgający tłumiony i wymuszony.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html Siły oporu (tarcia)

Bardziej szczegółowo

Wykład 3 Miary i jednostki

Wykład 3 Miary i jednostki Wykład 3 Miary i jednostki Prof. dr hab. Adam Łyszkowicz Katedra Geodezji Szczegółowej UWM w Olsztynie adaml@uwm.edu.pl Heweliusza 12, pokój 04 Od klasycznej definicji metra do systemu SI W 1791 roku Francuskie

Bardziej szczegółowo

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wykład FIZYKA I 1. Ruch drgający tłumiony i wymuszony Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html DRGANIA HARMONICZNE

Bardziej szczegółowo

Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników.

Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników. Przeliczanie zadań, jednostek, rozcieńczanie roztworów, zaokrąglanie wyników. Stężenie procentowe wyrażone w jednostkach wagowych określa liczbę gramów substancji rozpuszczonej znajdującej się w 0 gramach

Bardziej szczegółowo

Rozwiązywanie zadań 1

Rozwiązywanie zadań 1 Tomasz Lubera Rozwiązywanie zadań 1 Zastanów się nad problemem poruszanym w zadaniu, uważnie przeczytaj treść zadania niektóre dane mogą być podane nie wprost Wypisz wszystkie parametry zadania: równanie

Bardziej szczegółowo

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika - Dobór siłownika i zaworu - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika OPÓR PRZEPŁYWU W ZAWORZE Objętościowy współczynnik przepływu Qn Przepływ oblicza się jako stosunek

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań 1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 18 stycznia 018 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60. 85% 51pkt. Uwaga! 1. Za poprawne rozwiązanie

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

13 Równanie struny drgającej. Równanie przewodnictwa ciepła.

13 Równanie struny drgającej. Równanie przewodnictwa ciepła. Równanie struny drgającej. Równanie przewodnictwa ciepła 13 1 13 Równanie struny drgającej. Równanie przewodnictwa ciepła. 13.1 Równanie struny drgającej Równanie różniczkowe liniowe drugiego rzędu typu

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE - LISTA I

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE - LISTA I RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE - LISTA I RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. ROZWIĄZAĆ RÓWNANIE RÓŻNICZKOWE LUB ZAGADNIENIE POCZĄTKOWE.......6. ln ln...7..8..9. d d.... co.... in.... in co in.6..7..8.

Bardziej szczegółowo

03 - Miary, tabele, przeliczania jednostek

03 - Miary, tabele, przeliczania jednostek - Miary, tabele, przeliczania jednostek - Międzynarodowy układ jednostek miar - Tabele przeliczania jednostek - Ciężar właściwy i tabele temperatury topnienia - Tabele rozmiarów gwintów - Tabele wag MIĘDZYNARODOWY

Bardziej szczegółowo

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N.

2. Oblicz jakie przyspieszenie zyskała kula o masie 0,15 tony pod wpływem popchnięcia jej przez strongmana siłą 600N. Wersja A KONKURS FIZYCZNY DLA UCZNIÓW KLAS 3 GIMNAZJUM Masz przed sobą zestaw 20 zadań. Na ich rozwiązanie masz 45 minut. Czytaj uważnie treści zadań. Tylko jedna odpowiedź jest prawidłowa. Za każde prawidłowo

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Nauka - technika 2 Metodologia Problem Hipoteza EKSPERYMENT JAKO NARZĘDZIE WERYFIKACJI 3 Fizyka wielkości fizyczne opisują właściwości obiektów i pozwalają również ilościowo porównać

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności

Bardziej szczegółowo

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski

Zmienne losowe. Powtórzenie. Dariusz Uciński. Wykład 1. Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Powtórzenie Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 1 Podręcznik podstawowy Jacek Koronacki, Jan Mielniczuk: Statystyka dla studentów kierunków technicznych i przyrodnicznych,

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr

Jednostki Ukadu SI. Jednostki uzupełniające używane w układzie SI Kąt płaski radian rad Kąt bryłowy steradian sr Jednostki Ukadu SI Wielkość Nazwa Symbol Długość metr m Masa kilogram kg Czas sekunda s Natężenie prądu elektrycznego amper A Temperatura termodynamiczna kelwin K Ilość materii mol mol Światłość kandela

Bardziej szczegółowo

Równania różniczkowe. Notatki z wykładu.

Równania różniczkowe. Notatki z wykładu. Równania różniczkowe Notatki z wykładu http://robert.brainusers.net 17.06.2009 Notatki własne z wykładu. Są niekompletne, bez bibliografii oraz mogą zawierać błędy i usterki. Z tego powodu niniejszy dokument

Bardziej szczegółowo

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami: 9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym

Bardziej szczegółowo

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego

Matematyka 2. Równania różniczkowe zwyczajne rzędu drugiego Matematyka 2 Równania różniczkowe zwyczajne rzędu drugiego Równania różniczkowe liniowe rzędu II Równanie różniczkowe w postaci y + a 1 (x)y + a 0 (x)y = f(x) gdzie a 0 (x), a 1 (x) i f(x) są funkcjami

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Stabilność II Metody Lapunowa badania stabilności

Stabilność II Metody Lapunowa badania stabilności Metody Lapunowa badania stabilności Interesuje nas w sposób szczególny system: Wprowadzamy dla niego pojęcia: - stabilności wewnętrznej - odnosi się do zachowania się systemu przy zerowym wejściu, czyli

Bardziej szczegółowo

Przedmiot i metodologia fizyki

Przedmiot i metodologia fizyki Przedmiot i metodologia fizyki Świat zjawisk fizycznych Oddziaływania fundamentalne i cząstki elementarne Wielkości fizyczne Układy jednostek Modele matematyczne w fizyce 10 30 Świat zjawisk fizycznych

Bardziej szczegółowo

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Grupa 2. Podstawy analizy wymiarowej

Praca domowa nr 1. Metodologia Fizyki. Grupa 1. Szacowanie wartości wielkości fizycznych Grupa 2. Podstawy analizy wymiarowej Praca domowa nr. Metodologia Fizyki. Grupa. Szacowanie wartości wielkości fizycznych Wprowadzenie: W wielu zagadnieniach interesuje nas przybliżona wartość wielkości fizycznej X. Może to być spowodowane

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8

Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 Pochodna funkcji: zastosowania przyrodnicze wykłady 7 i 8 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu sem. zimowy, r. akad. 2016/2017 Funkcja logistyczna 40 Rozważmy

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Pomiar mocy mieszania cieczy ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

3. Wykład Układy równań liniowych.

3. Wykład Układy równań liniowych. 31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Krótka informacja o Międzynarodowym Układzie Jednostek Miar, SI

Krótka informacja o Międzynarodowym Układzie Jednostek Miar, SI SI Krótka informacja o Międzynarodowym Układzie Jednostek Miar, SI Metrologia jest nauką o pomiarach i ich zastosowaniach. Metrologia obejmuje wszystkie teoretyczne i praktyczne aspekty pomiarów niezależnie

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań

KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów. Schemat punktowania zadań 1 KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów dotychczasowych gimnazjów 5 marca 019 r. etap finałowy Schemat punktowania zadań Maksymalna liczba punktów 50. Uwaga! 1. Za poprawne rozwiązanie zadania metodą,

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Efekt naskórkowy (skin effect)

Efekt naskórkowy (skin effect) Efekt naskórkowy (skin effect) Rozważmy cylindryczny przewód o promieniu a i o nieskończonej długości. Przez przewód płynie prąd I = I 0 cos ωt. Dla niezbyt dużych częstości ω możemy zaniedbać prąd przesunięcia,

Bardziej szczegółowo

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar

Bardziej szczegółowo

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: Dynamika Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący: mamy ciało (zachowujące się jak punkt materialny) o znanych właściwościach (masa, ładunek itd.),

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo