METODY OPTYMALIZACJI W BEZPIECZNYM TRANSPORCIE MORSKIM
|
|
- Magda Milewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Józef Lisowski Akademia Morska w Gdyni METODY OPTYMALIZACJI W BEZPIECZNYM TRANSPORCIE MORSKIM Wprowadzenie Podstawowym celem optymalizacji jest realizacja procesu sterowania obiektem w najlepszy sposób. Procesem może być: zjawisko fizyczne, proces technologiczny, obiekt techniczny, system ekonomiczny, planowanie produkcji i transport itp. Opis matematyczny procesu sformułowany dla celów jego optymalizacji stanowi jego model. Optymalizacja jest na tyle dobra, na ile adekwatny jest model matematyczny. Formułowanie i rozwiązywanie zadania optymalizacji można przedstawić jak na rysunku 1. Funkcja F(x) oznacza ocenę jakości działania obiektu lub przebiegu procesu sterowania i przyjmuje nazwę funkcji celu sterowania lub wskaźnika jakości sterowania, zaś x stanowią zmienne decyzyjne lub zmienne stanu procesu sterowania [2,5]. Rys. 1. Formułowanie i rozwiązywanie zadania optymalizacji. W wielu zagadnieniach transportu i logistyki istnieje wiele możliwych i dopuszczalnych rozwiązań problem z których tylko jedno jest rozwiązaniem optymalnym, przy założonym kryterium jakości przebiegu procesu transportowego lub logistycznego.
2 Obecnie mija 318 lat od początku nowożytnej teorii optymalizacji w związku z pionierskimi pracami matematyków i fizyków XVII wiek kiedy to w 1697 roku Johann Bernoulli ogłosił konkurs na rozwiązanie problemu brachistochrony: znaleźć krzywą na płaszczyźnie, łączącą dwa punkty a i b nie leżące w pionie, wzdłuż której punkt materialny poruszający się pod działaniem siły ciężkości, przebywa drogę w najkrótszym czasie. Rozwiązaniem jest łuk cykloidy, krzywej zataczanej przez punkt na obwodzie toczącego się koła. Punkt wykonuje okresowe podskoki na wysokość równą średnicy koła. Odwrócona cykloida stanowi rozwiązanie problemu Bernoulliego. Początek rachunku wariacyjnego przedstawiają w swoich pracach: Lagrange ( ), Hamilton ( ), Weierstrass ( ), Pontriagin ( ). Od 1939 roku datują się współczesne metody optymalizacji, problemy logistyki związane z planowaniem operacji w czasie II wojny światowej - programowanie liniowe: Dantzig ( ); programowanie całkowitoliczbowe i wybór spośród skończonej liczby decyzji: Cabot ( ), Balas (1922); teoria programowania nieliniowego: Kuhn, Tucker i Georffrion. Rozwój metodyki obliczeń komputerowych spowodował zainteresowanie algorytmami numerycznymi: Powell, Rossen, Fletcher oraz programowaniem dynamicznym: Bellman, Riccati. Badania kosmiczne dotyczyły optymalizacji konstrukcji rakiet oraz sterowania lotem w stratosferze i w kosmosie. Optymalizacja procesów ekonomicznych zawiera: problemy alokacji produkcji, optymalnego składu portfela inwestycyjnego, problemy wielkie (ang. large scale) oraz metody dekompozycji (Lasdon, Findeisen). Rozwój metod rozwiązywania zadań optymalizacji dokonywał się w następujących etapach: analityczne metody klasyczne, czyli metody górskiej wspinaczki : modele opracowane przez matematyków XVII-XIX wiek nieskażony świat kwadratowych funkcji celu i wszechobecnych pochodnych, rozwój obliczeń komputerowych: modyfikacje metod klasycznych, algorytmizacja obliczeń umożliwiających zastosowanie do praktycznych problemów nauki i techniki, softcomputing, metody odporne : algorytmy ewolucyjne, genetyczne, sieci neuronowe w zastosowaniu do optymalizacji złożonych modeli procesów. W transporcie i logistyce jak najlepsze sterowanie obiektem znajduje swój wyraz w optymalizacji, zajmującej się tym jak opisać i osiągnąć najlepsze, gdy wiemy już jak mierzyć i zmieniać dobre i złe (Beightler, Phillips, 1979: Foundations of Optimization ).
3 Podział metod optymalizacji Ogólny podział metod optymalizacji, uważanych za najbardziej reprezentatywne, przedstawia rysunek 2. Rys. 2. Podział metod optymalizacji. Metody optymalizacji można podzielić ze względu na: własności obiektu lub procesu na: statyczne i dynamiczne, ograniczenia na: bez ograniczeń oraz z ograniczeniami, sposób obliczeń optimum na: gradientowe i bezgradientowe, rodzaj modelu obiektu lub procesu na: deterministyczne i stochastyczne, rodzaj obliczeń na: analityczne i numeryczne, postać funkcji celu na: liniowe i nieliniowe, złożoność funkcji celu na: jednokryterialne i wielokryterialne. W praktyce najczęściej używane są następujące metody: optymalizacji statycznej bez ograniczeń bezgradientowe: złotego podział bisekcji, Gaussa- Seidela, podziału i ograniczeń, podziału i odcięć, Hooke a-jeevesa, interpolacji kwadratowej, sympleksu Neldera-Meada, Rosenbrocka, Daviesa-Swanna-Campeya, optymalizacji statycznej bez ograniczeń gradientowe: gradientu prostego, najszybszego spadk Newtona-Raphsona, gradientu sprzężonego Hestenesa-Stiefela, Levenberga- Marquardta, Powella, Zangwilla,
4 optymalizacji statycznej z ograniczeniami bezgradientowe: Lagrange a, programowania liniowego, Kuhna-Tuckera, Schmidta-Foxa, optymalizacji statycznej z ograniczeniami gradientowe: Zoutendijk a, rzutowanego gradientu Rosena, stochastyczne: grupowania, Monte Carlo, symulowanego wyżarzania, algorytmy genetyczne, roju cząstek, optymalizacji dynamicznej podstawowe bezpośrednie: rachunku wariacyjnego Eulera, zasada optymalności Bellmana, gradientu prostego w przestrzeni sterowań, gradientu sprzężonego w przestrzeni sterowań, zmiennej metryki, drugiej wariacji, optymalizacji dynamicznej podstawowe pośrednie: zasada maksimum Pontriagina, Newtona w przestrzeni stan Newtona-Rapsona w przestrzeni sprzężonej, optymalizacji dynamicznej specjalne: sterowania czasooptymalnego Neustadta, Gilberta, Barra, funkcjonału kary Balakrishnana, optymalizacji dwupoziomowej Findeisena, optymalizacji wielokryterialnej statycznej: zbioru punktów Pareto optymalnych w przestrzeni wariantów, zasada utylitaryzmu Benthama, zasada sprawiedliwości Rawlsa, punktu odniesienia Salukvadze, optymalizacji wielokryterialnej dynamicznej: doboru współczynników wagi [1,3,4,6]. Formułowanie zadania optymalizacji Zadanie optymalizacji polega na wyznaczeniu takich wartości zmiennych stanu x *, przy których funkcja celu sterowania F(x) przyjmuje wartość minimalną lub maksymalną. Wartości składowych wektora stanu x nie mogą być dowolne i podlegają różnym ograniczeniom. Rozróżnia się ograniczenia nierównościowe: x g i 0 i 1, 2,..., m (1) oraz ograniczenia równościowe: x h j 0 j 1, 2,..., r (2) Wprowadzenie każdego ograniczenia równościowego redukuje rozmiar przestrzeni optymalizacyjnej o jeden i może być przyczyną braku rozwiązania optymalnego.
5 Zadanie optymalizacji statycznej polega na szukaniu minimum lub maksimum wielkości wyjściowej obiektu lub jej funkcji: x f x dla x x1, x2, xn F..., (3) przy jednoczesnym spełnieniu ograniczeń na zmienne x. Zadanie optymalizacji dynamicznej polega na szukaniu minimum lub maksimum funkcjonału jako całki z funkcji: F t k f t 0 o x, t dt (4) gdzie własności dynamiczne obiektu sterowania opisane są przez równania: x f x, y g x, t t (5) oraz spełnieniu ograniczeń na zmienne stanu x i wielkości sterujące u. Zadanie optymalizacji dynamicznej można rozwiązać na drodze analitycznej jako zadanie sterowania czasooptymalnego oraz minimalizacji funkcji celu w postaci kwadratowej, przy liniowych równaniach stanu. Przykłady zadań optymalizacji dynamicznej w transporcie morskim: wyznaczanie optymalnej drogi statku z portu początkowego do portu przeznaczenia zapewniającej minimalne zużycie paliwa przy uwzględnieniu ograniczeń nawigacyjnych i prognoz hydrometeorologicznych, wyznaczanie optymalnego manewru antykolizyjnego własnego statku zapewniającego minimum ryzyka kolizji podczas mijania spotkanych statków, optymalne sterowanie statkiem na zadanym kursie zapewniające maksimum dokładności i minimum kosztów sterowania, optymalizacja sterowania silnikiem głównym statku zapewniająca minimalne zużycie paliwa, optymalizacja załadowania statku zapewniająca maksimum stateczności statk optymalizacja rozdziału mocy na pędniki statku zapewniająca maksimum sterowności statk
6 optymalizacja układu elektroenergetycznego statku zapewniająca maksimum niezawodności zasilania urządzeń statku. Przykład optymalizacji dynamicznej bezpiecznego sterowania statkiem Syntezę optymalnego układu bezpiecznego sterowania statkiem w sytuacjach kolizyjnych można przeprowadzić stosując metodę programowania dynamicznego Bellmana z ograniczeniami stanu procesu. Zasada, zaproponowana przez R.E. Bellmana w 1952 rok przedstawia, że sterowanie optymalne od danej chwili t do chwili końcowej tk zależy tylko od aktualnego stanu proces a nie zależy od poprzednich stanów. Dla równania stanu procesu (5) oraz wskaźnika jakości sterowania (4), który ma przyjąć wartość optymalną: min 0 x, tdt Sx t F min fo, (6) równanie funkcyjne Bellmana, opisujące zasadę optymalności, przyjmie postać: - S - t min[ f u o S x x, t f x, t ] 0 (7) Na rysunku 3 pokazano podział drogi statku na k etapów i n węzłów.
7 Rys. 3. Podział drogi statku na k etapów i n węzłów. Uwzględnienie ograniczeń wynikających z zachowania bezpiecznej odległości zbliżenia polega na sprawdzeni czy zmienne stanu nie przekroczyły ograniczeń w każdym rozważanym węźle i odrzuceniu węzłów, w których przekroczenie to zostało wykryte (Rys. 4). Rys. 4. Optymalna i bezpieczna trajektoria własnego statku w warunkach dobrej widzialności na morzu przy Db=0,5 Mm w sytuacji mijania się z 12 spotkanymi statkami.
8 Wnioski Przy syntezie regulatora optymalnego lub algorytmu sterowania optymalnego danym obiektem transportowym lub logistycznym można zastosować zarówno metodę optymalizacji statycznej, jak i dynamicznej. Natomiast różnorodne zadania optymalizacji w zastosowaniach praktycznych rozwiązuje się najczęściej za pomocą odpowiednich metod numerycznych. Literatura 1. Findeisen W., Szymanowski J., Wierzbicki A., Teoria i metody obliczeniowe optymalizacji. PWN, 1980 Warszawa. 2. Lisowski J., Miller A., Metody optymalizacji, Wyd. Akademii Morskiej w Gdyni, 2016 Gdynia (w przygotowaniu). 3. Nowak A., Optymalizacja, teoria i zadania, Wyd. Politechniki Śląskiej, 2007 Gliwice. 4. Speyer J.L., Jacobson D.H., Primer on optimal control theory, SIAM, 2010 Toronto. 5. Stachurski A., Wierzbicki A., Podstawy optymalizacji, Oficyna Wyd. PW, 2001 Warszawa. 6. Stadnicki J., Teoria i praktyka rozwiązywania zadań optymalizacji. WNT, 2006 Warszawa. Streszczenie W artykule przedstawiono cel optymalizacji procesów transportowych i logistycznych, a następnie przegląd literatury w zakresie metod optymalizacji. Dokonano podziału metod optymalizacji i wymieniono najczęściej używane metody. Sformułowano zadania optymalizacji statycznej oraz dynamicznej. Podano przykład optymalizacji dynamicznej metodą Bellmana bezpiecznego sterowania statkiem w sytuacji kolizyjnej na morzu. Abstract Optimization methods in a safe maritime transport The paper presents the aim of optimizing transport and logistics processes and review of the literature on methods of optimization. A division of optimization methods and lists the most commonly used method. Formulated tasks static and dynamic optimization. Is an example of dynamic optimization method Bellman of safe ship control in collision situation at sea.
Plan. Zakres badań teorii optymalizacji. Teoria optymalizacji. Teoria optymalizacji a badania operacyjne. Badania operacyjne i teoria optymalizacji
Badania operacyjne i teoria optymalizacji Instytut Informatyki Poznań, 2011/2012 1 2 3 Teoria optymalizacji Teoria optymalizacji a badania operacyjne Teoria optymalizacji zajmuje się badaniem metod optymalizacji
Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014
PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM
Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie
Karta (sylabus) przedmiotu
WM Karta (sylabus) przedmiotu MECHANIKA I BUDOWA MASZYN Studia I stopnia o profilu: A P Przedmiot: Wybrane z Kod ECTS Status przedmiotu: obowiązkowy MBM S 0 5 58-4_0 Język wykładowy: polski, angielski
Tomasz M. Gwizdałła 2012/13
METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
METODY OPTYMALIZACJI. Tomasz M. Gwizdałła 2018/19
METODY OPTYMALIZACJI Tomasz M. Gwizdałła 2018/19 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.524b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla
Sterowanie optymalne
Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych
WYKŁAD 9 METODY ZMIENNEJ METRYKI
WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać
Egzamin / zaliczenie na ocenę*
Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii
Metody Rozmyte i Algorytmy Ewolucyjne
mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawy optymalizacji Plan prezentacji 1 Podstawy matematyczne 2 3 Eliminacja ograniczeń Metody
Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń
Spis treści 377 379 WSTĘP... 9
Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...
Zagadnienia optymalizacji Problems of optimization
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/04 Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE MODUŁU W
11. 11. OPTYMALIZACJA KONSTRUKCJI
11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji
SYMULACJA PROGRAMÓW KOMPUTEROWEGO WSPOMAGANIA BEZPIECZEŃSTWA TRANSPORTU MORSKIEGO
Józef Lisowski Akademia Morska w Gdyni SYMULACJA PROGRAMÓW KOMPUTEROWEGO WSPOMAGANIA BEZPIECZEŃSTWA TRANSPORTU MORSKIEGO Wstęp Do klasycznych zagadnień teorii procesów decyzyjnych w transporcie morskim
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.
Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania
Przegląd metod optymalizacji numerycznej. Krzysztof Malczewski
Przegląd metod optymalizacji numerycznej Krzyszto Malczewski Numeryczne metody optymalizacji Deterministyczne (klasyczne) * bez ograniczeń: - bezgradientowe: + simpleks Neldera-Meada, + spadku względem
Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 2W, 2L, 1C PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, laboratorium Metody optymalizacji w ekonomii
TOZ -Techniki optymalizacji w zarządzaniu
TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja
Optymalizacja ciągła
Optymalizacja ciągła 0. Wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 11 Kontakt wojciech.kotlowski@cs.put.poznan.pl http://www.cs.put.poznan.pl/wkotlowski/mp/
Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa
Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników
Uczenie sieci typu MLP
Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik
Optymalizacja konstrukcji
Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne
CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków
36/3 Archives of Foundry, Year 004, Volume 4, 3 Archiwum Odlewnictwa, Rok 004, Rocznik 4, Nr 3 PAN Katowice PL ISSN 64-5308 CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ E. ZIÓŁKOWSKI
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ
ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar
SVM: Maszyny Wektorów Podpieraja cych
SVM 1 / 24 SVM: Maszyny Wektorów Podpieraja cych Nguyen Hung Son Outline SVM 2 / 24 1 Wprowadzenie 2 Brak liniowej separowalności danych Nieznaczna nieseparowalność Zmiana przetrzeń atrybutów 3 Implementacja
Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VIII semestr letni. nie. Laborat. 16 g.
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Wybrane zagadnienia teorii sterowania Selection problems of control theory
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,
Metody optymalizacji Optimization methods Forma studiów: stacjonarne Poziom studiów II stopnia. Liczba godzin/tydzień: 1W, 1Ć
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści dodatkowych Rodzaj zajęć: wykład, ćwiczenia Metody Optimization methods Forma studiów: stacjonarne Poziom studiów
1 Równania nieliniowe
1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),
Zasada maksimum Pontriagina
25.04.2015 Abstrakt Wiele zagadnień praktycznych dotyczących układów dynamicznych wymaga optymalizacji pewnych wielkości. Jednakże zwykła teoria gładkich układów dynamicznych zajmuje się jednak tylko opisem
Automatyzacja i sterowanie statkiem
Automatyzacja i sterowanie statkiem Komitet Automatyki i Robotyki Polskiej Akademii Nauk Monografie Tom 18 Komitet Redakcyjny serii Tadeusz Kaczorek (przewodnicz¹cy) Stanis³aw Bañka Miko³aj Bus³owicz W³adys³aw
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku
Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x
1. Podstawowe pojęcia
1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim BADANIA OPERACYJNE Nazwa w języku angielskim Operational research Kierunek studiów (jeśli dotyczy): Matematyka
ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI
Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA
ZASTOSOWANIE ZASADY MAKSIMUM PONTRIAGINA DO ZAGADNIENIA DYNAMICZNYCH LOKAT KAPITAŁOWYCH Krzysztof Gąsior Uniwersytet Rzeszowski Streszczenie Celem referatu jest zaprezentowanie praktycznego zastosowania
PROGRAMOWANIE NIELINIOWE
PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i
ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku
Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY WSPOMAGANIA DECYZJI. Kod przedmiotu: Ecs 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy. obieralny polski semestr VII semestr zimowy. nie
KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Teoria sterowania wybrane zagadnienia Control theory selection problems Obowiązuje od roku akademickiego 2012/2013
Matematyka stosowana i metody numeryczne
Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)
ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH
Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym
Schemat programowania dynamicznego (ang. dynamic programming)
Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla
Elementy Modelowania Matematycznego Wykład 7 Programowanie nieliniowe i całkowitoliczbowe
Spis treści Elementy Modelowania Matematycznego Wykład 7 i całkowitoliczbowe Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp 2 3 Spis treści Spis treści 1 Wstęp
Podstawy Automatyzacji Okrętu
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, specjalności okrętowe Podstawy Automatyzacji Okrętu 1 WPROWADZENIE M. H. Ghaemi Luty 2018 Podstawy automatyzacji
Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: II stopnia (magisterskie)
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Układ sterowania płaszczyzną sterową o podwyższonej niezawodności 1. Analiza literatury. 2. Uruchomienie
Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła
Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.SIK306 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Opis przedmiotu: Badania operacyjne
Opis : Badania operacyjne Kod Nazwa Wersja TR.SIK306 Badania operacyjne 2013/14 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka
INSTRUKCJA DO ĆWICZENIA NR 1
L01 ---2014/10/17 ---10:52---page1---#1 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 1 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści
Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.
1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI
Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji
Optymalizacja ciągła
Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej
Zarzdzanie i Inynieria Produkcji Studia drugiego stopnia o profilu: A P. Wykład 15 wiczenia 30 Laboratorium Projekt
Podstawy optymalizacja w ach wytwarzania WM Zarzdzanie i Inynieria Produkcji Studia drugiego stopnia o profilu: A P Przedmiot: Optymalizacja w ach wytwarzania Status przedmiotu: obowizkowy Kod: ZIP S 0
Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz
Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................
BADANIA OPERACYJNE i teoria optymalizacji. Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych
BADANIA OPERACYJNE i teoria optymalizacji Prowadzący: dr Tomasz Pisula Katedra Metod Ilościowych e-mail: tpisula@prz.edu.pl 1 Literatura podstawowa wykorzystywana podczas zajęć wykładowych: 1. Gajda J.,
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 71 76
FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer Univ Technol Stetin 2, Oeconomica 22 (), Anna Landowska ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO ROZWIĄZANIA PROBLEMU OPTYMALNEGO PRZYDZIAŁU
5. Metody stochastyczne (symulowane wyżarzanie, algorytmy genetyczne) -> metody Monte Carlo
Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu 2. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody
Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach
Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital
Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2
Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z
Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski
Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia
Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych
inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule
Metody Optymalizacji: Przeszukiwanie z listą tabu
Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek
doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.
doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia:
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne Temat ćwiczenia: Programowanie liniowe, metoda geometryczna, dobór struktury asortymentowej produkcji Zachodniopomorski Uniwersytet
ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI
Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania
Optymalizacja ciągła
Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Opis przedmiotu. Karta przedmiotu - Badania operacyjne Katalog ECTS Politechniki Warszawskiej
Kod przedmiotu TR.NIK405 Nazwa przedmiotu Badania operacyjne Wersja przedmiotu 2015/2016 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Definicja problemu programowania matematycznego
Definicja problemu programowania matematycznego minimalizacja lub maksymalizacja funkcji min (max) f(x) gdzie: x 1 x R n x 2, czyli: x = [ ] x n przy ograniczeniach (w skrócie: p.o.) p.o. g i (x) = b i
Wstęp do metod numerycznych Zadania numeryczne 2016/17 1
Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie)
Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia II stopnia (magisterskie) Temat: Analiza właściwości pilotażowych samolotu Specjalność: Pilotaż lub Awionika 1. Analiza stosowanych kryteriów
Wyznaczanie optymalnych parametrów pojazdu trakcyjnego w warunkach zakłócenia ruchu pociągów
Wyznaczanie optymalnych parametrów pojazdu trakcyjnego w warunkach zakłócenia ruchu pociągów Mirosław Wnuk Systemy Sterowanie BEZPIECZEŃSTWO transportowe Streszczenie: W artykule przedstawiona została
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza wypukła Nazwa w języku angielskim: Convex analysis Kierunek studiów (jeśli dotyczy): MATEMATYKA Specjalność (jeśli
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport. Luty 2015. Automatyzacja statku 1.
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Transport Automatyzacja statku 1 WPROWADZENIE M. H. Ghaemi Luty 2015 Automatyzacja statku 1. Wprowadzenie 1 Kierunek:
ALGORYTMY GENETYCZNE (wykład + ćwiczenia)
ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja
Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik
Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania
Modele i narzędzia optymalizacji w systemach informatycznych zarządzania
Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności
Metoda Karusha-Kuhna-Tuckera
Badania operacyjne i teoria optymalizacji Poznań, 2015/2016 Plan 1 Sformułowanie problemu 2 3 Warunki ortogonalności 4 Warunki Karusha-Kuhna-Tuckera 5 Twierdzenia Karusha-Kuhna-Tuckera 6 Ograniczenia w
ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 43-48, Gliwice 2010 ZASTOSOWANIE METOD OPTYMALIZACJI W DOBORZE CECH GEOMETRYCZNYCH KARBU ODCIĄŻAJĄCEGO TOMASZ CZAPLA, MARIUSZ PAWLAK Katedra Mechaniki Stosowanej,
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym
Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym Sprowadzanie zadań sterowania optymalnego do zadań wariacyjnych metod a funkcji kary i mnożników Lagrange a - zadania sterowania optymalnego
Marzec Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Oceanotechnika, ZiMwGM
Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, Oceanotechnika, ZiMwGM Podstawy automatyzacji okrętu 1 WPROWADZENIE M. H. Ghaemi Marzec 2016 Podstawy automatyzacji
Programowanie dynamiczne. Tadeusz Trzaskalik
Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe. Logistyka w Hutnictwie Ćw. L.
Ćwiczenia laboratoryjne - Dobór optymalnego asortymentu produkcji programowanie liniowe Ćw. L. Typy optymalizacji Istnieją trzy podstawowe typy zadań optymalizacyjnych: Optymalizacja statyczna- dotyczy
Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe
Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji
Politechniki Warszawskiej Zakład Logistyki i Systemów Transportowych B. Ogólna charakterystyka przedmiotu
Kod przedmiotu TR.SIK408 Nazwa przedmiotu Systemy transportowe II Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zadanie projektowe 2 Czas realizacji: 6 godzin Maksymalna liczba
KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK
Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy
dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska
Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie