Przegląd metod optymalizacji numerycznej. Krzysztof Malczewski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przegląd metod optymalizacji numerycznej. Krzysztof Malczewski"

Transkrypt

1 Przegląd metod optymalizacji numerycznej Krzyszto Malczewski

2 Numeryczne metody optymalizacji Deterministyczne (klasyczne) * bez ograniczeń: - bezgradientowe: + simpleks Neldera-Meada, + spadku względem współrzędnych (Gaussa-Seidela), + Powella, Rosenbrocka, Hooke a-jeevesa,... - gradientowe pierwszego rzędu: + największego spadku, + gradientów sprzężonych. - gradientowe drugiego rzędu i superliniowe : + Newtona, BFGS, + Trust region. * z ograniczeniami: + eliminacji zmiennych, + Lagrange a, + z unkcją kary, + SQP. Niedeterministyczne - Monte Carlo, symulowane wyżarzanie, algorytmy genetyczne i ewolucyjne, algorytmy rojowe itp. Metody Numeryczne

3 Cel Znaleźć min ( ), R n, gdy zadanie bez ograniczeń, D R n, gdy zadanie z ograniczeniami. Szukanie postępuje krok po kroku: pk α k+ = k + α k pk, k = k 0,,, - wektor wyznaczający kierunek kroku, - liczba określająca długość kroku. Metody Numeryczne 3

4 Metody Numeryczne 4 Oznaczenia Gradient Hesjan Funkcja celu. ), (, : n n R R R! = n! = n n n n n! " # " "!!

5 Metoda simpleksów Neldera-Meada. W przestrzeni n wymiarowej tworzymy wokół punktu 0 simpleks n+ wymiarowy.. Porządkujemy punkty simpleksu tak, aby ( i )<( i+ ), i=,...,n. 3. Generujemy punkt r=m- n+, gdzie m=( n )/n. 4. Jeżeli ( )<=(r)<( n ), to akceptujemy r, relect. 5. Jeżeli (r)<=( ), to obliczamy s=m+ i a. jeżeli (s)<(r), to akceptujemy s, epand. b. jeżeli nie, to akceptujemy r, relect. 6. Jeżeli (r)>=( n ), to kontrakcja między m a lepszym(r, n+ ) a. jeżeli (r)<( n+ ), to obliczamy c=m+(r-m)/, jeżeli (c)<(r), to akceptujemy c, contract outside, jeżeli nie, to do punktu 7, b. jeżeli (r)>=( n+ ), to obliczamy cc=m+( n+ -m)/, jeżeli (cc)<( n+ ), to akceptujemy cc, contract inside, jeżeli nie, to do punktu Obliczamy n punktów v i = +( i - )/, i=,...,n+, shrink. Ew. unikanie degradacji. Metody Numeryczne 5

6 Opis szczegółowy. Zacznij w dowolnym punkcie i zbuduj sympleks. Zbadaj wartości unkcji w wierzchołkach sympleksu. Znajdź największą i najmniejszą. 3. Punkt w którym jest największa wartość, zastąp nowym, tworząc przy okazji nowy sympleks. Jeśli zbliżasz się do minimum, przy okazji zmniejsz sympleks, jeśli nie zwiększ w kierunku, w którym spadają wartości. 4. Kontynuuj poszukiwania, aż sympleks będzie dostatecznie mały, by jego środek dobrze przybliżał minimum. Metody Numeryczne 6

7 Metody Numeryczne 7

8 Metody rozwiązywania układów równań nieliniowych Metoda simpleks (Nelder-Mead) n+ cc m c r s Metody Numeryczne 8

9 Metody Numeryczne 9

10 Podstawowe schematy jednego kroku metod optymalizacji A:. Wyznaczenie kierunku poszukiwania minimum p k.. Wykonanie kroków (w tym kierunku) do minimum. B: (Trust Region). Określenie maksymalnej długości kroku.. Wyznaczenie kierunku, w którym należy wykonać krok. Metody Numeryczne 0

11 Metody oparte na takim rozumowaniu od połowy lat dziewięćdziesiątych XX w nazywa się: Metodami obszaru zauania (Trust region methods) Metody Numeryczne

12 Poszukiwanie na kierunku (line search methods) Szukanie minimum na kierunku: Obliczanie wartości unkcji w kolejnych punktach, aż do napotkania wzrostu wartości unkcji. Interpolacja wielomianem Lagrange a 3 ostatnich punktów. Przybliżone minimum w minimum paraboli. Kryterium wyboru długości kroku α Warunek Wole a: Redukcja wartości unkcji powinna być proporcjonalna do długości kroku oraz do pochodnej kierunkowej: c ( k 0 + αp 4 k ) ( k ) + cα T k p k, (nierówność Armijo) Wybór metody zależy od kosztu zmiany kierunku (zerowy albo obliczanie gradientu lub hesjanu). Metody Numeryczne

13 Metoda spadku względem współrzędnych (Gauss-Seidel, coordinate descent method) Grupa A, Bez ograniczeń, bezgradientowa: Idea: Szukanie minimum na kierunkach kolejnych współrzędnych. Metody Numeryczne 3

14 Przykład: ( ) ( ) ( ) = = (+3y-) +(-y-) min = y Metody Numeryczne 4

15 Metoda spadku względem współrzędnych 3 = (+3y-) +(-y-).5.5 y Metody Numeryczne 5

16 Metoda spadku względem współrzędnych = (+3y-) +(-y-) y Metody Numeryczne 6

17 Metoda najszybszego spadku (steepest descent) Grupa A Bez ograniczeń gradientowa (pierwszego rzędu) Idea: p = ( ). k k Metody Numeryczne 7

18 Metoda najszybszego spadku 3 = (+3y-) +(-y-).5.5 y Metody Numeryczne 8

19 Metoda gradientów sprzężonych Conjugate gradient (CG) method Grupa A Bez ograniczeń Gradientowa (pierwszego rzędu) Idea: p k ( ) + β p. = k k k Metody Numeryczne 9

20 Numeryczne metody optymalizacji Metoda Newtona Szybka -metoda gradientowa drugiego rzędu. Skuteczna - w pobliżu minimum (ogólnie - gdy model. rzędu dobrze przybliża unkcję), - gdy hesjan jest macierzą dodatnio określoną. Kosztowna - wymaga częstego obliczania hesjanu. Metody Numeryczne 0

21 Metoda Newtona (Grupa A) p ( k ) ( k+ ) = = ( k ) + ( ( k ) ) ( ( k ) ) p ( k ) 3.5 = (+3y-) +(-y-) Przykład: ( + 3 ) + ( ) ( ) = =, = , 5 = 6, 7 4 p =. + 4, y Metody Numeryczne

22 Quasi-Newton Numeryczne metody optymalizacji (Grupa A) Zbieżność superliniowa (rząd > ). Mniejszy koszt - nie wymagają obliczania hesjanu. Hesjan zastąpiony macierzą B k - uaktualnianą inormacją o unkcji uzyskaną w kolejnych krokach - zmiana gradientu wzdłuż kierunku poszukiwań dostarcza przybliżoną inormację o drugiej pochodnej. Najbardziej popularna BFGS (Broyden, Fletcher, Goldarb,Shanno): B s s B y y T T k k k k k k B k+ = Bk +, sk = k k, T T + yk = Bk + sk sk Bk sk yk sk. Metody Numeryczne

23 Trust-Region Methods (Grupa B) Idea: - Budujemy model otoczenia punktu k m T ( p) = + p + k k k B k - wg Newtona, CG, BFGS itp.. - Szukamy minimum w tym otoczeniu min n p R m k ( p), p Δ k - Promień Δ ustalany na podstawie zgodności modelu i unkcji celu w poprzednim kroku.. p T B k p Metody Numeryczne 3

24 Idea metody Trust-Region Δ unkcja model m trust region Metody Numeryczne 4

25 Schemat algorytmu: Trust-Region Methods Metoda Dogleg - Wyznaczamy punkt Cauchy ego (punkt na kierunku antygradientu, w którym model ma minimum). - Drogę do punktu k+ skłądamy z odcinka do punktu Cauchy ego i odcinka od punktu Cauchy ego do minimum modelu. - Jeżeli wiarygodność modelu jest mała, to dominuje najszybszy spadek. - Jeżeli wiarygodność jest duża, to dominuje model. rzędu. - Są metody bardziej zaawansowane np. Levenberga - Marquardta Metody Numeryczne 5

26 Ilustracja kroku metody metody Dogleg Metody Numeryczne 6

27 Numeryczne metody optymalizacji z ograniczeniami - ograniczenia równościowe i nierównościowe, - Metody: * eliminacja zmiennych, * metody z unkcją kary, * metoda Lagrange a - Warunek konieczny. rzędu - Warunek. rzędu - Quadratic Programming - SQP - Sequential Quadratic Programming Metody Numeryczne 7

28 Kryterium stopu Minimum lokalne a globalne. W zastosowaniu do rozwiązywania układów równań nieliniowych - istotna jest znajomość unkcji celu punkcie minimalnym. Numeryczna niejednoznaczność zera - błąd numeryczny obliczania wartości unkcji. Metody Numeryczne 8

29 Numeryczne metody optymalizacji Metody niedeterministyczne: - Monte Carlo, - symulowane wyżarzanie, - algorytmy genetyczne i ewolucyjne, - algorytmy rojowe, - wykorzystujące sztuczne sieci neuronowe. Metody Numeryczne 9

30 O czym należy pamiętać: Algorytm poszukiwania minimum w kierunku. Podstawowe schematy jednego kroku metod optymalizacji. W których metodach jest obliczany gradient unkcji. W których metodach jest obliczany hesjan. Ogólny schemat algorytmu: - Neldera-Mead a, - spadku wzdłuż współrzędnych, - najszybszego spadku, - gradientu sprzężonego, - Newtona, - quasi-newtonowskiego (np.bfgs), - trust-region, - Monte-Carlo. Zalety i wady poszczególnych metod. Metody Numeryczne 30

31 OPTYMALIZACJA W ŚRODOWISKU MATLAB. Cel ćwiczeń Celem ćwiczeń jest zaznajomienie studentów z podstawową obsługą środowiska obliczeń inżynierskich Matlab oraz zapoznanie się z możliwościami przeprowadzenia procesu optymalizacji w tym środowisku. Po ukończeniu tych zajęć student powinien umieć samodzielnie utworzyć plik unkcyjny zawierający unkcję celu, zdeiniować ograniczenia oraz uruchomić procedurę optymalizacji.. MATLAB podstawowe operacje a) Deiniowanie macierzy i wektorów X=[ 3 8] przez podanie kolejnych elementów, X=[:7] przez podanie zakresu, X=[::3] przez podanie zakresu oraz skoku, X=[ 3 8; 4 5 6; 3 8] podawanie elementów, X=[-5:; :7; ::3] operowanie zakresem i skokiem b) Odwołania do elementów macierzy i wektorów X(,) odwołanie do jednego elementu, X(:,4:7) odwołanie zakresowe, X(:,::7) odwołanie zakresowe ze skokiem c) Składanie macierzy i wektorów A=[:4, 4:7], B=[::8, 0:0:40], C=[A;B] składanie w pionie, C=[A,B] składanie w poziomie, C=[A,B;B,A] składanie mieszane d) Deiniowanie macierzy z wykorzystaniem unkcji systemu Matlak X=eye(5) macierz jednostkowa 55, X=ones(5) macierz jedynkowa 55, X=zeros(5) - macierz zerowa 55, X=rand(5) - macierz losowa 55, X=randn(5) - macierz losowa o rozkładzie normalnym 55, X=linspace(,,N) wektor liniowy, X=logspace(,,N) wektor logarytmiczny e) Manipulacje macierzami A=rot90(B) obrót, A=lipr(B) odbicie w pionie,

32 A=lipuprot90(B) odbicie w poziomie, A=reshape(B,,5) połamanie wektora, A=diag(B) macierz diagonalna ) Działania na macierzach i wektorach C=A+/-B dodawanie i odejmowanie macierzy, C=A*B mnożenie macierzy, C=A.*B mnożenie tablicowe macierzy, C=A transponowanie macierzy, C=A^(-) odwrotność macierzy, C=A.^ podniesienie do potęgi elementów macierzy, C=A./B dzielenie tablicowe g) Inne unkcje macierzowe Rank(A) rząd macierzy [m,n]=size(a) wymiar macierzy, N=length(X) długość wektora, Inv(A) macierz odwrotna, h) Liczby zespolone 5+6i, 5+6*sort(-) deklaracja liczby zespolonej, abs(z) moduł liczby zespolonej, angle(z) argument liczby zespolonej, real(z) część rzeczywista liczby zespolonej, imag(z) część urojona liczby zespolonej, conj(z) sprzężenie liczby zespolonej, Dokładniejszy opis poszczególnych unkcji oerowanych przez system Matlab znaleźć można w rozległej literaturze [,,3,4] oraz systemie pomocy Matlaba. 3. OPTYMALIZACJA bez ograniczeń - minunc Zadanie: Znajdź minimum nieograniczonej unkcji wielu zmiennych min ( ), gdzie jest wektorem zmiennych decyzyjnych a () unkcją celu. Składnia unkcji minunc: = minunc(un,0) = minunc(un,0,options) = minunc(un,0,options,p,p,...) [,val] = minunc(...) [,val,eitlag] = minunc(...) [,val,eitlag,output] = minunc(...) [,val,eitlag,output,grad] = minunc(...) [,val,eitlag,output,grad,hessian] = minunc(...)

33 Wyjaśnienie występujących oznaczeń: un unkcja celu, musi być zdeiniowana w pliku unkcyjnym matlaba, wektor zawierający optimum, 0 punkt startowy optymalizacji, val wartość unkcji celu odpowiadająca w optimum, eitlag znacznik wyjścia, output zawiera ogólne inormacje dotyczące procesu optymalizacji, grad gradient, hessian wartość hessiana unkcji celu options opcje optymalizacji, ustawiane poleceniem optimset Opcje optymalizacji unkcja optimset: LargeScale On/O, Display On/O TolX tolerancja na wektor X, TolFun tolerancja unkcji celu 4. OPTYMALIZACJA z deinicją gradientu Ten typ optymalizacji pozwala zdeiniować dodatkowo gradient unkcji celu. Składnia: [,val,eitlag,output]=minunc({@celu,@gradientu},0,options) Jedyną różnicą pomiędzy tym rodzajem optymalizacji, a zwykłą optymalizacją bez ograniczeń jest konieczność zdeiniowania unkcji gradientu. Jest to osobny m-plik unkcyjny zawierający wyrażenia na pochodne cząstkowe unkcji celu po poszczególnych zmiennych decyzyjnych. 5. OPTYMALIZACJA z ograniczeniami - mincon Zadanie: Znajdź minimum ograniczonej unkcji wielu zmiennych min ( ), gdzie jest wektorem zmiennych decyzyjnych a () unkcją celu oraz: ( ) 0 ( ) = 0 c ceq A b Aeq beq lb b ub gdzie, b, beq, lb oraz ub są wektorami, A i Aeq są macierzami, c() i ceq() są unkcjami zwracającymi wektory oraz () jest unkcją zwracającą skalar. Funkcje (), c() i ceq() mogą być unkcjami nieliniowymi. 3

34 Składnia unkcji: = mincon(un,0,a,b,aeq,beq) = mincon(un,0,a,b,aeq,beq,lb,ub) = mincon(un,0,a,b,aeq,beq,lb,ub,nonlcon) = mincon(un,0,a,b,aeq,beq,lb,ub,nonlcon,options) = mincon(un,0,a,b,aeq,beq,lb,ub,nonlcon,options,p,p,...) [,val] = mincon(...) [,val,eitlag] = mincon(...) [,val,eitlag,output] = mincon(...) [,val,eitlag,output,lambda] = mincon(...) [,val,eitlag,output,lambda,grad] = mincon(...) [,val,eitlag,output,lambda,grad,hessian] = mincon(...) Funkcja nonlcon może być użyta do wygodnego deiniowania wszystkich ograniczeń nieliniowych w osobnym pliku unkcyjnym, zamiast ich deiniowania podczas wywoływania procedury optymalizacji. 6. Przykłady Przykład Znajdź minimum unkcji y = e + e, dla następujących ograniczeń równościowych: ()^+()^-9=0 oraz nierównościowych - +<0, - <0; >0 Rozwiązanie: =[. unkcji celu = ], wartość Przykład Znajdź minimum unkcji y = + + ( ) ( ) ( ) w granicach =[-:0.:5] i =[- :0.:4]; Rozwiązanie: =[.844,.4047], wartość unkcji celu = 0. 4

35 Przykład 3 Znajdź minimum unkcji danej wzorem: (, y) = 00( y ) + ( ) Jest to unkcja, którą trudno jest zoptymalizować. Dlatego należy zastosować optymalizację z gradientem. Punkt startowy: 0=[-.9, ]; Minimum należy poszukiwać w granicach <, >, y <, 3 > W celu rozwiązania zadania należy wyznaczyć pochodne cząstkowe unkcji celu: = 400( y ) ( ) = 00( y ) y Przed wywołaniem unkcji optymalizującej należy poprawnie ustawić opcje optymalizacji: Options=optimset( largescale, o, linesearchtype, cubicpoly, gra dobj, on ) Wyniki optymalizacji: wartość unkcji celu w optimum e-009, dla =.000 oraz y = Zadania do samodzielnego wykonania. Zadanie + y Znajdź optimum unkcji (, y) = e 0y w granicach = [-.:.], y = [-:]. Zadanie Znajdź optimum unkcji ( ) ( y 0.5) ( ) ( 0.3 e ), y = w granicach = [0:], y = [-.:.]. 5

36 Zadanie 3 3 Znajdź optimum unkcji (, y) = + y + y + 4y + 3 [0:0]. 8. Literatura w granicach = [4:3], y = [] A.Zalewski, R.Cegieła: Matlab obliczenia numeryczne i ich zastosowania. Wydawnictwo Nakom, Poznań 996 [] W. Regel: Obliczenia symboliczne i numeryczne w programie Matlab. Wydawnictwo Mikom, Warszawa 004 [3] M.Czajka: Matlab ćwiczenia. Wydawnictwo Helion, Gliwice 005 [4] B.Mrozek, Z.Mrozek: Matlab uniwersalne środowisko do obliczeń naukowo technicznych. Wyd.3, Warszawa 996 6

d) Definiowanie macierzy z wykorzystaniem funkcji systemu Matlak

d) Definiowanie macierzy z wykorzystaniem funkcji systemu Matlak OPTYMALIZACJA W ŚRODOWISKU MATLAB. Cel ćwiczeń Celem ćwiczeń jest zaznajomienie studentów z podstawową obsługą środowiska obliczeń inżynierskich Matlab oraz zapoznanie się z możliwościami przeprowadzenia

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Struktury i Algorytmy Wspomagania Decyzji Zapoznanie z narzędziami optymalizacyjnymi w środowisku MATLAB

Bardziej szczegółowo

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawy optymalizacji Plan prezentacji 1 Podstawy matematyczne 2 3 Eliminacja ograniczeń Metody

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

5. Metody stochastyczne (symulowane wyżarzanie, algorytmy genetyczne) -> metody Monte Carlo

5. Metody stochastyczne (symulowane wyżarzanie, algorytmy genetyczne) -> metody Monte Carlo Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu 2. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody

Bardziej szczegółowo

Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe

Bezgradientowe metody optymalizacji funkcji wielu zmiennych. informacje dodatkowe Bezgradientowe metody optymalizacji funkcji wielu zmiennych informacje dodatkowe Wybór kierunku poszukiwań Kierunki bazowe i ich modyfikacje metody bezgradientowe. Kierunki oparte na gradiencie funkcji

Bardziej szczegółowo

Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 11. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 4. Metody kierunków poprawy (metoda spadku wzdłuż gradientu) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 21.03.2019 1 / 41 Plan wykładu Minimalizacja

Bardziej szczegółowo

Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż.

Automatyka i Robotyka II Stopień ogólno akademicki studia niestacjonarne wszystkie Katedra Automatyki i Robotyki Prof. dr hab. inż. Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metody kierunków poparwy (metoda Newtona-Raphsona, metoda gradientów sprzężonych) Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.03.2019 1

Bardziej szczegółowo

Optymalizacja (minimalizacja) funkcji. Plan wykładu: 1. Sformułowanie problemu, funkcja celu. 2. Metody bezgradientowe

Optymalizacja (minimalizacja) funkcji. Plan wykładu: 1. Sformułowanie problemu, funkcja celu. 2. Metody bezgradientowe Optymalizacja (minimalizacja) funkcji Plan wykładu: 1. Sformułowanie problemu, funkcja celu. Metody bezgradientowe a) metoda złotego podziału b) metoda sympleks c) metoda interpolacji Powell'a 3. Metody

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Metody i analiza danych

Metody i analiza danych 2015/2016 Metody i analiza danych Macierze Laboratorium komputerowe 2 Anna Kiełbus Zakres tematyczny 1. Funkcje wspomagające konstruowanie macierzy 2. Dostęp do elementów macierzy. 3. Działania na macierzach

Bardziej szczegółowo

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Spis treści. Koszalin 2006 [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE] Spis treści 1 Zastosowanie Matlab a... 2 1.1 Wstęp... 2 1.2 Zagadnienie standardowe... 3 1.3 Zagadnienie transportowe... 5 1 Zastosowanie Matlab a Anna Tomkowska [BADANIA OPERACYJNE PROGRAMOWANIE LINIOWE]

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji n-wymiarowych Forma kwadratowa w n wymiarach Procedury minimalizacji Minimalizacja wzdłuż prostej w n-wymiarowej przestrzeni Metody minimalizacji wzdłuż osi współrzędnych wzdłuż kierunków

Bardziej szczegółowo

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra

Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych. P. F. Góra Wstęp do metod numerycznych 12. Minimalizacja: funkcje wielu zmiennych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Strategia minimalizacji wielowymiarowej Zakładamy, że metody poszukiwania minimów

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Wstęp do metod numerycznych Zadania numeryczne 2016/17 1

Wstęp do metod numerycznych Zadania numeryczne 2016/17 1 Wstęp do metod numerycznych Zadania numeryczne /7 Warunkiem koniecznym (nie wystarczającym) uzyskania zaliczenia jest rozwiązanie co najmniej 3 z poniższych zadań, przy czym zadania oznaczone literą O

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Metody numeryczne Wykład 4

Metody numeryczne Wykład 4 Metody numeryczne Wykład 4 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Metody skończone rozwiązywania

Bardziej szczegółowo

Metody optymalizacji - teoria i wybrane algorytmy

Metody optymalizacji - teoria i wybrane algorytmy Metody optymalizacji - teoria i wybrane algorytmy 15 stycznia 2012 Spis treści I Algorytmy optymalizacji funkcji jednej zmiennej 2 1 Metody ustalania przedziału, w którym znajduje się minimum 3 1.1 Metoda

Bardziej szczegółowo

Elementy inteligencji obliczeniowej

Elementy inteligencji obliczeniowej Elementy inteligencji obliczeniowej Paweł Liskowski Institute of Computing Science, Poznań University of Technology 9 October 2018 1 / 19 Perceptron Perceptron (Rosenblatt, 1957) to najprostsza forma sztucznego

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab

Podstawy Automatyki ćwiczenia Cz.1. Środowisko Matlab Podstawy Automatyki ćwiczenia Cz.1 Środowisko Matlab Podstawową jednostką obliczeniową w programie Matlab jest macierz. Wektory i skalary mogą być tutaj rozpatrywane jako specjalne typy macierzy. Elementy

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Metody Optymalizacji: Przeszukiwanie z listą tabu

Metody Optymalizacji: Przeszukiwanie z listą tabu Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek

Bardziej szczegółowo

METODY OPTYMALIZACJI W BEZPIECZNYM TRANSPORCIE MORSKIM

METODY OPTYMALIZACJI W BEZPIECZNYM TRANSPORCIE MORSKIM Józef Lisowski Akademia Morska w Gdyni METODY OPTYMALIZACJI W BEZPIECZNYM TRANSPORCIE MORSKIM Wprowadzenie Podstawowym celem optymalizacji jest realizacja procesu sterowania obiektem w najlepszy sposób.

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Metody optymalizacji - wprowadzenie do SciLab a

Metody optymalizacji - wprowadzenie do SciLab a Metody optymalizacji - wprowadzenie do SciLab a 1 Zmienne Nazwy: dozwolone nazwy zawierają znaki: od a do z, od A do Z, od 0 do 9 oraz _, #,!, $,? Operator przypisania wartości zmiennej = Przykład x=2

Bardziej szczegółowo

Metody numeryczne II

Metody numeryczne II Metody numeryczne II Poszukiwanie ekstremów funkcji Janusz Szwabiński szwabin@ift.uni.wroc.pl nmslides-13.tex Metody numeryczne II Janusz Szwabiński 29/5/2003 14:40 p.1/55 Poszukiwanie ekstremów funkcji

Bardziej szczegółowo

MATLAB - laboratorium nr 1 wektory i macierze

MATLAB - laboratorium nr 1 wektory i macierze MATLAB - laboratorium nr 1 wektory i macierze 1. a. Małe i wielkie litery nie są równoważne (MATLAB rozróżnia wielkość liter). b. Wpisanie nazwy zmiennej spowoduje wyświetlenie jej aktualnej wartości na

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Uczenie sieci typu MLP

Uczenie sieci typu MLP Uczenie sieci typu MLP Przypomnienie budowa sieci typu MLP Przypomnienie budowy neuronu Neuron ze skokową funkcją aktywacji jest zły!!! Powszechnie stosuje -> modele z sigmoidalną funkcją aktywacji - współczynnik

Bardziej szczegółowo

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

Metody numeryczne Numerical methods. Elektrotechnika I stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

1.3. Optymalizacja geometrii czasteczki

1.3. Optymalizacja geometrii czasteczki 0 1 Część teoretyczna 13 Optymalizacja geometrii czasteczki Poszukiwanie punktów stacjonarnych (krytycznych) funkcji stanowi niezwykle istotny problem w obliczeniowej chemii kwantowej Sprowadza się on

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr do ZW 33/01 WYDZIAŁ / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Optymalizacja systemów Nazwa w języku angielskim System optimization Kierunek studiów (jeśli dotyczy): Inżynieria Systemów

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

5. Metody Newtona. 5.1 Wzór Taylora

5. Metody Newtona. 5.1 Wzór Taylora 5. Metody Newtona Na ostatnich zajęciach zidentyfikowaliśmy ważny problem poznanych dotychczas metod (Gaussa-Seidel a, Cauchy iego, spadku wzdłuż gradientu, stochastycznego spadku wzdłuż gradientu): ich

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Metody Numeryczne Optymalizacja. Wojciech Szewczuk

Metody Numeryczne Optymalizacja. Wojciech Szewczuk Metody Numeryczne Optymalizacja Optymalizacja Definicja 1 Przez optymalizację będziemy rozumieć szukanie minimów lub maksimów funkcji. Optymalizacja Definicja 2 Optymalizacja lub programowanie matematyczne

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny)

Metody numeryczne Numerical methods. Energetyka I stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim uje od roku akademickiego 2012/13 2013/14

Bardziej szczegółowo

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

automatyka i robotyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

10. Techniki minimalizacji a sieci neuronowe

10. Techniki minimalizacji a sieci neuronowe 10. Techniki minimalizacji a sieci neuronowe 10-1 Błąd aproksymacji 10-2 Minimalizacja kosztu 10-3 Tryby minimalizacji 10-4 Metoda największego spadku 10-5 Gradient sprzężony 10-6 Metoda Newtona 10-7 Metody

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

1 Funkcje dwóch zmiennych podstawowe pojęcia

1 Funkcje dwóch zmiennych podstawowe pojęcia 1 Funkcje dwóch zmiennych podstawowe pojęcia Definicja 1 Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach w zbiorze R nazywamy przyporządkowanie każdemu punktowi ze zbioru A dokładnie jednej

Bardziej szczegółowo

ALGEBRA z GEOMETRIA, ANALITYCZNA,

ALGEBRA z GEOMETRIA, ANALITYCZNA, ALGEBRA z GEOMETRIA, ANALITYCZNA, MAT00405 PRZEKSZTAL CANIE WYRAZ EN ALGEBRAICZNYCH, WZO R DWUMIANOWY NEWTONA Uprościć podane wyrażenia 7; (b) ( 6)( + ); (c) a 5 6 8a ; (d) ( 5 )( 5 + ); (e) ( 45x 4 y

Bardziej szczegółowo

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A =

04 Układy równań i rozkłady macierzy - Ćwiczenia. Przykład 1 A = 04 Układy równań i rozkłady macierzy - Ćwiczenia 1. Wstęp Środowisko Matlab można z powodzeniem wykorzystać do rozwiązywania układów równań z wykorzystaniem rozkładów macierzy m.in. Rozkładu Choleskiego,

Bardziej szczegółowo

Elementy Modelowania Matematycznego

Elementy Modelowania Matematycznego Elementy Modelowania Matematycznego Wykład 8 Programowanie nieliniowe Spis treści Programowanie nieliniowe Zadanie programowania nieliniowego Zadanie programowania nieliniowego jest identyczne jak dla

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie

Bardziej szczegółowo

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Matlab - zastosowania Matlab - applications. Informatyka II stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Matlab - zastosowania Matlab - applications A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

OBLICZENIA OPTYMALIZACYJNE W MATLABIE. WEiTI PW

OBLICZENIA OPTYMALIZACYJNE W MATLABIE. WEiTI PW OBLICZENIA OPTYMALIZACYJNE W MATLABIE Definicje pojęć, na przykładzie projektowania iteracyjnego w oparciu o przebieg charakterystyki T(f) T f Definicje pojęć FUNKCJA CELU (objective function) (funkcjonał)

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Funkcje dwóch zmiennych

Funkcje dwóch zmiennych Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Funkcje dwóch zmiennych 1. Funkcje dwóch zmiennych: pojęcia podstawowe Definicja 1. Funkcją dwóch zmiennych określoną na zbiorze A R 2 o wartościach

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice Metody Obliczeniowe w Nauce i Technice 17 - Minimalizacja funkcji Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA M1 Nazwa w języku angielskim ALGEBRA M1 Kierunek studiów (jeśli dotyczy): Matematyka Stopień studiów

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Metody numeryczne II

Metody numeryczne II Metody numeryczne II Poszukiwanie ekstremów funkcji Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne II (C) 2004 Janusz Szwabiński p.1/55 Poszukiwanie ekstremów funkcji 1. Funkcje jednej zmiennej

Bardziej szczegółowo

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization

Z-ZIP2-303z Zagadnienia optymalizacji Problems of optimization KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 0/03 Z-ZIP-303z Zagadnienia optymalizacji Problems of optimization A. USYTUOWANIE

Bardziej szczegółowo

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P)

Zał nr 4 do ZW. Dla grupy kursów zaznaczyć kurs końcowy. Liczba punktów ECTS charakterze praktycznym (P) Zał nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : Obliczenia Naukowe Nazwa w języku angielskim : Scientific Computing. Kierunek studiów : Informatyka Specjalność

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Narzędzia optymalizacji w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Wprowadzenie do Scilab: macierze

Wprowadzenie do Scilab: macierze Wprowadzenie do Scilab: macierze Narzędzia Informatyki Magdalena Deckert Izabela Szczęch Barbara Wołyńska Bartłomiej Prędki Politechnika Poznańska Instytut Informatyki Agenda Definiowanie macierzy Funkcje

Bardziej szczegółowo

Algebra macierzy

Algebra macierzy Algebra macierzy Definicja macierzy Macierze Macierze Macierze Działania na macierzach Działania na macierzach A + B = B + A (prawo przemienności dodawania) (A + B) + C = A + (B + C) (prawo łączności dodawania)

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 1. Optymalizacja funkcji jednej zmiennej Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 28.02.2019 1 / 54 Plan wykładu Optymalizacja funkcji jednej

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 17 - Minimalizacja funkcji Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Bukowska Yurii Vyzhha

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania

Bardziej szczegółowo

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji

Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji Adam Kiersztyn Lublin 2014 Adam Kiersztyn () Pochodne cząstkowe i ich zastosowanie. Ekstrema lokalne funkcji maj 2014 1 / 24 Zanim przejdziemy

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Modelowanie molekularne

Modelowanie molekularne Modelowanie molekularne metodami chemii kwantowej Dr hab. Artur Michalak Zakład Chemii Teoretycznej Wydział Chemii UJ Wykład 4 http://www.chemia.uj.edu.pl/~michalak/mmod2007/ Podstawowe idee i metody chemii

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab

Odniesienie do kierunkowych efektów kształcenia Zna podstawowe możliwości pakietu Matlab Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Matlab, programowanie i zastosowania nazwa przedmiotu SYLABUS A. Informacje ogólne Tę część wypełnia koordynator przedmiotu (w porozumieniu

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania

Analiza Algebra Podstawy programowania strukturalnego. Podstawowe wiadomości o funkcjach Podstawowe wiadomości o macierzach Podstawy programowania Załącznik nr 5 do Uchwały nr 1202 Senatu UwB z dnia 29 lutego 2012 r. Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Metoda gradientu prostego

Metoda gradientu prostego Metoda gradientu prostego Metoda gradientu prostego jest pojęciem z zakresu optymalizacji matematycznej. Jest to algorytm numeryczny mający na celu znalezienie minimum zadanej funkcji celu. Jest to jedna

Bardziej szczegółowo

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2

Document: Exercise*02*-*manual /11/ :31---page1of8 INSTRUKCJA DO ĆWICZENIA NR 2 Document: Exercise*02*-*manual ---2014/11/12 ---8:31---page1of8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 2 Wybrane zagadnienia z

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A Egzamin z Metod Numerycznych ZSI, 06.2007. Egzamin, Gr. A Imię i nazwisko: Nr indeksu: Section 1. Test wyboru, max 33 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa odpowiedź

Bardziej szczegółowo

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI

RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ. Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzysztof KOŁOWROCKI RACHUNEK RÓŻNICZKOWY FUNKCJI JEDNEJ ZMIENNEJ Wykorzystano: M A T E M A T Y K A Wykład dla studentów Część 1 Krzyszto KOŁOWROCKI Przyjmijmy, że y (, D, jest unkcją określoną w zbiorze D R oraz niec D Deinicja

Bardziej szczegółowo

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 MODELOWANIE CYFROWE

Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 MODELOWANIE CYFROWE 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Nazwa przedmiotu: Kierunek: Specjalność: MODELOWANIE CYFROWE INFORMATYKA Kod/nr Tryb studiów: STUDIA STACJONARNE JEDNOLITE MAGISTERSKIE

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu zmiennych Wykresy i warstwice funkcji wielu zmiennych. Granice i ciagłość funkcji wielu zmiennych. Pochodne czastkowe funkcji wielu zmiennych. Gradient. Pochodna kierunkowa. Różniczka zupełna.

Bardziej szczegółowo