MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ"

Transkrypt

1 InŜynieria Rolnicza 6/006 Wojciech Przystupa Katera Zastosowań Matematyki Akaemia Rolnicza w Lublinie MODEL MATEMATYCZNY RUCHU GRANUL NAWOZU PO ZEJŚCIU Z TARCZY ROZSIEWAJĄCEJ Streszczenie W pracy zbaano wpływ zaburzeń losowych na oległość h, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza ośrokowego. Do opisu ruchu cząsteczek nawozu po tarczy rozsiewacza wykorzystano stochastyczne równanie Langevina. Słowa kluczowe: moel matematyczny, rozsiewacz ośrokowy, równanie Langevina Wykaz oznaczeń ω prękość kątowa tarczy [ra s -1 ], R promień tarczy [m], F siła oporu powietrza [N], g przyspieszenie ziemskie [m s - ], α kąt nachylenia tarczy [º], m masa cząsteczki nawozu [kg], D współczynnik yfuzji [m s -1 ], µ v współczynnik tarcia mięzy materiałem, z jakiego wykonana jest łopatka, a cząstką nawozu, µ współczynnik tarcia mięzy materiałem, z jakiego wykonana jest tarcza, a cząstką nawozu, t czas [s], ρ a gęstość powietrza [kg m -3 ], C w współczynnik oporu, A powierzchnia cząstki nawozu [m ], V prękość cząstki [m s -1 ], ρ p gęstość cząstki nawozu [kg m -3 ], śrenica cząstki nawozu [m]. $**

2 Jb]V\XV[ CemlfghcT Wprowazenie Na jakość pracy tarczowego zespołu rozsiewającego ecyujący wpływ mają parametry geometryczno-kinematyczne tarczy rozsiewającej. Ruch cząstki nawozu pozielić moŝna na wa okresy: ruch po tarczy i swobony lot w powietrzu. Do opisu ruchu cząstek nawozu po tarczy rozsiewającej stosuje się eterministyczne równania ruchu [Mieszkalski 1998; Olieslagers i in. 1996]. W równaniach tych nie uwzglęnia się oziaływania cząstek nawozu mięzy sobą. W ukłaach rzeczywistych trajektoria ruchu cząstki polega zaburzeniom stochastycznym. cząstki nawozu po obracającej się tarczy poany zaburzeniom losowym. W pracy przestawiono prosty moel matematyczny opisujący ruch cząstki nawozu po obracającej się tarczy i po zejściu z tarczy rozsiewacza. Cel i zakres pracy Celem pracy było zbaanie wpływu zaburzeń losowych, jakim polega cząstka nawozu poruszająca się po tarczy rozsiewacza ośrokowego, na oległość w jakiej cząstka nawozu spanie o tarczy rozsiewacza. Do opisu ruchu cząstki nawozu po obracającej się tarczy wykorzystano stochastyczne równanie Langevina. Równanie ruchu cząsteczki nawozu po tarczy Deterministyczne równanie ruchu cząsteczki nawozu poruszającej się po obracającej się tarczy wzłuŝ łopatki ma postać [Mieszalski 1998]: r r m = mω r mgµ mωµ v (1) Wprowaźmy następujące zmienne bezwymiarowe: τ = ωt X = Po wstawieniu wyraŝeń () o równania (1) otrzymamy: X r R () gµ X = X µ v (3) ω R W przypaku występowania zaburzeń stochastycznych, równanie róŝniczkowe rugiego rzęu (3) moŝna zapisać w postaci [Risken 1984]: $*+

3 @bwx_ `TgX`TglVmal ehv[h!!! X = Y Y gµ = X ω R µ Y + v Dξ( τ ) (4) gzie ξ(τ) jest gaussowskim białym szumem, takim Ŝe < ξ( τ ) >= 0 < ξ( τ ) ξ( τ ) >= δ ( τ τ ) (5) Rozwiązując równanie (4) otrzymujemy skłaową prękości cząsteczki nawozu r wzłuŝ łopatki,. Wartość prękości cząsteczki nawozu w chwili zejścia z tarczy otrzymujemy z wyraŝenia: r V = Rω + (6) Równanie ruchu cząstki nawozu w powietrzu Ogólne równanie ruchu cząstki nawozu po opuszczeniu łopatki la przypaku, gy tarcza jest ustawiona po owolnym kątem w stosunku o powierzchni pola ma następującą postać [Mieszalski 1998, Olieslagers i in. 1996]: x m = F cosα y m = mg F sinα (7) (8) Siła oporu powietrza ziałająca na cząstkę ma postać: F 1 = ρ a Cw AV (9) Zakłaając, Ŝe cząstki nawozu mają kształt kuli, moŝna napisać: π m p 6 3 = ρ (10) A = π (11) 4 $*,

4 Jb]V\XV[ CemlfghcT Wstawiając wyraŝenia (9-11) o (7) i (8) otrzymamy: x x = k x y + (1) gzie: y y = g k k 3 4 x C ρ ρ p y + (13) w a = (14) Wprowaźmy nowe zmienne bezwymiarowe τ, X i Y zefiniowane następująco: t τ =, T x X =, a y Y =. (15) a gzie a i T zefiniowane są następująco: v v a = sin α + cosα gh + v sin α, (16) g g v sinα + v sin α + gh T =. (17) g Po wstawieniu wyraŝeń (15) o równań (1-13) otrzymujemy: X = Vx = kav x Y = V x V V y x + V y (18) (19) (0) Vy gt = a kav gzie: V x i V y oznaczają skłaowe prękości y V x + V y (1) Rozwiązując numerycznie ukła równań (18-1) otrzymujemy oległość h, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza. $+#

5 @bwx_ `TgX`TglVmal ehv[h!!! Wyniki symulacji komputerowych W celu rozwiązania ukłau równań (18-1), wykorzystano metoę Rungego-Kutty o stałym kroku czasowym τ=0, Obliczenia przeprowazono la następujących parametrów: µ v =0,3, µ =0,3, R =0,3m, ω=5,36 ra/s i N=5000 trajektorii. W celu porównania otrzymanych wyników wprowazono wzglęną oległość H określoną następująco: h H = () h 0 gzie: h oległość, w jakiej cząstka nawozu spanie o tarczy rozsiewacza la D 0, h0 oległość, w jakiej cząstka nawozu spanie o tarczy rozsiewacza la D=0. Na rysunkach 1-4 przestawiono rozkłay wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza. Baania symulacyjne przeprowazono la róŝnych wartości współczynników yfuzji D i współczynnika oporu C w. 0,75 0,50 Częstość 0,5 0,00 0,950 0,975 1,000 1,05 1,050 H Rys. 1. Fig. 1. Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,44 i współczynnika yfuzji D=0,001 The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,44 an the iffusion coefficient D=0,001 $+$

6 Jb]V\XV[ CemlfghcT 0,75 0,50 Częstość 0,5 Rys.. Fig.. 0,00 0,950 0,975 1,000 1,05 1,050 H Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,44 i współczynnika yfuzji D=0,0001 The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,44 an the iffusion coefficient D=0,0001 0,5 0,0 Częstość 0,15 0,10 0,05 Rys. 3. 0,00 0,950 0,975 1,000 1,05 1,050 H Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,5 i współczynnika yfuzji D=0,001 $+%

7 @bwx_ `TgX`TglVmal ehv[h!!! Fig. 3. The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,5 an the iffusion coefficient D=0,001 0,5 0,0 Częstość 0,15 0,10 0,05 Rys. 4. Fig. 4. 0,00 0,950 0,975 1,000 1,05 1,050 H Rozkła wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la współczynnika oporu C w =0,4 i współczynnika yfuzji D=0,001 The istribution of the relative istance H, in which a manure particle will rop from the scatterer isk for the rag coefficient Cw=0,4 an the iffusion coefficient D=0,001 Jak wiać na rysunkach 1-wraz ze wzrostem wartości współczynnika yfuzji D i stałej wartości współczynnika oporu C w =0,44 zmienia się rozkła wzglęnej oległości H. W przypaku stałej wartości współczynnika yfuzji D, a róŝnej wartości współczynnika oporu C w otrzymujemy poobne rozkłay przestawione na rysunkach 3-4. Współczynnik yfuzji D moŝe być wykorzystany o baania wpływu zaburzeń losowych na współczynnik nierównomierności poprzecznej rozsiewu. $+&

8 Jb]V\XV[ CemlfghcT Posumowanie W pracy przestawiono prosty moel matematyczny opisujący ruch cząstki nawozu po obracającej się tarczy i po zejściu z tarczy rozsiewacza. Wyznaczono rozkłay wzglęnej oległości H, w jakiej cząsteczka nawozu spanie o tarczy rozsiewacza la wybranych wartości współczynnika yfuzji D i współczynnika oporu powietrza C w. Do opisu ruchu cząstki wzłuŝ łopatki tarczy rozsiewacza wykorzystano stochastyczne równanie Langevina. Bibliografia Mieszkalski L Elementy matematycznego opisu wybranych zespołów narzęzi i maszyn rolniczych. Wyawnictwo ART, Olsztyn. Olieslagers R., Ramon H., Baeremaeker J Calculation of fertilizer istribution patterns from a spinning isc spreaer by means of a simulation moel. Journal of Agricultural Engineering Research Vol. 63: Risken H Fokker-Planck equation: Metho of solution an applications. Springer Verlag, Berlin. MATHEMATICAL MODEL OF MANURE PELLET MOVEMENT AFTER LEASING THE SCATTERING DISK Summary Examine was the effect of ranom isturbances on the istance h, in which a manure particle will rop from the centrifugal scattering isk. To escribe the movement of manure particles on the scatterer isk, a Langevine stochastic equation was use. Key wors: mathematical moel, centrifugal scattering isk, Langevine stochastic equation $+'

SIMULATION RESEARCH OF SPREADING PROCESS OF MINERAL FERTILIZER BY A DISC SPREADER SYMULACYJNE BADANIA PROCESU WYSIEWU NAWOZU ROZSIEWACZEM TARCZOWYM

SIMULATION RESEARCH OF SPREADING PROCESS OF MINERAL FERTILIZER BY A DISC SPREADER SYMULACYJNE BADANIA PROCESU WYSIEWU NAWOZU ROZSIEWACZEM TARCZOWYM WŁODZIMIERZ KĘSKA PAWEŁ RATAJCZAK Politechnika Poznańska SIMULATION RESEARCH OF SPREADING PROCESS OF MINERAL FERTILIZER BY A DISC SPREADER S u m m a r y The realization of the rules of the precision agriculture

Bardziej szczegółowo

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3

Wykłady z Hydrauliki- dr inż. Paweł Zawadzki, KIWIS WYKŁAD 3 WYKŁAD 3 3.4. Postawowe prawa hyroynamiki W analizie problemów przepływów cieczy wykorzystuje się trzy postawowe prawa fizyki klasycznej: prawo zachowania masy, zachowania pęu i zachowania energii. W większości

Bardziej szczegółowo

Analityczne metody kinematyki mechanizmów

Analityczne metody kinematyki mechanizmów J Buśkiewicz Analityczne Metoy Kinematyki w Teorii Mechanizmów Analityczne metoy kinematyki mechanizmów Spis treści Współrzęne opisujące położenia ogniw pary kinematycznej Mechanizm korowo-wozikowy (crank-slier

Bardziej szczegółowo

SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚCI WODY ZA POMOCĄ ZWĘŻKI

SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚCI WODY ZA POMOCĄ ZWĘŻKI Postawy Metrologii i Technik Eksperymentu Laboratorium SYSTEM DO POMIARU STRUMIENIA OBJĘTOŚI WODY ZA POMOĄ ZWĘŻKI Instrukcja o ćwiczenia nr 6 Zakła Miernictwa i Ochrony Atmosfery Wrocław, listopa 2010

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 5 INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKUTYWACJI aboratorium z mechaniki płynów ĆWICZENIE NR 5 POMIAR WSPÓŁCZYNNIKA STRAT PRZEPŁYWU NA DŁUGOŚCI. ZASTOSOWANIE PRAWA HAGENA POISEU A 1. Cel

Bardziej szczegółowo

KO OF Szczecin:

KO OF Szczecin: XXXI OLIMPIADA FIZYCZNA (1981/198) Stopień III, zaanie teoretyczne T Źróło: Nazwa zaania: Działy: Słowa kluczowe: Komitet Główny Olimpiay Fizycznej; Anrzej Kotlicki; Anrzej Naolny: Fizyka w Szkole, nr

Bardziej szczegółowo

BADANIA SYMULACYJNE AGROROBOTA W ASPEKCIE DOKŁADNOŚCI POZYCJONOWANIA

BADANIA SYMULACYJNE AGROROBOTA W ASPEKCIE DOKŁADNOŚCI POZYCJONOWANIA InŜynieria Rolnicza 6/005 Katera Postaw Techniki Akaemia Rolnicza w Lublinie BADANIA SYMULACYJNE AGROROBOTA W ASPEKCIE DOKŁADNOŚCI POZYCJONOWANIA Streszczenie W pracy przestawiono sposób moelowania oraz

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI Projekt Plan rozwoju Politechniki Częstochowskiej współfinansowany ze środków UNII EUROPEJSKIEJ w ramach EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Numer Projektu: POKL.4.1.1--59/8 INSTYTUT FIZYKI WYDZIAŁINśYNIERII

Bardziej szczegółowo

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM Elektroynamika Część 2 Specjalne metoy elektrostatyki Ryszar Tanaś Zakła Optyki Nieliniowej, UAM http://zon8.phys.amu.eu.pl/\~tanas Spis treści 3 Specjalne metoy elektrostatyki 3 3. Równanie Laplace a....................

Bardziej szczegółowo

Składowe wektora y. Długość wektora y

Składowe wektora y. Długość wektora y FIZYKA I Wykła II Rachunek Pojęcia postawowe wektorowy i (I) historia b a Skłaowe wektora y n = n cos(α) y n = n sin(α) y b Ԧa = a, y a a b = b, y b b a Długość wektora y Ԧa = a + y a y b b = b + y b b

Bardziej szczegółowo

będzie momentem Twierdzenie Steinera

będzie momentem Twierdzenie Steinera Wykład z fizyki, Piotr Posmykiewicz. Niech 90 oznacza moment bezwładności względem osi przechodzącej przez środek masy ciała o masie i niech będzie momentem bezwładności tego ciała względem osi równoległej

Bardziej szczegółowo

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA

LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA LXVII OLIMPIADA FIZYCZNA ZAWODY II STOPNIA CZĘŚĆ TEORETYCZNA Za każde zadanie można otrzymać maksymalnie 0 punktów. Zadanie 1. przedmiot. Gdzie znajduje się obraz i jakie jest jego powiększenie? Dla jakich

Bardziej szczegółowo

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015

i j k Oprac. W. Salejda, L. Bujkiewicz, G.Harań, K. Kluczyk, M. Mulak, J. Szatkowski. Wrocław, 1 października 2015 WM-E; kier. MBM, lisa za. nr. p. (z kary przemiou): Rozwiązywanie zaań z zakresu: ransformacji ukłaów współrzęnych, rachunku wekorowego i różniczkowo-całkowego o kursu Fizyka.6, r. ak. 05/6; po koniec

Bardziej szczegółowo

A. ZałoŜenia projektowo konstrukcyjne

A. ZałoŜenia projektowo konstrukcyjne Projekt przekłani pasowej ZADANIE KONSTRUKCYJNE Zaanie polega na opracowaniu konstrukcji przekłani pasowej przenoszącej moment obrotowy z wałka silnika na wał napęowy zespołu obrabiarki. A. ZałoŜenia projektowo

Bardziej szczegółowo

ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ

ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ Buownictwo o zoptymalizowanym potencjale energetycznym 1(13) 2014, s. 22-27 Anna DERLATKA, Piotr LACKI Politechnika Częstochowska ANALIZA NUMERYCZNA ROZKŁADU TEMPERATURY W ZEWNĘTRZNEJ PRZEGRODZIE PIONOWEJ

Bardziej szczegółowo

1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zależności współczynnika strat liniowych λ w funkcji liczby Reynolsa i porównanie uzyskanych wyników

1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie zależności współczynnika strat liniowych λ w funkcji liczby Reynolsa i porównanie uzyskanych wyników ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI LABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR 3 WYZNACZANIE WSPÓŁCZYNNIKA STRAT LINIOWYCH λ opracował: Piotr Strzelczyk Rzeszów 1999 1 1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

WPŁYW NACHYLENIA KOSZA SITOWEGO NA PRZEPUSTOWOŚĆ SITA DASZKOWEGO I CZYSTOŚĆ ZIARNA

WPŁYW NACHYLENIA KOSZA SITOWEGO NA PRZEPUSTOWOŚĆ SITA DASZKOWEGO I CZYSTOŚĆ ZIARNA InŜynieria Rolnicza 6/2005 Jan Banasiak, Jerzy Bieniek, Grzegorz Pogoda Zakład Eksploatacji Maszyn Rolniczych Akademia Rolnicza we Wrocławiu WPŁYW NACHYLENIA KOSZA SITOWEGO NA PRZEPUSTOWOŚĆ SITA DASZKOWEGO

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

1. Podstawowe pojęcia w wymianie ciepła

1. Podstawowe pojęcia w wymianie ciepła PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO

ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO Inżynieria Rolnicza 5(13)/211 ZALEŻNOŚĆ WSPÓŁCZYNNIKA DYFUZJI WODY W KOSTKACH MARCHWI OD TEMPERATURY POWIETRZA SUSZĄCEGO Marian Szarycz, Krzysztof Lech, Klaudiusz Jałoszyński Instytut Inżynierii Rolniczej,

Bardziej szczegółowo

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna

O procesie Wienera. O procesie Wienera. Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Proces Wienera. Ruch Browna. Ułamkowe ruchy Browna Procesy stochastyczne Wykład XV, 15 czerwca 2015 r. Ruch 1 {X t } jest martyngałem dokładnie wtedy, gdy E(X t F s ) = X s, s, t T, s t. Jeżeli EX 2 (t) < +, to E(X t F s ) jest rzutem ortogonalnym zmiennej

Bardziej szczegółowo

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO

BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO BADANIE ZJAWISK PRZEMIESZCZANIA WSTRZĄSOWEGO 1. Cel ćwiczenia Celem ćwiczenia jest poznanie kinematyki i dynamiki ruchu w procesie przemieszczania wstrząsowego oraz wyznaczenie charakterystyki użytkowej

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Rola współczynnika restytucji prędkości twardych cząstek w procesie erozyjnym wentylatorów

ZESZYTY NAUKOWE NR 10(82) AKADEMII MORSKIEJ W SZCZECINIE. Rola współczynnika restytucji prędkości twardych cząstek w procesie erozyjnym wentylatorów ISSN 733-8670 ZESZYTY NAUOWE NR 0(8) AADEMII MORSIEJ W SZCZECINIE IV MIĘDZYNARODOWA ONFERENCJA NAUOWO-TECHNICZNA EXPLO-SHIP 006 Bazyli rupicz Rola współczynnika restytucji prędkości twardych cząstek w

Bardziej szczegółowo

Metoda oceny ryzyka uszkodzeń katastroficznych poszycia statku powietrznego z kompozytów warstwowych

Metoda oceny ryzyka uszkodzeń katastroficznych poszycia statku powietrznego z kompozytów warstwowych Metoa oceny ryzyka uszkozeń katastroficznych poszycia statku powietrznego... 7 ZAGADIEIA EKSPLOATACJI MASZY Zeszyt 4 (5) 007 HERYK SMOLIŃSKI *, MIECZYSŁAW STUKOIS * Metoa oceny ryzyka uszkozeń katastroficznych

Bardziej szczegółowo

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II

Mechanika kwantowa ćwiczenia, 2007/2008, Zestaw II 1 Dane są następujące operatory: ˆD = x, ˆQ = π 0 x, ŝin = sin( ), ĉos = cos( ), ˆπ = π, ˆ0 = 0, przy czym operatory ˆπ oraz ˆ0 są operatorami mnożenia przez opowienie liczby (a) Wyznacz kwarat oraz owrotność

Bardziej szczegółowo

WPŁYW ŻŁOBKÓW WIRNIKA NA ROZKŁAD POLA MAGNETYCZNEGO W JEDNOFAZOWYM SILNIKU INDUKCYJNYM Z POMOCNICZYM UZWOJENIEM ZWARTYM

WPŁYW ŻŁOBKÓW WIRNIKA NA ROZKŁAD POLA MAGNETYCZNEGO W JEDNOFAZOWYM SILNIKU INDUKCYJNYM Z POMOCNICZYM UZWOJENIEM ZWARTYM Prace Naukowe Instytutu Maszyn, Napęów i Pomiarów Elektrycznych Nr 56 Politechniki Wrocławskiej Nr 56 Stuia i Materiały Nr 24 2004 Krzysztof MAKOWSKI * Konra BIELAN-RYGOŁ * Silniki inukcyjne, jenofazowe,

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

MECHANIKA PŁYNÓW LABORATORIUM

MECHANIKA PŁYNÓW LABORATORIUM MECHANIKA PŁYNÓW LABORATORIUM Ćwiczenie nr 2 Wyznaczanie współczynnika oporów liniowych i współczynnika strat miejscowych w ruchu turbulentnym. Celem ćwiczenia jest zapoznanie się z laboratoryjną metoą

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 8 Drgania punktu materialnego Prowadzący: dr Krzysztof Polko Wstęp Drgania Okresowe i nieokresowe Swobodne i wymuszone Tłumione i nietłumione Wstęp Drgania okresowe ruch powtarzający

Bardziej szczegółowo

Wyznaczanie sił w śrubach strzemiona w złączu ciernym obudowy górniczej

Wyznaczanie sił w śrubach strzemiona w złączu ciernym obudowy górniczej r inż. JAROSŁAW BRODNY Politechnika Śląska Wyznaczanie sił w śrubach strzemiona w złączu ciernym obuowy górniczej W artykule przestawione zostały wyniki analizy wytrzymałościowej śrub strzemion pracujących

Bardziej szczegółowo

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono

Bardziej szczegółowo

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna.

LEPKOŚĆ. D średnica rury, V średnia prędkość cieczy w rurze, d gęstość cieczy, η (czyt. eta ) lepkość dynamiczna. LEPKOŚĆ Opracowanie: r Urszula Lelek-Borkowska Płyn substancja ciekła, gazowa lub proszek, który ma zolność płynięcia, czyli owolnej zmiany kształtu oraz swobonego przemieszczania, np. przepompowywania.

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) (1.1) (1.2a) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej

Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury. Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Wykorzystanie programu COMSOL do analizy zmiennych pól p l temperatury metodą elementów w skończonych Tomasz Bujok promotor: dr hab. Jerzy Bodzenta, prof. Politechniki Śląskiej Plan prezentacji Założenia

Bardziej szczegółowo

2+3*5= 2+3/5= 2+3spacja/5= <Shift+6> 3 spacja / spacja <Shift+6> 1/3 = ( ) a:10. zmienna π jest już zdefiniowana w programie

2+3*5= 2+3/5= 2+3spacja/5= <Shift+6> 3 spacja / spacja <Shift+6> 1/3 = ( ) a:10. zmienna π jest już zdefiniowana w programie Mathca - Postaw r inż. Konra Witkiewicz kwit.zut.eu.pl Proste obliczenia Włączam pasek narzęzi Math: View Toolbars Math. Klikam na pierwszą ikonę paska Math ab wświetlić pasek narzęzi Calculator: Obliczć

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 7

INSTRUKCJA DO ĆWICZENIA NR 7 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety

Bardziej szczegółowo

Temat: Równowaga dynamiczna koryt rzecznych

Temat: Równowaga dynamiczna koryt rzecznych INŻYNIERIA RZECZNA Konspekt wykłau Temat: Równowaga ynamiczna koryt rzecznych Koryto rzeczne jest w równowaze ynamicznej (jest stabilne ynamicznie) jeżeli w ługim okresie czasu (kilkunastu, kilkuziesięciu

Bardziej szczegółowo

Siła sprężystości - przypomnienie

Siła sprężystości - przypomnienie Siła sprężystości - przypomnienie Pomiary siły sprężystości wykonane kilka wykładów wcześniej (z uwzględnieniem kierunku siły). F = kx = 0.13x 0 F x cm mg Prawo Hooke a Ciało m na idealnie gładkiej powierzchni

Bardziej szczegółowo

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ

WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ ĆWICZENIE 12 WYZNACZANIE MODUŁU SZTYWNOŚCI METODĄ DYNAMICZNĄ Cel ćwiczenia: Wyznaczanie modułu sztywności drutu metodą sprężystych drgań obrotowych. Zagadnienia: sprężystość, naprężenie ścinające, prawo

Bardziej szczegółowo

dopuszczalna prędkość zmiany przyspieszenia na krzywej przejściowej dopuszczalne przyśpieszenie niezrównoważone dla pociągów pasażerskich

dopuszczalna prędkość zmiany przyspieszenia na krzywej przejściowej dopuszczalne przyśpieszenie niezrównoważone dla pociągów pasażerskich Oznaczenia : V max V t f op φ op maksymalna prękość (pąciągi pasażerskie) km maksymalna prękość (pąciągi towarowe) h opuszczalna prękość ponoszenia się koła po rampie przechyłkowej opuszczalna prękość

Bardziej szczegółowo

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu)

Pole temperatury - niestacjonarne (temperatura zależy od położenia elementu ciała oraz czasu) PODSAWY WYMIANY CIEPŁA. Postawowe pojęcia w wymianie ciepła Sposoby transportu ciepła: przewozenie konwekcja - swobona - wymuszona promieniowanie ransport ciepła w ciałach stałych obywa się na roze przewozenia.

Bardziej szczegółowo

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 )

5) W czterech rogach kwadratu o boku a umieszczono ładunki o tej samej wartości q jak pokazano na rysunku. k=1/(4πε 0 ) Zadania zamknięte 1 1) Ciało zostało wyrzucono z prędkością V 0 skierowną pod kątem α względem poziomu (x). Wiedząc iż porusza się ono w polu grawitacyjnym o przyspieszeniu g skierowanym pionowo w dół

Bardziej szczegółowo

WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA

WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA Inżynieria Rolnicza 7(95)/2007 WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA Andrzej Turski, Andrzej Kwieciński Katedra Maszyn i Urządzeń Rolniczych, Akademia Rolnicza w Lublinie Streszczenie: W pracy przedstawiono

Bardziej szczegółowo

MASA WŁAŚCIWA NASION ZBÓś W FUNKCJI WILGOTNOŚCI. Wstęp. Materiał i metody

MASA WŁAŚCIWA NASION ZBÓś W FUNKCJI WILGOTNOŚCI. Wstęp. Materiał i metody InŜynieria Rolnicza 3/2006 Bronisława Barbara Kram Instytut InŜynierii Rolniczej Akademia Rolnicza we Wrocławiu MASA WŁAŚCIWA NASION ZBÓś W FUNKCJI WILGOTNOŚCI Wstęp Streszczenie Określono wpływ wilgotności

Bardziej szczegółowo

Przekształcenie całkowe Fouriera

Przekształcenie całkowe Fouriera Przekształcenie całkowe Fouriera Postać zespolona szeregu Fouriera Niech ana bęzie funkcja f spełniająca w przeziale [, ] warunki Dirichleta. Wtey szereg Fouriera tej funkcji jest o niej zbieżny, tj. przy

Bardziej szczegółowo

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki):

m Jeżeli do końca naciągniętej (ściśniętej) sprężyny przymocujemy ciało o masie m., to będzie na nie działała siła (III zasada dynamiki): Ruch drgający -. Ruch drgający Ciało jest sprężyste, jeżei odzyskuje pierwotny kształt po ustaniu działania siły, która ten kształt zmieniła. Właściwość sprężystości jest ograniczona, to znaczy, że przy

Bardziej szczegółowo

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana

Bardziej szczegółowo

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA Konopko Henryk Politechnika Białostocka WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA Streszczenie W pracy przedstawiono wyniki symulacji komputerowej

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

NAPEŁNIANIE SILOSU ZBOśOWEGO OBROTOWĄ RYNNĄ ZASYPOWĄ CZĘŚĆ II WERYFIKACJA MODELU

NAPEŁNIANIE SILOSU ZBOśOWEGO OBROTOWĄ RYNNĄ ZASYPOWĄ CZĘŚĆ II WERYFIKACJA MODELU Ryszard Myhan, Janusz Bowszys Katedra InŜynierii Procesów Rolniczych Uniwersytet Warmińsko-Mazurski w Olsztynie NAPEŁNIANIE SILOSU ZBOśOWEGO OBROTOWĄ RYNNĄ ZASYPOWĄ CZĘŚĆ II WERYFIKACJA MODELU Streszczenie

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr Na prawach rękopisu o użytku służbowego INSTYTUT ENEROEEKTRYKI POITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr ABORATORIUM UKŁADÓW IMPUSOWYCH la kierunku AiR Wyziału Mechanicznego INSTRUKCJA ABORATORYJNA

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

Podstawy fizyki sezon 2 7. Układy elektryczne RLC

Podstawy fizyki sezon 2 7. Układy elektryczne RLC Podstawy fizyki sezon 2 7. Układy elektryczne RLC Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Układ RC

Bardziej szczegółowo

Zadanie na egzamin 2011

Zadanie na egzamin 2011 Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,

Bardziej szczegółowo

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA

DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 33, s. 7-34, Gliwice 007 DOBÓR FUNKCJI WŁASNEJ PRZEMIESZCZENIA UKŁADÓW DRGAJĄCYCH GIĘTNIE W RUCHU UNOSZENIA ANDRZEJ BUCHACZ, SŁAWOMIR ŻÓŁKIEWSKI Instytut Automatyzacji

Bardziej szczegółowo

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE

DYFRAKCJA NA POJEDYNCZEJ I PODWÓJNEJ SZCZELINIE YFRAKCJA NA POJEYNCZEJ POWÓJNEJ SZCZELNE. Cel ćwiczenia: zapoznanie ze zjawiskiem yfrakcji światła na pojeynczej i powójnej szczelinie. Pomiar ługości fali światła laserowego, oległości mięzy śrokami szczelin

Bardziej szczegółowo

XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne

XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne XXI OLIMPIADA FIZYCZNA ETAP I Zadanie teoretyczne Nazwa zadania: ównia pochyła ZADANIE T Na wierzchołku równi o wysokości h znajduje się kulka Początkowe prędkości kulki (liniowa i kątowa) są równe zeru

Bardziej szczegółowo

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2 InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY

Bardziej szczegółowo

WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY

WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY Adam Lipiński Katedra Maszyn Roboczych i Procesów Separacji Uniwersytet Warmińsko-Mazurski w Olsztynie WPŁYW DAWKI NASION I PRĘDKOŚCI SIEWNIKA NA RÓWNOMIERNOŚĆ RZĘDOWEGO SIEWU NASION PSZENICY Streszczenie

Bardziej szczegółowo

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.

Prawda/Fałsz. Klucz odpowiedzi. Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1. Klucz odpowiedzi Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania. Zad 1.1 Poprawna odpowiedź: 2 pkt narysowane wszystkie siły, zachowane odpowiednie proporcje

Bardziej szczegółowo

WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48

WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 TECHNIKA TRANSPORTU SZYNOWEGO Andrzej MACIEJCZYK, Zbigniew ZDZIENNICKI WSPÓŁCZYNNIK GOTOWOŚCI SYSTEMU LOKOMOTYW SPALINOWYCH SERII SM48 Streszczenie W artykule wyznaczono współczynniki gotowości systemu

Bardziej szczegółowo

Ćwiczenie 71. Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie 71. Dyfrakcja światła na szczelinie pojedynczej i podwójnej Ćwiczenie 71. Dyfrakcja światła na szczelinie pojeynczej i powójnej Cel ćwiczenia Pomiar natęŝenia światła w obrazie yfrakcyjnym pojeynczej szczeliny i ukłau wu szczelin. Wyznaczenie rozmiaru szczelin.

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Bardziej szczegółowo

PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU SPOWODOWANYCH BUDOWĄ TUNELI

PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU SPOWODOWANYCH BUDOWĄ TUNELI Górnictwo i Geoinżynieria Rok 31 Zeszyt 3 2007 Maciej Kęracki* PROGNOZOWANIE OSIADAŃ POWIERZCHNI TERENU SPOWODOWANYCH BUDOWĄ TUNELI 1. Wstęp Tunelowanie, zwłaszcza na niewielkich głębokościach oraz wykonywane

Bardziej szczegółowo

Równania różniczkowe opisujące ruch fotela z pilotem:

Równania różniczkowe opisujące ruch fotela z pilotem: . Katapultowanie pilota z samolotu Równania różniczkowe opisujące ruch fotela z pilotem: gdzie D - siłą ciągu, Cd współczynnik aerodynamiczny ciągu, m - masa pilota i fotela, g przys. ziemskie, ρ - gęstość

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM

ZARYS ŚLIMAKA TORUSOPOCHODNEGO KSZTAŁTOWANEGO NARZĘDZIEM TRZPIENIOWYM KOMISJA BUDOWY MASZY PA ODDZIAŁ W POZAIU Vol. 8 nr Archiwum Technologii Maszyn i Automatyzacji 8 LESZEK SKOCZYLAS ZARYS ŚLIMAKA TORUSOPOCHODEGO KSZTAŁTOWAEGO ARZĘDZIEM TRZPIEIOWYM W artykule przedstawiono

Bardziej szczegółowo

Drgania. O. Harmoniczny

Drgania. O. Harmoniczny Dobrej fazy! Drgania O. Harmoniczny Położenie równowagi, 5 lipca 218 r. 1 Zadanie Zegar Małgorzata Berajter, update: 217-9-6, id: pl-ciepło-5, diff: 2 Pewien zegar, posiadający wahadło ze srebra, odmierza

Bardziej szczegółowo

Wykład Pole magnetyczne, indukcja elektromagnetyczna

Wykład Pole magnetyczne, indukcja elektromagnetyczna Wykła 5 5. Pole magnetyczne, inukcja elektromagnetyczna Prawo Ampera Chcemy teraz znaleźć pole magnetyczne wytwarzane przez powszechnie występujące rozkłay prąów, takich jak przewoniki prostoliniowe, cewki

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Materiał ćwiczeniowy z matematyki Poziom podstawowy Styczeń 0 Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania Okręgowa Komisja Egzaminacyjna w Poznaniu KLUCZ ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH

Bardziej szczegółowo

Wyznaczanie stałej szybkości reakcji wymiany jonowej

Wyznaczanie stałej szybkości reakcji wymiany jonowej Wyznaczanie stałej szybkości reakcji wymiany jonowej Ćwiczenie laboratoryjne nr 4 Elementy termodynamiki i kinetyki procesowej Anna Ptaszek Elementy kinetyki chemicznej Pojęcie szybkości reakcji Pojęcie

Bardziej szczegółowo

OPTOELEKTRONIKA. Ćw. II. ZJAWISKO FOTOWOLTAICZNE NA ZŁĄCZU P-N

OPTOELEKTRONIKA. Ćw. II. ZJAWISKO FOTOWOLTAICZNE NA ZŁĄCZU P-N 1 Ćw. II. ZJAWISKO FOTOWOLTAICZNE NA ZŁĄCZ P-N Cel ćwiczenia: Wyznaczenie postawowych parametrów spektralnych etektora fotowoltaicznego. Opis stanowiska: Oświetlacz - lampa halogenowa (nap. zas. o 16V).

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0

Zadania z dynamiki. Maciej J. Mrowiński 11 marca mω 2. Wyznacz położenie i prędkość ciała w funkcji czasu. ma t + f 0. ma 2 (e at 1), v gr = f 0 Zadania z dynamiki Maciej J. Mrowiński 11 marca 2010 Zadanie DYN1 Na ciało działa siła F (t) = f 0 cosωt (przy czym f 0 i ω to stałe). W chwili początkowej ciało miało prędkość v(0) = 0 i znajdowało się

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW

SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW InŜynieria Rolnicza 11/2006 Jan Szczepaniak Przemysłowy Instytut Maszyn Rolniczych w Poznaniu SYMULACJA RUCHU AGREGATU ROLNICZEGO CIĄGNIK - SADZARKA DO ZIEMNIAKÓW Streszczenie W artykule przedstawiono

Bardziej szczegółowo

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA

WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA WAHADŁO FIZYCZNE ZE ZMIENNĄ OSIĄ ZAWIESZENIA I. Cel ćwiczenia: zapoznanie z własnościami ruchu rająceo w oparciu o wahało fizyczne, wyznaczenie przyspieszenia ziemskieo i ramienia bezwłaności wahała. II.

Bardziej szczegółowo

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych

Rozwiązywanie równań różniczkowych Rozwiązwanie równań różniczkowch. Równanie różniczkowe zwczajne. rzęu A. Metoa rkfie - zaimplementowana w Mathcazie metoa Rungego-Kutt. rzęu ze stałm krokiem całkowania: rkfie(,,ma, N, P) gzie: ma N P

Bardziej szczegółowo

MODEL MATEMATYCZNY UKŁADU NAPĘDOWEGO REAKTORA PROCESU POLIMERYZACJI Z UWZGLĘDNIENIEM WYBRANYCH PROBLEMÓW PROCESU TECHNOLOGICZNEGO CZĘŚĆ II

MODEL MATEMATYCZNY UKŁADU NAPĘDOWEGO REAKTORA PROCESU POLIMERYZACJI Z UWZGLĘDNIENIEM WYBRANYCH PROBLEMÓW PROCESU TECHNOLOGICZNEGO CZĘŚĆ II Zeszyty Problemowe aszyny Elektryczne Nr 7/6 16 Anrzej Popena, Anrzej Rusek Politechnika Częstochowska, Częstochowa ODEL ATEATYCZNY UKŁADU NAPĘDOWEGO REAKTORA PROCESU POLIERYZACJI Z UWZGLĘDNIENIE WYBRANYCH

Bardziej szczegółowo

D l. D p. Rodzaje baz jezdnych robotów mobilnych

D l. D p. Rodzaje baz jezdnych robotów mobilnych ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)

Bardziej szczegółowo

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna

a, F Włodzimierz Wolczyński sin wychylenie cos cos prędkość sin sin przyspieszenie sin sin siła współczynnik sprężystości energia potencjalna Włodzimierz Wolczyński 3 RUCH DRGAJĄCY. CZĘŚĆ 1 wychylenie sin prędkość cos cos przyspieszenie sin sin siła współczynnik sprężystości sin sin 4 3 1 - x. v ; a ; F v -1,5T,5 T,75 T T 8t x -3-4 a, F energia

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 2 - Dobór napędów Instytut Automatyki i Robotyki Warszawa, 2017 Wstępny dobór napędu: dane o maszynie Podstawowe etapy projektowania Krok 1: Informacje o kinematyce maszyny Krok 2: Wymagania dotyczące

Bardziej szczegółowo

5. Ruch harmoniczny i równanie falowe

5. Ruch harmoniczny i równanie falowe 5. Ruch harmoniczny i równanie falowe 5.1. Mamy dwie nieważkie sprężyny o współczynnikach sprężystości, odpowiednio, k 1 i k 2. Wyznaczyć współczynnik sprężystości układu tych dwóch sprężyn w przypadku,

Bardziej szczegółowo

Wpływ czynników zewnętrznych na obciążalność kabli

Wpływ czynników zewnętrznych na obciążalność kabli Wpływ czynników zewnętrznych na obciążalność kabli Wybrane zaganienia Franciszek Spyra ZPBE Energopomiar Elektryka Gliwice Wstęp W artykule przestawiono wpływ czynników zewnętrznych na obciążalność kabli.

Bardziej szczegółowo

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.

WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. 1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań

Bardziej szczegółowo

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego.

Metodyka obliczenia natężenia przepływu za pomocą anemometru skrzydełkowego. ZAŁĄCZNIK Metoyka obliczenia natężenia rzełyu za omocą anemometru skrzyełkoego. Prękość oietrza osi symetrii kanału oblicza się ze zoru: S max τ gzie: S roga rzebyta rzez gaz ciągu czasu trania omiaru

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM

POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM POMIAR WSPÓŁCZYNNIKA PRZEWODNOŚCI CIEPLNEJ ALUMINIUM I. Cel ćwiczenia: pomiar współczynnika przewoności cieplnej aluminium. II. Przyrząy: III. Literatura: zestaw oświaczalny złożony z izolowanego aluminiowego

Bardziej szczegółowo

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku

PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku PROBLEMY NIEKONWENCJONALNYCH UKŁADÓW ŁOŻYSKOWYCH Łódź 09-10 maja 1995 roku Edward Walicki, Anna Walicka, Tomasz Karpiński (WSI Zielona Góra) PARAMETRY MECHANICZNE WIELOKRZYWKOWEGO ŁOŻYSKA STOŻKOWEGO SMAROWANEGO

Bardziej szczegółowo

Podstawy fizyki sezon 1 VII. Ruch drgający

Podstawy fizyki sezon 1 VII. Ruch drgający Podstawy fizyki sezon 1 VII. Ruch drgający Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Ruch skutkiem działania

Bardziej szczegółowo

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE

UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Biuletyn Polskiego Towarzystwa Geometrii i Grafiki Inżynierskiej 10 Zeszyt 12 (2001), str. 10 14 UWAGI O ZASTOSOWANIU POWIERZCHNI ŚRUBOWYCH W BUDOWNICTWIE Paweł KAPROŃ Politechnika Częstochowska, ul.akademicka

Bardziej szczegółowo

MECHANIKA II. Drgania wymuszone

MECHANIKA II. Drgania wymuszone MECHANIKA II. Drgania wymuszone Daniel Lewandowski Politechnika Wrocławska, Wydział Mechaniczny Daniel Lewandowski (I-19) MECHANIKA II. Drgania wymuszone 1 / 30 Układ drgajacy o jednym stopniu swobody

Bardziej szczegółowo

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1

Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Fizyka Pogody i Klimatu, zima 2017 Dynamika: wykład 1 Szymon Malinowski Metody opisu ruchu płynu, skale ruchu. Siły działające na cząstkę (elementarną objętość) powietrza. Równanie ruchu, analiza skali,

Bardziej szczegółowo

KRYTYCZNA LICZBA REYNOLDSA

KRYTYCZNA LICZBA REYNOLDSA LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 4 KRYTYCZNA LICZBA REYNOLDSA 1. Cel ćwiczenia Celem ćwiczenia jest jakościowa obserwacja zjawisk zachozących przy przechozeniu przepływu laminarneo w turbulentny

Bardziej szczegółowo

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego 34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0

Bardziej szczegółowo