MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ
|
|
- Laura Murawska
- 8 lat temu
- Przeglądów:
Transkrypt
1 InŜynieria Rolnicza 6/006 Wojciech Przystupa Katera Zastosowań Matematyki Akaemia Rolnicza w Lublinie MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ Streszczenie W pracy zbaano wpływ zaburzeń losowych na oległość h, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza ośrokowego. Do opisu ruchu cząsteczek nawozu po tarczy rozsiewacza wykorzystano stochastyczne równanie Langevina. Słowa kluczowe: moel matematyczny, rozsiewacz ośrokowy, równanie Langevina Wykaz oznaczeń ω prękość kątowa tarczy [ra s -1 ], R promień tarczy [m], F siła oporu powietrza [N], g przyspieszenie ziemskie [m s - ], α kąt nachylenia tarczy [º], m masa cząsteczki nawozu [kg], D współczynnik yfuzji [m s -1 ], µ v współczynnik tarcia mięzy materiałem, z jakiego wykonana jest łopatka, a cząstką nawozu, µ współczynnik tarcia mięzy materiałem, z jakiego wykonana jest tarcza, a cząstką nawozu, t czas [s], ρ a gęstość powietrza [kg m -3 ], C w współczynnik oporu, A powierzchnia cząstki nawozu [m ], V prękość cząstki [m s -1 ], ρ p gęstość cząstki nawozu [kg m -3 ], śrenica cząstki nawozu [m]. $**
2 Jb]V\XV[ CemlfghcT Wprowazenie Na jakość pracy tarczowego zespołu rozsiewającego ecyujący wpływ mają parametry geometryczno-kinematyczne tarczy rozsiewającej. Ruch cząstki nawozu pozielić moŝna na wa okresy: ruch po tarczy i swobony lot w powietrzu. Do opisu ruchu cząstek nawozu po tarczy rozsiewającej stosuje się eterministyczne równania ruchu [Mieszkalski 1998; Olieslagers i in. 1996]. W równaniach tych nie uwzglęnia się oziaływania cząstek nawozu mięzy sobą. W ukłaach rzeczywistych trajektoria ruchu cząstki polega zaburzeniom stochastycznym. cząstki nawozu po obracającej się tarczy poany zaburzeniom losowym. W pracy przestawiono prosty moel matematyczny opisujący ruch cząstki nawozu po obracającej się tarczy i po zejściu z tarczy rozsiewacza. Cel i zakres pracy Celem pracy było zbaanie wpływu zaburzeń losowych, jakim polega cząstka nawozu poruszająca się po tarczy rozsiewacza ośrokowego, na oległość w jakiej cząstka nawozu spanie o tarczy rozsiewacza. Do opisu ruchu cząstki nawozu po obracającej się tarczy wykorzystano stochastyczne równanie Langevina. Równanie ruchu cząsteczki nawozu po tarczy Deterministyczne równanie ruchu cząsteczki nawozu poruszającej się po obracającej się tarczy wzłuŝ łopatki ma postać [Mieszalski 1998]: r r m = mω r mgµ mωµ v (1) Wprowaźmy następujące zmienne bezwymiarowe: τ = ωt X = Po wstawieniu wyraŝeń () o równania (1) otrzymamy: X r R () gµ X = X µ v (3) ω R W przypaku występowania zaburzeń stochastycznych, równanie róŝniczkowe rugiego rzęu (3) moŝna zapisać w postaci [Risken 1984]: $*+
3 @bwx_ `TgX`TglVmal ehv[h!!! X = Y Y gµ = X ω R µ Y + v Dξ( τ ) (4) gzie ξ(τ) jest gaussowskim białym szumem, takim Ŝe < ξ( τ ) >= 0 < ξ( τ ) ξ( τ ) >= δ ( τ τ ) (5) Rozwiązując równanie (4) otrzymujemy skłaową prękości cząsteczki nawozu r wzłuŝ łopatki,. Wartość prękości cząsteczki nawozu w chwili zejścia z tarczy otrzymujemy z wyraŝenia: r V = Rω + (6) Równanie ruchu cząstki nawozu w powietrzu Ogólne równanie ruchu cząstki nawozu po opuszczeniu łopatki la przypaku, gy tarcza jest ustawiona po owolnym kątem w stosunku o powierzchni pola ma następującą postać [Mieszalski 1998, Olieslagers i in. 1996]: x m = F cosα y m = mg F sinα (7) (8) Siła oporu powietrza ziałająca na cząstkę ma postać: F 1 = ρ a Cw AV (9) Zakłaając, Ŝe cząstki nawozu mają kształt kuli, moŝna napisać: π m p 6 3 = ρ (10) A = π (11) 4 $*,
4 Jb]V\XV[ CemlfghcT Wstawiając wyraŝenia (9-11) o (7) i (8) otrzymamy: x x = k x y + (1) gzie: y y = g k k 3 4 x C ρ ρ p y + (13) w a = (14) Wprowaźmy nowe zmienne bezwymiarowe τ, X i Y zefiniowane następująco: t τ =, T x X =, a y Y =. (15) a gzie a i T zefiniowane są następująco: v v a = sin α + cosα gh + v sin α, (16) g g v sinα + v sin α + gh T =. (17) g Po wstawieniu wyraŝeń (15) o równań (1-13) otrzymujemy: X = Vx = kav x Y = V x V V y x + V y (18) (19) (0) Vy gt = a kav gzie: V x i V y oznaczają skłaowe prękości y V x + V y (1) Rozwiązując numerycznie ukła równań (18-1) otrzymujemy oległość h, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza. $+#
5 @bwx_ `TgX`TglVmal ehv[h!!! Wyniki symulacji komputerowych W celu rozwiązania ukłau równań (18-1), wykorzystano metoę Rungego-Kutty o stałym kroku czasowym τ=0, Obliczenia przeprowazono la następujących parametrów: µ v =0,3, µ =0,3, R =0,3m, ω=5,36 ra/s i N=5000 trajektorii. W celu porównania otrzymanych wyników wprowazono wzglęną oległość H określoną następująco: h H = () h 0 gzie: h oległość, w jakiej cząstka nawozu spanie o tarczy rozsiewacza la D 0, h0 oległość, w jakiej cząstka nawozu spanie o tarczy rozsiewacza la D=0. Na rysunkach 1-4 przestawiono rozkłay wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza. Baania symulacyjne przeprowazono la róŝnych wartości współczynników yfuzji D i współczynnika oporu C w. 0,75 0,50 Częstość 0,5 0,00 0,950 0,975 1,000 1,05 1,050 H Rys. 1. Fig. 1. Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,44 i współczynnika yfuzji D=0,001 The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,44 an the iffusion coefficient D=0,001 $+$
6 Jb]V\XV[ CemlfghcT 0,75 0,50 Częstość 0,5 Rys.. Fig.. 0,00 0,950 0,975 1,000 1,05 1,050 H Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,44 i współczynnika yfuzji D=0,0001 The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,44 an the iffusion coefficient D=0,0001 0,5 0,0 Częstość 0,15 0,10 0,05 Rys. 3. 0,00 0,950 0,975 1,000 1,05 1,050 H Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,5 i współczynnika yfuzji D=0,001 $+%
7 @bwx_ `TgX`TglVmal ehv[h!!! Fig. 3. The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,5 an the iffusion coefficient D=0,001 0,5 0,0 Częstość 0,15 0,10 0,05 Rys. 4. Fig. 4. 0,00 0,950 0,975 1,000 1,05 1,050 H Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,4 i współczynnika yfuzji D=0,001 The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,4 an the iffusion coefficient D=0,001 Jak wiać na rysunkach 1-wraz ze wzrostem wartości współczynnika yfuzji D i stałej wartości współczynnika oporu C w =0,44 zmienia się rozkła wzglęnej oległości H. W przypaku stałej wartości współczynnika yfuzji D, a róŝnej wartości współczynnika oporu C w otrzymujemy poobne rozkłay przestawione na rysunkach 3-4. Współczynnik yfuzji D moŝe być wykorzystany o baania wpływu zaburzeń losowych na współczynnik nierównomierności poprzecznej rozsiewu. $+&
8 Jb]V\XV[ CemlfghcT Posumowanie W pracy przestawiono prosty moel matematyczny opisujący ruch cząstki nawozu po obracającej się tarczy i po zejściu z tarczy rozsiewacza. Wyznaczono rozkłay wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la wybranych wartości współczynnika yfuzji D i współczynnika oporu powietrza C w. Do opisu ruchu cząstki wzłuŝ łopatki tarczy rozsiewacza wykorzystano stochastyczne równanie Langevina. Bibliografia Mieszkalski L Elementy matematycznego opisu wybranych zespołów narzęzi i maszyn rolniczych. Wyawnictwo ART, Olsztyn. Olieslagers R., Ramon H., Baeremaeker J Calculation of fertilizer istribution patterns from a spinning isc spreaer by means of a simulation moel. Journal of Agricultural Engineering Research Vol. 63: Risken H Fokker-Planck equation: Metho of solution an applications. Springer Verlag, Berlin. MATHEMATICAL MODEL OF MANURE PELLET MOVEMENT AFTER LEASING THE SCATTERING DISK Summary Examine was the effect of ranom isturbances on the istance h, in which a manure particle will rop from the centrifugal scattering isk. To escribe the movement of manure particles on the scatterer isk, a Langevine stochastic equation was use. Key wors: mathematical moel, centrifugal scattering isk, Langevine stochastic equation $+'
SIMULATION RESEARCH OF SPREADING PROCESS OF MINERAL FERTILIZER BY A DISC SPREADER SYMULACYJNE BADANIA PROCESU WYSIEWU NAWOZU ROZSIEWACZEM TARCZOWYM
WŁODZIMIERZ KĘSKA PAWEŁ RATAJCZAK Politechnika Poznańska SIMULATION RESEARCH OF SPREADING PROCESS OF MINERAL FERTILIZER BY A DISC SPREADER S u m m a r y The realization of the rules of the precision agriculture
Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3
WYKŁAD 3 3.4. Postawowe prawa hyroynamiki W analizie problemów przepływów cieczy wykorzystuje się trzy postawowe prawa fizyki klasycznej: prawo zachowania masy, zachowania pęu i zachowania energii. W większości
Analityczne metody kinematyki mechanizmów
J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier
SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚCI WODY ZA POMOCĄ ZWĘŻKI
Postawy Metrologii i Technik Eksperymentu Laboratorium SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚI WODY ZA POMOĄ ZWĘŻKI Instrukcja o ćwiczenia nr 6 Zakła Miernictwa i Ochrony Atmosfery Wrocław, listopa 2010
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5
INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel
KO OF Szczecin:
XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr
BADANIA SYMULACYJNE AGROROBOTA W ASPEKCIE DOKŁADNOŚCI POZYCJONOWANIA
InŜynieria Rolnicza 6/005 Katera Postaw Techniki Akaemia Rolnicza w Lublinie BADANIA SYMULACYJNE AGROROBOTA W ASPEKCIE DOKŁADNOŚCI POZYCJONOWANIA Streszczenie W pracy przestawiono sposób moelowania oraz
LABORATORIUM Z FIZYKI
Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII
Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................
Składowe wektora y. Długość wektora y
FIZYKA I Wykła II Rachunek Pojęcia postawowe wektorowy i (I) historia b a Skłaowe wektora y n = n cos(α) y n = n sin(α) y b Ԧa = a, y a a b = b, y b b a Długość wektora y Ԧa = a + y a y b b = b + y b b
będzie momentem Twierdzenie Steinera
Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA
LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich
i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015
WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec
A. ZałoŜenia projektowo konstrukcyjne
Projekt przekłani pasowej ZADANIE KONSTRUKCYJNE Zaanie polega na opracowaniu konstrukcji przekłani pasowej przenoszącej moment obrotowy z wałka silnika na wał napęowy zespołu obrabiarki. A. ZałoŜenia projektowo
ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ
Buownictwo o zoptymalizowanym potencjale energetycznym 1(13) 2014, s. 22-27 Anna DERLATKA, Piotr LACKI Politechnika Częstochowska ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ
1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zależności współczynnika strat liniowych λ w funkcji liczby Reynolsa i porównanie uzyskanych wyników
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI LABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR 3 WYZNACZANIE WSPÓŁCZYNNIKA STRAT LINIOWYCH λ opracował: Piotr Strzelczyk Rzeszów 1999 1 1. Cel ćwiczenia Celem ćwiczenia
WPŁYW NACHYLENIA KOSZA SITOWEGO NA PRZEPUSTOWOŚĆ SITA DASZKOWEGO I CZYSTOŚĆ ZIARNA
InŜynieria Rolnicza 6/2005 Jan Banasiak, Jerzy Bieniek, Grzegorz Pogoda Zakład Eksploatacji Maszyn Rolniczych Akademia Rolnicza we Wrocławiu WPŁYW NACHYLENIA KOSZA SITOWEGO NA PRZEPUSTOWOŚĆ SITA DASZKOWEGO
J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I
J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy
1. Podstawowe pojęcia w wymianie ciepła
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO
Inżynieria Rolnicza 5(13)/211 ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO Marian Szarycz, Krzysztof Lech, Klaudiusz Jałoszyński Instytut Inżynierii Rolniczej,
O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna
Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej
BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO
BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest poznanie kinematyki i dynamiki ruchu w procesie przemieszczania wstrząsowego oraz wyznaczenie charakterystyki użytkowej
ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Rola współczynnika restytucji prędkości twardych cząstek w procesie erozyjnym wentylatorów
ISSN 733-8670 ZESZYTY NAUOWE NR 0(8) AADEMII MORSIEJ W SZCZECINIE IV MIĘDZYNARODOWA ONFERENCJA NAUOWO-TECHNICZNA EXPLO-SHIP 006 Bazyli rupicz Rola współczynnika restytucji prędkości twardych cząstek w
Metoda oceny ryzyka uszkodzeń katastroficznych poszycia statku powietrznego z kompozytów warstwowych
Metoa oceny ryzyka uszkozeń katastroficznych poszycia statku powietrznego... 7 ZAGADIEIA EKSPLOATACJI MASZY Zeszyt 4 (5) 007 HERYK SMOLIŃSKI *, MIECZYSŁAW STUKOIS * Metoa oceny ryzyka uszkozeń katastroficznych
Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II
1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność
WPŁYW ŻŁOBKÓW WIRNIKA NA ROZKŁAD POLA MAGNETYCZNEGO W JEDNOFAZOWYM SILNIKU INDUKCYJNYM Z POMOCNICZYM UZWOJENIEM ZWARTYM
Prace Naukowe Instytutu Maszyn, Napęów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Stuia i Materiały Nr 24 2004 Krzysztof MAKOWSKI * Konra BIELAN-RYGOŁ * Silniki inukcyjne, jenofazowe,
PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:
MECHANIKA PŁYNÓW LABORATORIUM
MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 2 Wyznaczanie współczynnika oporów liniowych i współczynnika strat miejscowych w ruchu turbulentnym. Celem ćwiczenia jest zapoznanie się z laboratoryjną metoą
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający
Wyznaczanie sił w śrubach strzemiona w złączu ciernym obudowy górniczej
r inż. JAROSŁAW BRODNY Politechnika Śląska Wyznaczanie sił w śrubach strzemiona w złączu ciernym obuowy górniczej W artykule przestawione zostały wyniki analizy wytrzymałościowej śrub strzemion pracujących
ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA
Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono
LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna.
LEPKOŚĆ Opracowanie: r Urszula Lelek-Borkowska Płyn substancja ciekła, gazowa lub proszek, który ma zolność płynięcia, czyli owolnej zmiany kształtu oraz swobonego przemieszczania, np. przepompowywania.
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej
Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia
2+3*5= 2+3/5= 2+3spacja/5= <Shift+6> 3 spacja / spacja <Shift+6> 1/3 = ( ) a:10. zmienna π jest już zdefiniowana w programie
Mathca - Postaw r inż. Konra Witkiewicz kwit.zut.eu.pl Proste obliczenia Włączam pasek narzęzi Math: View Toolbars Math. Klikam na pierwszą ikonę paska Math ab wświetlić pasek narzęzi Calculator: Obliczć
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Temat: Równowaga dynamiczna koryt rzecznych
INŻYNIERIA RZECZNA Konspekt wykłau Temat: Równowaga ynamiczna koryt rzecznych Koryto rzeczne jest w równowaze ynamicznej (jest stabilne ynamicznie) jeżeli w ługim okresie czasu (kilkunastu, kilkuziesięciu
Siła sprężystości - przypomnienie
Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni
WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ
ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo
dopuszczalna prędkość zmiany przyspieszenia na krzywej przejściowej dopuszczalne przyśpieszenie niezrównoważone dla pociągów pasażerskich
Oznaczenia : V max V t f op φ op maksymalna prękość (pąciągi pasażerskie) km maksymalna prękość (pąciągi towarowe) h opuszczalna prękość ponoszenia się koła po rampie przechyłkowej opuszczalna prękość
Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)
PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.
5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )
Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół
WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA
Inżynieria Rolnicza 7(95)/2007 WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA Andrzej Turski, Andrzej Kwieciński Katedra Maszyn i Urządzeń Rolniczych, Akademia Rolnicza w Lublinie Streszczenie: W pracy przedstawiono
MASA WŁAŚCIWA NASION ZBÓś W FUNKCJI WILGOTNOŚCI. Wstęp. Materiał i metody
InŜynieria Rolnicza 3/2006 Bronisława Barbara Kram Instytut InŜynierii Rolniczej Akademia Rolnicza we Wrocławiu MASA WŁAŚCIWA NASION ZBÓś W FUNKCJI WILGOTNOŚCI Wstęp Streszczenie Określono wpływ wilgotności
Przekształcenie całkowe Fouriera
Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy
m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):
Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA
Konopko Henryk Politechnika Białostocka WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA Streszczenie W pracy przedstawiono wyniki symulacji komputerowej
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
NAPEŁNIANIE SILOSU ZBOśOWEGO OBROTOWĄ RYNNĄ ZASYPOWĄ CZĘŚĆ II WERYFIKACJA MODELU
Ryszard Myhan, Janusz Bowszys Katedra InŜynierii Procesów Rolniczych Uniwersytet Warmińsko-Mazurski w Olsztynie NAPEŁNIANIE SILOSU ZBOśOWEGO OBROTOWĄ RYNNĄ ZASYPOWĄ CZĘŚĆ II WERYFIKACJA MODELU Streszczenie
INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr
Na prawach rękopisu o użytku służbowego INSTYTUT ENEROEEKTRYKI POITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr ABORATORIUM UKŁADÓW IMPUSOWYCH la kierunku AiR Wyziału Mechanicznego INSTRUKCJA ABORATORYJNA
LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół
Podstawy fizyki sezon 2 7. Układy elektryczne RLC
Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s. 7-34, Gliwice 007 DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA ANDRZEJ BUCHACZ, SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji
DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE
YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin
XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne
XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne Nazwa zadania: ównia pochyła ZADANIE T Na wierzchołku równi o wysokości h znajduje się kulka Początkowe prędkości kulki (liniowa i kątowa) są równe zeru
DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2
InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY
WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY
Adam Lipiński Katedra Maszyn Roboczych i Procesów Separacji Uniwersytet Warmińsko-Mazurski w Olsztynie WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY Streszczenie
Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.
Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje
WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48
TECHNIKA TRANSPORTU SZYNOWEGO Andrzej MACIEJCZYK, Zbigniew ZDZIENNICKI WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 Streszczenie W artykule wyznaczono współczynniki gotowości systemu
Ćwiczenie 71. Dyfrakcja światła na szczelinie pojedynczej i podwójnej
Ćwiczenie 71. Dyfrakcja światła na szczelinie pojeynczej i powójnej Cel ćwiczenia Pomiar natęŝenia światła w obrazie yfrakcyjnym pojeynczej szczeliny i ukłau wu szczelin. Wyznaczenie rozmiaru szczelin.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.
Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki
WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów
PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU SPOWODOWANYCH BUDOWĄ TUNELI
Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Maciej Kęracki* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU SPOWODOWANYCH BUDOWĄ TUNELI 1. Wstęp Tunelowanie, zwłaszcza na niewielkich głębokościach oraz wykonywane
Równania różniczkowe opisujące ruch fotela z pilotem:
. Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie
ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM
KOMISJA BUDOWY MASZY PA ODDZIAŁ W POZAIU Vol. 8 nr Archiwum Technologii Maszyn i Automatyzacji 8 LESZEK SKOCZYLAS ZARYS ŚLIMAKA TORUSOPOCHODEGO KSZTAŁTOWAEGO ARZĘDZIEM TRZPIEIOWYM W artykule przedstawiono
Drgania. O. Harmoniczny
Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza
Wykład Pole magnetyczne, indukcja elektromagnetyczna
Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania
Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH
Wyznaczanie stałej szybkości reakcji wymiany jonowej
Wyznaczanie stałej szybkości reakcji wymiany jonowej Ćwiczenie laboratoryjne nr 4 Elementy termodynamiki i kinetyki procesowej Anna Ptaszek Elementy kinetyki chemicznej Pojęcie szybkości reakcji Pojęcie
OPTOELEKTRONIKA. Ćw. II. ZJAWISKO FOTOWOLTAICZNE NA ZŁĄCZU P-N
1 Ćw. II. ZJAWISKO FOTOWOLTAICZNE NA ZŁĄCZ P-N Cel ćwiczenia: Wyznaczenie postawowych parametrów spektralnych etektora fotowoltaicznego. Opis stanowiska: Oświetlacz - lampa halogenowa (nap. zas. o 16V).
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0
Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się
RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA
Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola
SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW
InŜynieria Rolnicza 11/2006 Jan Szczepaniak Przemysłowy Instytut Maszyn Rolniczych w Poznaniu SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW Streszczenie W artykule przedstawiono
WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA
WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA I. Cel ćwiczenia: zapoznanie z własnościami ruchu rająceo w oparciu o wahało fizyczne, wyznaczenie przyspieszenia ziemskieo i ramienia bezwłaności wahała. II.
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
Rozwiązywanie równań różniczkowych
Rozwiązwanie równań różniczkowch. Równanie różniczkowe zwczajne. rzęu A. Metoa rkfie - zaimplementowana w Mathcazie metoa Rungego-Kutt. rzęu ze stałm krokiem całkowania: rkfie(,,ma, N, P) gzie: ma N P
MODEL MATEMATYCZNY UKŁADU NAPĘDOWEGO REAKTORA PROCESU POLIMERYZACJI Z UWZGLĘDNIENIEM WYBRANYCH PROBLEMÓW PROCESU TECHNOLOGICZNEGO CZĘŚĆ II
Zeszyty Problemowe aszyny Elektryczne Nr 7/6 16 Anrzej Popena, Anrzej Rusek Politechnika Częstochowska, Częstochowa ODEL ATEATYCZNY UKŁADU NAPĘDOWEGO REAKTORA PROCESU POLIERYZACJI Z UWZGLĘDNIENIE WYBRANYCH
D l. D p. Rodzaje baz jezdnych robotów mobilnych
ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)
a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna
Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia
Sterowanie Napędów Maszyn i Robotów
Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące
5. Ruch harmoniczny i równanie falowe
5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,
Wpływ czynników zewnętrznych na obciążalność kabli
Wpływ czynników zewnętrznych na obciążalność kabli Wybrane zaganienia Franciszek Spyra ZPBE Energopomiar Elektryka Gliwice Wstęp W artykule przestawiono wpływ czynników zewnętrznych na obciążalność kabli.
WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.
1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań
Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.
ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru
POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM
POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM I. Cel ćwiczenia: pomiar współczynnika przewoności cieplnej aluminium. II. Przyrząy: III. Literatura: zestaw oświaczalny złożony z izolowanego aluminiowego
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku
PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku Edward Walicki, Anna Walicka, Tomasz Karpiński (WSI Zielona Góra) PARAMETRY MECHANICZNE WIELOKRZYWKOWEGO ŁOŻYSKA STOŻKOWEGO SMAROWANEGO
Podstawy fizyki sezon 1 VII. Ruch drgający
Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania
UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE
Biuletyn Polskiego Towarzystwa Geometrii i Grafiki Inżynierskiej 10 Zeszyt 12 (2001), str. 10 14 UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Paweł KAPROŃ Politechnika Częstochowska, ul.akademicka
MECHANIKA II. Drgania wymuszone
MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody
Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1
Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Szymon Malinowski Metody opisu ruchu płynu, skale ruchu. Siły działające na cząstkę (elementarną objętość) powietrza. Równanie ruchu, analiza skali,
KRYTYCZNA LICZBA REYNOLDSA
LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 4 KRYTYCZNA LICZBA REYNOLDSA 1. Cel ćwiczenia Celem ćwiczenia jest jakościowa obserwacja zjawisk zachozących przy przechozeniu przepływu laminarneo w turbulentny
ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego
34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0