1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje. Definicja 1 Funkcję postaci f. nazwiemy n-argumentową funkcją boolowską.
|
|
- Czesław Czajkowski
- 8 lat temu
- Przeglądów:
Transkrypt
1 1. Reguły minimalne (optymalne) Podstawowe twierdzenia i definicje Definicja 1 Funkcję postaci f n :{ 0, 1} { 0, 1} nazwiemy n-argumentową funkcją boolowską. Definicja Term g = x 1 x x ( ϕ ) ( ϕ ) ( ϕr ) i i2 i r ( 0) L, gdzie ϕk {0,1}, x x ik ( ) =, x x ik ik 1 =, ik {1,2,,n}, k = 1,,r nazwiemy implikantem funkcji boolowskiej f(x1,,xn), jeżeli jest prawdziwa dla każdego wartościowania V nierówność g(v) f(v). Implikant g nazwiemy implikantem pierwszym, jeżeli nie można z niego usunąć żadnej zmiennej tak, aby powyższa nierówność była nadal prawdziwa. ik Definicja 3 Funkcja rozróżnialności fa dla systemu informacyjnego A jest a funkcją boolowską m boolowskich wartości a 1,...,a m, i odpowiadających im atrybutów a1,..., am, którą definiujemy następująco: f ( a1,..., a m ) { c ij :1 j < i n, c } A gdzie : c = { a : a c ij} ij = ij fmg(a) oznacza funkcję boolowską zbudowaną z MG(A) w analogiczny sposób jak fa z M(A). PRIME_MG(A) oznacza zbiór wszystkich implikantów pierwszych.
2 Definicja 4 Dokładna reguła α β jest optymalna, jeżeli: 1. Każdy element sumy w α ma minimalną liczbę deskryptorów, tzn. jeżeli β otrzymaliśmy z α przez eliminację któregoś deskryptora, to β α nie jest prawdziwe w A 2. Jeśli reguła αu β (gdzie u jest informacją o pewnym obiekcie w A) jest prawdziwa, to istnieje podzbiór u u u taki, że reguła αu β jest prawdziwa i β jest sumą w α. Twierdzenie 1.1 { α U : ( δ ( x) R x, t, u A k & t Pr ime _ MG k ( A,, x) & u = INF( t, A*, x))} { δ A = θ : θr gdzie INF( t, A*, x) = {( a, a( x)) : a A( t)} jest optymalną regułą decyzyjną. k }
3 2. Przykład generowania reguł minimalnych Sposób wyliczania reguł minimalnych przedstawiono dla tablicy decyzyjnej A=(U,A {d}) umieszczonej poniżej, gdzie U={x1,...x8}, C={a,b,c}- atrybuty warunkowe, d jest atrybutem decyzjnym. U C a b c d x x x x x x x x Tablica decyzyjna
4 1. Tworzymy uogólniony atrybut decyzyjny Α, którego wartości dodajemy do tablicy decyzyjnej, co przedstawia tabela 3.2. U C a b c Α x {0} x {1} x {0,2 x {1} x {0,1} x {0,1} x {0,2 x {2} Tablica decyzyjna z uogólnionym atrybutem decyzyjnym
5 Uwaga! Dla uproszczenia dalszych obliczeń usuwamy powielone (identyczne) obiekty. Zatem usunięty zostaje obiekt x6 i x7, a tablica 3.2 przyjmuje następującą postać: U C a b c Α x {0} x {1} x {0,2} x {1} x {0,1} X {2} Tablica decyzyjna po usunięciu obiektów powielonych
6 2. Tworzymy macierz nierozróżnialności M(C), która została przedstawiona poniżej: x1 x2 x3 x4 x5 x8 x1 b c ab abc ac x2 b bc a ac abc x3 c bc abc ab a x4 ab a abc c bc x5 abc ac ab c b x8 ac abc a bc b Macierz nierozróżnialności dla tablicy decyzyjnej 3.3. Zbiór α = {{0}, {1},{2},{0,1},{0,2}}. 3. Wyliczamy reguły minimalne dla δa ={0} czyli reguły postaci α δa ={0} Aby utworzyć te reguły należy utworzyć uogólnioną macierz rozróżnialności dla obiektu x1. MG(A,{0},x1) to pierwsza kolumna w tabeli 3.4. Niepuste elementy tej macierzy to b, c, ab, abc, ac. Funkcja rozróżnialności odpowiadająca tej macierzy ma postać: f MG(A,{0},x1) (a, b, c) = b*c*(a+b)*(a+b+c)*(a+c).
7 Uwaga! 1. Obliczenia odbywają się na zmiennych boolowskich tzn: X*X=X oraz X+X=X 2. Dla zmiennych boolowskich (1+X) = 1 (gdzie 1 to True). 3. W dalszych obliczeniach dla ułatwienia symbol * będzie opuszczany. f MG(A,{0},x1) (a, b, c) = (abc +bbc) * (aa + ac + ab + bc + ac + cc)= aaabc + aabcc+ aabbc + abbcc + aabcc + abccc + aabbc + abbcc + abbbc + bbbcc + abbcc + bbccc) Po dokonaniu minimalizacji funkcji boolowskich otrzymaliśmy: f MG(A,{0},x1) (a, b, c) =abc +bc =bc(a +1) = bc Zatem funkcja pierwszych implikantów Prime_MG(A,{0},x1}={bc}. Podstawiając do tab. 3.4 wiersz 1 otrzymujemy następującą regułę minimalną: b0c0 δa ={0}. 4. Wyliczamy reguły minimalne dla δa ={1} czyli reguły postaci β δa ={1}. MG(A,{1},x2) oraz MG(A,{1},x4). f MG(A,{1}, x2) (a, b, c) = b*(b+c)* (a+c) * (a+b+c) = (bb+bc)*(aa + ab + ac + ac+ bc + cc) = (aabb + abbb + abbc + abbc+ bbbc + bbcc + aabc + abbc + abcc + abcc+ bbcc + bccc) = ab + abc + bc = ab(c + 1) + bc = ab + bc Prime_MG(A,{1},x2}={ab, bc}. Zatem otrzymujemy dwie reguły minimalne : a0b1,, a1c0
8 f MG(A,{1}, x4) (a, b, c) = ( a+b)*(a+b+c) * c*( b+c)= (aa+ ab+ ac+ ab+ bb+ bc)*( bc + cc) = (aabc+ abbc+ abcc+ abbc+ bbbc+ bbcc + aacc+ abcc+ accc+ abcc+ bbcc+ bccc) = abc + bc +ac = bc(a+1) + ac= bc +ac Prime_MG(A,{1},x4}={ ac, bc}. Zatem otrzymujemy dwie reguły minimalne: a1c0, b1c0 Ostatecznie otrzymujemy A- optymalną regułę decyzyjną: a0b1, + a1c0 + b1c0 δa ={1}. 5. Wyliczamy reguły minimalne dla δa ={2} czyli reguły postaci χ δa ={2}. MG(A,{2},x8) f MG(A,{2}, x8) (a, b, c) = (a+c)*(a+b+c) * a* (b+c)* b = (aa + ab + ac + ac + bc + cc) *(abb+abc) = (aaabb + aabbb + aabbc + aabbc + abbbc + abbcc + aaabc + aabbc + aabcc + aabcc + abbcc + abccc) = ab + abc = ab(1+c) = ab Prime_MG(A,{2},x8}={ab}. Zatem otrzymujemy: a1b0 δa ={2}. 6. Wyliczamy reguły minimalne dla δa ={0,1} czyli reguły postaci δ δa ={0,1}. MG(A,{0,1},x5) f MG(A,{0,1}, x5) (a, b, c) = (a+b+c) * (a+c)*(a+b) * c* b = (aa+ ba+ ca + ac +bc +cc) * (abc + bbc) = (aabc+ aabbc+ abcc + aabcc +abbcc +abccc + aabbc+ bbbca+ bbacc + bbacc +bbbcc +bbccc) = abc+bc= bc(1+a) = bc Prime_MG(A,{0,1},x5}={bc}.
9 Zatem otrzymujemy: b1c1 δa ={0,1}. 7. Wyliczamy reguły minimalne dla δa ={0,2} czyli reguły postaci ε δa ={0,2}. MG(A,{0,2},x3) f MG(A,{0,2}, x3) (a, b, c) = c* (b+c)* (a+b+c) *(a+b)* a = (bc+cc) * (aaa + aab + aac+ aab + abb + abc) = (aaabc + aabbc + aabcc+ aabbc + abbbc + abbcc + aaacc + aabcc + aaccc+ aabcc + abbcc + abccc) = abc + ac = ac(b+1) = ac Prime_MG(A,{0,1},x5}={ac}. Otrzymujemy: a0c1 δa ={0,2}. Ostatecznie otrzymane zostały następujące reguły minimalne pierwszego typu: b0c0 δa ={0} a0b1,+ a1c0+ b1c0 δa ={1} a1b0 δa ={2} b1c1 δa ={0,1} a0c1 δa ={0,2}
Systemy ekspertowe. Generowanie reguł minimalnych. Część czwarta. Autor Roman Simiński.
Część czwarta Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów nie zastąpi uważnego w nim uczestnictwa.
Systemy ekspertowe : Tablice decyzyjne
Instytut Informatyki Uniwersytetu Śląskiego 16 marzec 2010 Tablica decyzyjna Klasy nierozróżnialności i klasy decyzyjne Rdzeń Redukt Macierz nierozróżnialności Rdzeń i redukt w macierzy nierozróżnialności
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej
15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję
RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska
RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy
Języki formalne i automaty Ćwiczenia 3
Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania
1 Macierze i wyznaczniki
1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)
3.4. Przekształcenia gramatyk bezkontekstowych
3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce
Języki formalne i automaty Ćwiczenia 1
Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...
Macierz o wymiarach m n. a 21. a 22. A =
Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm F-LEM1 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm F LEM 1. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu F LEM1
Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1
Obliczanie 1 Obliczanie Co to jest obliczanie? Czy wszystko można obliczyć? Czy to, co intuicyjnie uznajemy za obliczalne można obliczyć za pomocą mechanicznej procedury? 2 Czym jest obliczanie? Dawid
Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka
Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;
Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.
Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:
Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łanc Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 3 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Pojęcia podstawowe Algebra
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy
System informacyjny a system decyzyjny Relacja nierozróżnialności Klasy abstrakcji Teoria zbiorów przybliżonych Usuwanie niespójności z tablicy decyzyjnej Metody usuwania niespójności z T 1. Pomoc eksperta:
Analiza matematyczna i algebra liniowa Macierze
Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek
Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka
Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:
9 Wykład 9: Przestrzenie liniowe i podprzestrzenie Definicja 9 Niech F będzie ciałem Algebrę (V, F, +, ), gdzie V, + jest działaniem w zbiorze V zwanym dodawaniem wektorów, a jest działaniem zewnętrznym
Wprowadzenie i pojęcia wstępne.
Wprowadzenie i pojęcia wstępne. X\A a b c x 1 a 1 b 1 c 1 x 2 a 1 b 1 c 2 x 3 a 1 b 2 c 3 x 4 a 2 b 1 c 4 x 5 a 1 b 2 c 1 x 6 a 1 b 2 c 2 x 7 a 1 b 1 c 1 S = X = {x 1,,x 8 } A = {a, b, c}
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
DB Algebra liniowa semestr zimowy 2018
DB Algebra liniowa semestr zimowy 2018 SPIS TREŚCI Teoria oraz większość zadań w niniejszym skrypcie zostały opracowane na podstawie książek: 1 G Banaszak, W Gajda, Elementy algebry liniowej cz I, Wydawnictwo
φ(x 1,..., x n ) = a i x 2 i +
Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.
pneumatyka GMP 47-400 Racibórz, ul. Grzonki 5, tel. +48 32 412 0 412, fax. +48 32 412 0 418, infolinia 0 801 202 204
! pneumatyka GMP 47-400 Racibórz, ul. Grzonki 5, tel. +48 32 412 0 412, fax. +48 32 412 0 418, infolinia 0 801 202 204 1 SPIS TREŚCI Zawory zabezpieczające 5 Regulatory siły hamowania 11 Osuszacze, wkłady
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
macierze jednostkowe (identyczności) macierze diagonalne, które na przekątnej mają same
1 Macierz definicja i zapis Macierzą wymiaru m na n nazywamy tabelę a 11 a 1n A = a m1 a mn złożoną z liczb (rzeczywistych lub zespolonych) o m wierszach i n kolumnach (zamiennie będziemy też czasem mówili,
Zasada indukcji matematycznej
Zasada indukcji matematycznej Twierdzenie 1 (Zasada indukcji matematycznej). Niech ϕ(n) będzie formą zdaniową zmiennej n N 0. Załóżmy, że istnieje n 0 N 0 takie, że 1. ϕ(n 0 ) jest zdaniem prawdziwym,.
Macierze i Wyznaczniki
dr Krzysztof Żyjewski MiBM; S-I 0.inż. 0 października 04 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Definicja. Iloczynem macierzy A = [a ij m n, i macierzy B = [b ij n p nazywamy macierz
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.
1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych
Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d
C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz
Programowanie liniowe. Tadeusz Trzaskalik
Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków
Teoretyczne podstawy zbiorów przybliżonych
Teoretyczne podstawy zbiorów przybliżonych Agnieszka Nowak 17 kwietnia 2009 1 Podstawy teorii zbiorów przybliżonych 1.1 Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława Pawlaka w
Wyk lad 10 Przestrzeń przekszta lceń liniowych
Wyk lad 10 Przestrzeń przekszta lceń liniowych 1 Określenie przestrzeni przekszta lceń liniowych Niech V i W bed a przestrzeniami liniowymi Oznaczmy przez L(V ; W ) zbór wszystkich przekszta lceń liniowych
Ÿ1 Oznaczenia, poj cia wst pne
Ÿ1 Oznaczenia, poj cia wst pne Symbol sumy, j, k Z, j k: k x i = x j + x j+1 + + x k. i=j Przykªad 1.1. Oblicz 5 i=1 2i. Odpowied¹ 1.1. 5 i=1 2i = 2 1 + 2 2 + 2 3 + 2 4 + 2 5 = 2 + 4 + 8 + 16 + 32 = 62.
Baza w jądrze i baza obrazu ( )
Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań 9: Przestrzenie wektorowe. Podprzestrzenie () Wykazać, że V = C ze zwykłym dodawaniem jako dodawaniem wektorów i operacją mnożenia przez skalar : C C C, (z, v) z v := z v jest przestrzenią
Wykład 7 Macierze i wyznaczniki
Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7
Matematyka dyskretna. Andrzej Łachwa, UJ, B/14
Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl 2B/14 Relacje Pojęcia: relacja czyli relacja dwuargumentowa relacja w zbiorze A relacja n-argumentowa Relacja E = {(x, x): x S} jest
Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017
Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język
1 Zbiory i działania na zbiorach.
Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń
Analiza matematyczna 1 - test egzaminacyjny wersja do ćwiczeń Leszek Skrzypczak 1. Niech E = {x [0, 1] : x = k 2 n k = 1, 2,... 2 n, n = 1, 2, 3,...} Wówczas: (a) Dla dowolnych liczb wymiernych p, q [0,
1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.
20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,
Analiza funkcjonalna 1.
Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.
DODATEK 1: Wtedy h(α) = 1 oraz h(β) = 0. Jak pamiętamy ze szkoły, obraz sumy zbiorów jest sumą obrazów tych zbiorów. Mamy zatem:
DODATEK 1: DOWODY NIEKTÓRYCH TWIERDZEŃ DOTYCZACYCH SEMANTYKI KLASYCZNEGO RACHUNKU ZDAŃ 2.2. TWIERDZENIE O DEDUKCJI WPROST (wersja semantyczna). Dla dowolnych X F KRZ, α F KRZ, β F KRZ zachodzą następujące
10. Kolorowanie wierzchołków grafu
p. 10. Kolorowanie wierzchołków grafu 10.1 Definicje i twierdzenia Przez k-kolorowanie wierzchołków grafu G rozumiemy przyporzadkowanie każdemu wierzchołkowi grafu G jednego z k kolorów 1, 2,...,k. p.
Technika cyfrowa Synteza układów kombinacyjnych (I)
Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych (I) Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1
Sztuczna inteligencja
POLITECHNIKA KRAKOWSKA WIEiK KATEDRA AUTOMATYKI I TECHNIK INFORMACYJNYCH Sztuczna inteligencja www.pk.edu.pl/~zk/si_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 10: Zbiory przybliżone
Metoda list prostych Wykład II. Agnieszka Nowak - Brzezińska
Metoda list prostych Wykład II Agnieszka Nowak - Brzezińska Wprowadzenie Przykładowa KW Inna wersja KW Wyszukiwanie informacji Metoda I 1. Przeglądamy kolejne opisy obiektów i wybieramy te, które zawierają
Algebra Boole a. Ćwiczenie Sprawdź, czy algebra zbiorów jestrównież algebrą Boole a. Padaj wszystkie elementy takiej realizacji.
Algebra Boole a Algebrą Boole a nazywamy zbiór B, wyróżnione jego podzbiory O i I oraz operacje dwuargumentowe +;, które dla dowolnych elementów X, Y, Z zbioru B spełniają następujące aksjomaty: X+Y B;
Macierze. Rozdział Działania na macierzach
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy
Jaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)
Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które
ALGEBRA LINIOWA. Wykład 2. Analityka gospodarcza, sem. 1. Wydział Zarządzania i Ekonomii Politechnika Gdańska
ALGEBRA LINIOWA Wykład 2 Analityka gospodarcza, sem 1 Wydział Zarządzania i Ekonomii Politechnika Gdańska dr inż Natalia Jarzębkowska, CNMiKnO semzimowy 2018/2019 2/17 Macierze Niech M = {1, 2,, m} i N
3. Wykład Układy równań liniowych.
31 Układy równań liniowych 3 Wykład 3 Definicja 31 Niech F będzie ciałem Układem m równań liniowych o niewiadomych x 1,, x n, m, n N, o współczynnikach z ciała F nazywamy układ równań postaci: x 1 + +
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar przestrzeni liniowej 1 Operacje elementarne na uk ladach wektorów Niech α 1,..., α n bed dowolnymi wektorami przestrzeni liniowej V nad cia lem K. Wyróżniamy nastepuj ace operacje
Minimalizacja form boolowskich
Sławomir Kulesza Technika cyfrowa Minimalizacja form boolowskich Wykład dla studentów III roku Informatyki Wersja 1.0, 05/10/2010 Minimalizacja form boolowskich Minimalizacja proces przekształcania form
Przekształcenia liniowe
Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7
a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn a 1j a 2j R i = , C j =
11 Algebra macierzy Definicja 11.1 Dla danego ciała F i dla danych m, n N funkcję A : {1,..., m} {1,..., n} F nazywamy macierzą m n (macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)
Funkcja Boolowska. f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest matematycznym modelem układu kombinacyjnego.
SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Funkcja Boolowska Funkcja boolowskanargumentową nazywamy odwzorowanie f:b n B, gdzieb={0,1} jest zbiorem wartości funkcji. Funkcja boolowska jest
Rozwiązanie zadania 1. Krok Tym razem naszym celem jest, nie tak, jak w przypadku typowego zadania transportowego
Zadanie 1 Pośrednik kupuje towar u dwóch dostawców (podaż: 2 i, jednostkowe koszty zakupu 1 i 12), przewozi go i sprzedaje trzem odbiorcom (popyt: 1, 28 i 27, ceny sprzedaży:, 25 i ). Jednostkowe koszty
Zadania z analizy matematycznej - sem. I Granice funkcji, asymptoty i ciągłość
Zadania z analizy matematycznej - sem. I Granice funkcji asymptoty i ciągłość Definicja sąsiedztwo punktu. Niech 0 a b R r > 0. Sąsiedztwem o promieniu r punktu 0 nazywamy zbiór S 0 r = 0 r 0 0 0 + r;
1 Działania na zbiorach
M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej
Metoda list inwersyjnych. Wykład III
Metoda list inwersyjnych Wykład III Plan wykładu Cele metody Tworzenie kartoteki wyszukiwawczej Redundancja i zajętość pamięci Wyszukiwanie informacji Czasy wyszukiwania Ocena metody: wady i zalety Modyfikacje
Technika cyfrowa Synteza układów kombinacyjnych
Sławomir Kulesza Technika cyfrowa Synteza układów kombinacyjnych Wykład dla studentów III roku Informatyki Wersja 2.0, 05/10/2011 Podział układów logicznych Opis funkcjonalny układów logicznych x 1 y 1
Minimalizacja funkcji boolowskich - wykład 2
SWB - Minimalizacja funkcji boolowskich - wykład 2 asz 1 Minimalizacja funkcji boolowskich - wykład 2 Adam Szmigielski aszmigie@pjwstk.edu.pl Laboratorium robotyki s09 SWB - Minimalizacja funkcji boolowskich
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Przekształcenia liniowe
Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )
Wykład 2. Prawdopodobieństwo i elementy kombinatoryki
Wstęp do probabilistyki i statystyki Wykład 2. Prawdopodobieństwo i elementy kombinatoryki dr hab.inż. Katarzyna Zakrzewska, prof.agh Katedra Elektroniki, AGH e-mail: zak@agh.edu.pl http://home.agh.edu.pl/~zak
Optymalizacja reguł decyzyjnych względem pokrycia
Zakład Systemów Informatycznych Instytut Informatyki, Uniwersytet Śląski Chorzów, 9 grudzień 2014 Wprowadzenie Wprowadzenie problem skalowalności dla optymalizacji reguł decyzjnych na podstawie podejścia
Minimalizacja form boolowskich UC1, 2009
Minimalizacja form boolowskich UC, 29 mplikanty funkcji boolowskiej UC, 29 2 mplikanty funkcji boolowskiej UC, 29 3 Metody minimalizacji UC, 29 4 Siatki Karnaugh UC, 29 5 Siatki Karnaugh UC, 29 Stosowanie
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania
Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania 1 Przekszta lcenia liniowe i ich w lasności Definicja 9.1. Niech V i W bed przestrzeniami liniowymi. Przekszta lcenie f : V W spe lniajace warunki:
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,
Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY
JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model
Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.
Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej
Sztuczna Inteligencja Projekt
Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy
2. Definicja pochodnej w R n
2. Definicja pochodnej w R n Niech będzie dana funkcja f : U R określona na zbiorze otwartym U R n. Pochodną kierunkową w punkcie a U w kierunku wektora u R n nazywamy granicę u f(a) = lim t 0 f(a + tu)
Algebra abstrakcyjna
Algebra abstrakcyjna Przykłady 1. Sama liczba 0 tworzy grupę (rzędu 1) ze względu na zwykłe dodawanie, również liczba 1 tworzy grupę (rzędu 1) ze względu na zwykłe mnożenie.. Liczby 1 i 1 stanowią grupą
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA I WSPOMAGANIA DECYZJI Rozproszone programowanie produkcji z wykorzystaniem
Programowanie Współbieżne. Algorytmy
Programowanie Współbieżne Algorytmy Sortowanie przez scalanie (mergesort) Algorytm :. JEŚLI jesteś rootem TO: pobierz/wczytaj tablice do posortowania JEŚLI_NIE to pobierz tablicę do posortowania od rodzica
0. ELEMENTY LOGIKI. ALGEBRA BOOLE A
WYKŁAD 5() ELEMENTY LOGIKI ALGEBRA BOOLE A Logika podstawowe pojęcia: zdania i funktory, reguły wnioskowania, zmienne zdaniowe, rachunek zdań Matematyka zbudowana jest z pierwotnych twierdzeń (nazywamy
Wprowadzenie do zbiorów przybliżonych
Instytut Informatyki, Uniwersytet Śląski, ul. Będzinska 39, Sosnowiec, Polska Tel (32) 2 918 381, Fax (32) 2 918 283 Wykład II i III Wstęp Teoria zbiorów przybliżonych została sformułowana przez Zdzisława
ROZDZIAŁ 1. Rachunek funkcyjny
ROZDZIAŁ 1 Rachunek funkcyjny Niech X 1,..., X n będą dowolnymi zbiorami. Wyrażenie (formułę) ϕ(x 1,..., x n ), w którym występuje n zmiennych x 1,..., x n i które zamienia się w zdanie logiczne, gdy zamiast
Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.
Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,
, A T = A + B = [a ij + b ij ].
1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie jedna liczba a ij, to mówimy, że jest określona macierz prostokątna A = a ij typu m
5. Rozwiązywanie układów równań liniowych
5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a
Algebra WYKŁAD 3 ALGEBRA 1
Algebra WYKŁAD 3 ALGEBRA 1 Liczby zespolone Postać wykładnicza liczby zespolonej Niech e oznacza stałą Eulera Definicja Równość e i cos isin nazywamy wzorem Eulera. ALGEBRA 2 Liczby zespolone Każdą liczbę
Projekt Informatyka przepustką do kariery współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia 1 Pewne funkcje - funkcja liniowa dla gdzie -funkcja kwadratowa dla gdzie postać kanoniczna postać iloczynowa gdzie równanie kwadratowe pierwiastki równania kwadratowego: dla dla wzory Viete a
Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm
Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F
1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.
Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze