Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczanie. dr hab. inż. Joanna Józefowska, prof. PP 1"

Transkrypt

1 Obliczanie 1

2 Obliczanie Co to jest obliczanie? Czy wszystko można obliczyć? Czy to, co intuicyjnie uznajemy za obliczalne można obliczyć za pomocą mechanicznej procedury? 2

3 Czym jest obliczanie? Dawid Hilbert ( ) ogłasza program składający się z 23 problemów, którego celem jest zbudowanie matematyki na niepodważalnych zasadach; dziesiąty problem Hilberta (Entscheidungsproblem): Czy istnieje ogólna, algorytmiczna procedura rozstrzygania problemów matematycznych? 3

4 Czym jest obliczanie? Kurt Gödel ( ) This sentence is not provable publikuje twierdzenie, którym rozwiewa nadzieje Hilberta: Dowolny precyzyjny (formalny) system aksjomatów i reguł wnioskowania, na tyle ogólny, aby obejmował proste zdania arytmetyczne, oraz wolny od sprzeczności, musi zawierać pewne zdania, których prawdziwości nie można ani dowieść, ani obalić posługując się środkami dozwolonymi w ramach tego systemu. 4

5 Czym jest obliczanie? Alonzo Church ( ) twórca rachunku λ i jego zastosowania do analizy obliczalności udowadnia, że arytmetyka pierwszego rzędu jest nierozstrzygalna teza Churcha: wszystko, co jest efektywnie obliczalne daje się wyrazić za pomocą funkcji λ-definiowalnych, funkcji rekurencyjnych lub innych formalizmów im równoważnych 5

6 Czym jest obliczanie? Stephen C. Kleene ( ) udowadnia równoważność zdefiniowanej przez Churcha klasy funkcji λ-definiowalnych z podaną przez siebie klasą funkcji rekurencyjnych 6

7 Czym jest obliczanie? Alan Turing ( ) możliwe jest skonstruowanie maszyny zdolnej wykonać dowolne obliczenia istnieją zagadnienia matematyczne, których nie można rozwiązać za pomocą obliczeń 7

8 Czym jest obliczanie? Emil Post ( ) niezależna analiza procesu obliczeniowego pierwsze badania nad stopniami nierozwiązalności (klasyfikacja problemów nierozwiązalnych) wprowadza koncepcję systemów kanonicznych 8

9 Czym jest obliczanie? Julia B. Robinson ( ) prace nad nierozwiązalnością dziesiątego problemu Hilberta udowadnia, że arytmetyka liczb rzeczywistych jest nierozstrzygalna zasada rezolucji 9

10 Czym jest obliczanie? Martin Davis (1928) prace nad nierozwiązalnością dziesiątego problemu Hilberta (Davis, Putnam, Robinson, ok. 1950) gdyby istniało chociaż jedno równanie diofantyczne, którego rozwiązania spełniałyby specjalny warunek, to dziesiąty problem Hilberta byłby nierozwiązalny Jurij Matjasewicz (1948) dowód istnienia takiego równania 10

11 Czym jest obliczanie? Antoni A. Markow ( ) wprowadza pojęcie algorytmów normalnych wykazuje, że problem słowa dla półgrup jest nierozstrzygalny 11

12 Czym jest obliczanie? J. C. Stepherdson, H. E. Sturgis maszyny z rejestrami C. C. Elgot, A. Robinson - maszyny RAM i RASP 12

13 Teoria obliczeń Teoria obliczeń czyli zastosowanie matematyki do teoretycznego rozumienia obliczeń. Jest to dział matematyki zajmujący się definiowaniem i formalnym badaniem terminu obliczalność. Teoria obliczeń formułuje podstawy teoretyczne algorytmów, programów, procesów obliczeniowych. 13

14 Klasy zagadnień rozważanych w teorii obliczeń wyznaczenie klasy problemów obliczalnych oraz wskazanie granic obliczalności klasyfikacje problemów obliczalnych złożoność obliczeniowa algorytmów weryfikacja poprawności algorytmów 14

15 Podejścia do problemu obliczalności podejście modelowe - oparte na idei tworzenia abstrakcyjnych modeli maszyn mogących wykonywać proces zwany obliczaniem: maszyna Turinga, maszyna RAM, maszyna RASP, algorytmy Markowa podejście algebraiczne - podstawę stanowią struktury algebraiczne zawierające tzw. funkcje bazowe oraz schematy definiowania funkcji złożonych w tych strukturach: teoria funkcji rekurencyjnych podejście logiczne - problemy obliczeniowe definiuje się jako formuły w języku pewnego systemu logicznego; obliczenie problemów jest możliwe, gdy potrafimy udowodnić te formuły: logika I rzędu z regułą rezolucji 15

16 start Algorytmy? stop 16

17 Pojęcie algorytmu Jednoznaczny, dobrze (krok po kroku) określony przepis mechanicznego rozwiązania dowolnego konkretnego zadania z pewnej klasy zadań. W rozwiązaniu stosuje się skończoną liczbę reguł postępowania (czyli wykonywania kroków prowadzących do rozwiązania). ax 2 + bx + c = 0 = b2-4ac x = (-b ± )/2a 17

18 Cechy algorytmu składa się z kroków, działa na pewnych danych wejściowych, wytwarza pewne dane wyjściowe, jest dobrze określony (reguły postępowania uwzględniają wszystkie przypadki, jakie mogą wystąpić podczas wykonywania algorytmu), jest skończony (obliczenia są wykonywane w skończonej liczbie kroków) lub cykliczny (np. działanie systemu operacyjnego) jest wykonywalny (każdy krok jest tak zdefiniowany, aby człowiek mógł go skutecznie wykonać dr hab. inż. Joanna w Józefowska, skończonym prof. PP czasie) 18

19 Maszyna Turinga 19

20 Maszyna Turinga Problem Hilberta: Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? Maszyna Turinga jest matematyczną idealizacją urządzenia wykonującego pewne (zdefiniowane w skończony sposób) obliczenia. 20

21 Maszyna Turinga (dodanie 1 do liczby zapisanej w systemie jedynkowym) zapisz 0 w prawo 0 1 zapisz 1 w prawo zapisz 1 w prawo stop

22 Maszyna Turinga (dodanie 1 do liczby zapisanej w systemie jedynkowym) 0 zapisz 0 w prawo

23 Maszyna Turinga (dodanie 1 do liczby zapisanej w systemie jedynkowym) 0 1 zapisz 0 w prawo zapisz 1 w prawo 1 23

24 Maszyna Turinga (dodanie 1 do liczby zapisanej w systemie jedynkowym) zapisz 0 w prawo zapisz 1 w prawo zapisz 1 w prawo 24

25 Maszyna Turinga (dodanie 1 do liczby zapisanej w systemie jedynkowym) zapisz 0 w prawo 0 1 zapisz 1 w prawo zapisz 1 w prawo stop

26 Maszyna Turinga Maszyna Turinga składa się z następujących elementów: skończonego alfabetu symboli skończonego zbioru stanów nieskończonej taśmy z zaznaczonymi kwadratami, z których każdy może zawierać pojedynczy symbol ruchomej głowicy odczytująco-zapisującej, która może wędrować wzdłuż taśmy przesuwając się na raz o jeden kwadrat diagramu przejść między stanami zawierającego instrukcje, które powodują, że zmiany następują przy każdym zatrzymaniu się 26

27 Deterministyczna jednotaśmowa maszyna Turinga taśma q 0 sterowanie głowica zapisującoodczytująca Instrukcja: (q, a, a,, q ) 27

28 Deterministyczna jednotaśmowa maszyna Turinga sterowanie taśma głowica zapisującoodczytująca T = Q, A, B, δ, q 0 Q = {q 0, q 1, q 2,..., q p } - skończony zbiór stanów q 0 - wyróżniony stan początkowy q y - wyróżniony stan końcowy ( tak ) q n - wyróżniony stan końcowy ( nie ) A - skończony alfabet symboli B A - wyróżniony symbol pusty δ- funkcja przejść (zbiór instrukcji) δ : (Q {q y, q n }) x A Q x A x { 1, 1} δ(q i, a j ) = (q m, a n, ) 28

29 Deterministyczna jednotaśmowa maszyna Turinga Mówimy, że DTM rozwiązuje problem decyzyjny π przy kodowaniu e, jeżeli zatrzymuje się dla wszystkich łańcuchów wejściowych i kończy obliczenia w stanie q y, dla wszystkich x(i), takich, że I Y i tylko dla nich. 29

30 Konfiguracja maszyny Turinga A k - alfabet złożony z k symboli (k>1) zdefiniujemy operację sklejania symboli alfabetu A k następująco: A k 0 = {ε} A k i = A k A k i-1, i>0 oznaczmy przez Α k = U A = * (słowo puste) i 0 i k 30

31 Przykład A 3 = {a, b, c} A 3 0 = {ε} A 1 3 = {a, b, c} A 2 3 = {aa, ab, ac, ba, bb, bc, ca, cb, cc} A 3 3 = {aaa, aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc}... 31

32 Konfiguracja maszyny Turinga Φ Ψ q 0 sterowanie (q, Φ, Ψ) konfiguracja początkowa (q 0, ε, Ψ} q Q Φ A k * Ψ A k *\{ε} 32

33 Konfiguracja maszyny Turinga Instrukcja (q j, a j, a k,, q k ) jest stosowalna do konfiguracji α = (q, Φ, Ψ) jeśli q = q j oraz Ψ = a j Ψ dla pewnego Ψ A k *. Konfiguracja końcowa - żadna instrukcja nie jest stosowalna. 33

34 Nastepstwo konfiguracji Φ α = (q, Φ, aψ ) Ψ a q 0 sterowanie (qaa Rq ) 34

35 Nastepstwo konfiguracji Φ Ψ a q 0 sterowanie β = (q, Φa, Ψ ) 35

36 Nastepstwo konfiguracji Φ α = (q, Φ c, aψ ) Ψ c a q 0 sterowanie (qaa Lq ) 36

37 Nastepstwo konfiguracji Φ Ψ c a q 0 sterowanie β = (q, Φ, ca Ψ ) 37

38 Nastepstwo konfiguracji Jeżeli α = (q, Φ, aψ ) nie jest konfiguracją końcową (qaa q ) jest instrukcją stosowalną do α to następnikiem konfiguracji α jest β: (1) jeżeli = R, to (a) jeżeli Ψ ε, to β = (q, Φa, Ψ ) (b) jeżeli Ψ = ε, to β = (q, Φa, B) (2) jeżeli = L (a) jeżeli Φ ε i Φ = Φ c, to β = (q, Φ, ca Ψ ) (b) jeżeli Φ = ε, to β = (q, ε, Ba Ψ ) 38

39 Następstwo konfiguracji α β (β jest następnikiem α) oznaczmy przez * zwrotne i przechodnie domknięcie relacji α * β wtedy i tylko wtedy gdy albo α = β istnieje skończony ciąg konfiguracji γ 1, γ 2,..., γ n, taki, że: γ 1 = α, γ n = β, γ i γ i+1 dla 1 i n 1 39

40 Funkcje definiowane przez maszynę Turinga Maszyna Turinga T definiuje rodzinę funkcji f T,n, (gdzie n jest liczbą argumentów) nad alfabetem A k-1 = A k \{B}. f ( * ) n * A k-1 k-1 T, n = A f T,n = {((x 1, x 2,..., x n ), delete (B, yz)) istnieje q Q, takie, że (q 0, ε, x 1 Bx 2 B...Bx n B) * (q, y, z) i (q, y, z) jest konfiguracją końcową} Funkcja delete(b, yz) jest funkcją usuwającą wszystkie wystąpienia symbolu B w słowie yz. 40

41 Przykład maszyny Turinga T = (Q, A 3, B, I, q 0 ) A 3 = {a, b, B} Q = {q 0, q 1, q 2 } I = {q 0 BBRq 0, q 0 aarq 1, q 0 bbrq 1, q 1 abrq 1, q 1 bbrq 1, q 1 BBRq 2 } b/b, R b/b, R q 0 q 1 q abab 2 a/a, R B/B, R B/B, R a/b, R abbb 41

42 Normalna maszyna Turinga Niech n 1 będzie liczbą całkowitą i niech T = (Q, A k, B, I, q 0 ) będzie maszyną Turinga. Maszyna Turinga nazywa się n-normalną, jeżeli istnieje stan q f Q spełniający warunek: dla każdej konfiguracji (q, Φ, Ψ), dla której istnieją x 1, x 2,..., x n (A k - {B})*, takie że (q 0, ε, x 1 Bx 2 B...Bx n B) * (q, Φ, Ψ) mamy: (1) q q f gdy (q, Φ, Ψ) nie jest konfiguracją końcową (2) q = q f, Φ {B}*, Ψ (A k - {B})* {B}* gdy (q, Φ, Ψ) jest konfiguracją końcową. 42

43 Normalna maszyna Turinga Zatem n-normalna maszyna Turinga obliczając wartość funkcji od n argumentów zatrzymuje się wtedy i tylko wtedy, gdy znajduje się w szczególnym stanie. Ponadto, wartość funkcji jest słowem nie zawierającym wewnątrz symbolu B, a głowica stoi nad pierwszym od lewej symbolem słowa. 43

44 Normalna maszyna Turinga TWIERDZENIE Dla dowolnej pary (T, n), gdzie T jest maszyną Turinga i n 1 jest liczbą całkowitą, można skonstruować maszynę Turinga P definiującą tę samą n-arną funkcję co T i będącą maszyną n-normalną. 44

45 Zadanie domowe Jaki jest wynik działania następującej maszyny Turinga dla ciągu wejściowego: ? Jaki algorytm realizuje ta maszyna? T = (Q, A 2, 0, I, q 0 ) A 2 = {0, 1} Q = {q 0, q 1, q 10, q 11, q 100, q 101, q 110, q 111, q 1000, q 1001, q 1010 } I = {q 0 00Rq 0, q 0 11Lq 1, q 1 01Rq 10, q 1 11Lq 1, q 10 00Rq 1010, q 10 10Rq 11, q 11 00Rq 100, q 11 11Rq 11, q Rq 1000, q Rq 101, q Lq 11, q Lq 110, q Lq 110, q Lq 1, q Lq 111, q Lq 1000, q Lq 1001, q Lq 1000, q Rq 10, q Lq 1, q STOPq 0, q Rq 1010 } 45

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki n r fi i= 1 n r fi i= 1 r n ( x) = f ( x) + K+ f ( x) Def r 1 r n ( x) = f ( x) K f ( x) Def r 1 1 Wykład cz. 2 dyżur: poniedziałek 9.30-10.30 p. 436 środa 13.30-14.30 p. 436 e-mail: joanna.jozefowska@cs.put

Bardziej szczegółowo

Elementy Teorii Obliczeń

Elementy Teorii Obliczeń Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych

Bardziej szczegółowo

Hierarchia Chomsky ego Maszyna Turinga

Hierarchia Chomsky ego Maszyna Turinga Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór

Bardziej szczegółowo

Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1

Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1 Odmiany maszyny Turinga 1 Uniwersalna maszyna Turinga Uniwersalna maszyna U nad alfabetem A k jest to maszyna definiująca funkcje: f U, n+1 = {((w(i 1, I 2,..., I n )),y) w - opis maszyny T za pomocą słowa,

Bardziej szczegółowo

O ALGORYTMACH I MASZYNACH TURINGA

O ALGORYTMACH I MASZYNACH TURINGA O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}

Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11} Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy

Bardziej szczegółowo

Struktura danych. Sposób uporządkowania informacji w komputerze.

Struktura danych. Sposób uporządkowania informacji w komputerze. Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 1

Języki formalne i automaty Ćwiczenia 1 Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...

Bardziej szczegółowo

Maszyna Turinga języki

Maszyna Turinga języki Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę

Bardziej szczegółowo

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia)

Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Rozwiązania około dwustu łatwych zadań z języków formalnych i złożoności obliczeniowej i być może jednego chyba trudnego (w trakcie tworzenia) Kamil Matuszewski 20 lutego 2017 22 lutego 2017 Zadania, które

Bardziej szczegółowo

Efektywność Procedur Obliczeniowych. wykład 5

Efektywność Procedur Obliczeniowych. wykład 5 Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie

Bardziej szczegółowo

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

Dialog z przyroda musi byc prowadzony w jezyku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania.

Dialog z przyroda musi byc prowadzony w jezyku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. Wydział Fizyki Uniwersytetu Warszawskiego a. Tw. Gödla kontra Matrix b. Moim zdaniem Rys. źródło: Internet W jaki sposób policzyć ilość operacji logicznych w mózgu? Mózg a komputer "When will computer

Bardziej szczegółowo

PROBLEMY NIEROZSTRZYGALNE

PROBLEMY NIEROZSTRZYGALNE PROBLEMY NIEROZSTRZYGALNE Zestaw 1: T Przykład - problem domina T Czy podanym zestawem kafelków można pokryć dowolny płaski obszar zachowując odpowiedniość kolorów na styku kafelków? (dysponujemy nieograniczoną

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki 1 Wykład cz. 2 dyżur: środa 9.00-10.00 czwartek 10.00-11.00 ul. Wieniawskiego 17/19, pok.10 e-mail: joanna.jozefowska@cs.put poznan.pl materiały do wykładów: http://www.cs.put.poznan.pl/jjozefowska/ hasło:

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka

Bardziej szczegółowo

Jaki język zrozumie automat?

Jaki język zrozumie automat? Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy

Bardziej szczegółowo

MASZYNA TURINGA UPRASZCZANIE DANYCH

MASZYNA TURINGA UPRASZCZANIE DANYCH MASZYNA TURINGA Maszyna Turinga jest prostym urządzeniem algorytmicznym, uderzająco prymitywnym w porównaniu z dzisiejszymi komputerami i językami programowania, a jednak na tyle silnym, że pozwala na

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)

Bardziej szczegółowo

Jak należy się spodziewać, mamy. Zauważmy jednak, że nie zachodzi równość

Jak należy się spodziewać, mamy. Zauważmy jednak, że nie zachodzi równość 11. Wykład 11: Rachunek λ. Obliczenia i obliczalność. Rachunek λ jest systemem pozornie bardzo prostym. Abstrakcja i aplikacja wydają się trywialnymi operacjami, i może się zdawać, że niczego ciekawego

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 3

Języki formalne i automaty Ćwiczenia 3 Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania

Bardziej szczegółowo

Równowano modeli oblicze

Równowano modeli oblicze Równowano modeli oblicze Interpretacja rachunku 1 2 Twierdzenie Gödla o pełnoci Interpretacja jzyka FOL W 1931 K. Gödel udowodnił, e Jeeli formuła jest prawdziwa, to istnieje dowód tej formuły. Problem

Bardziej szczegółowo

3.4. Przekształcenia gramatyk bezkontekstowych

3.4. Przekształcenia gramatyk bezkontekstowych 3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce

Bardziej szczegółowo

Maszyny Turinga. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM

Maszyny Turinga. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM Maszyny Turinga Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Maszyny Turinga Funkcje rekurencyjne 1 / 29 Wprowadzenie

Bardziej szczegółowo

O ROLI TEZY CHURCHA W DOWODZIE PEWNEGO TWIERDZENIA

O ROLI TEZY CHURCHA W DOWODZIE PEWNEGO TWIERDZENIA ARTYKUŁY ZAGADNIENIA FILOZOFICZNE W NAUCE XXV / 1999, s. 76 81 Adam OLSZEWSKI O ROLI TEZY CHURCHA W DOWODZIE PEWNEGO TWIERDZENIA Zadaniem niniejszego artykułu jest zdanie sprawy z matematycznej roli Tezy

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Rekurencyjna przeliczalność

Rekurencyjna przeliczalność Rekurencyjna przeliczalność Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Rekurencyjna przeliczalność Funkcje rekurencyjne

Bardziej szczegółowo

Maszyna Turinga (Algorytmy Część III)

Maszyna Turinga (Algorytmy Część III) Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych

Bardziej szczegółowo

Początki informatyki teoretycznej. Paweł Cieśla

Początki informatyki teoretycznej. Paweł Cieśla Początki informatyki teoretycznej Paweł Cieśla Wstęp Przykładowe zastosowanie dzisiejszych komputerów: edytowanie tekstów, dźwięku, grafiki odbiór telewizji gromadzenie informacji komunikacja Komputery

Bardziej szczegółowo

Definicja: zmiennych zdaniowych spójnikach zdaniowych:

Definicja: zmiennych zdaniowych spójnikach zdaniowych: Definicja: Alfabet języka logiki zdań składa się z nieskończonego (najczęściej zakładamy: przeliczalnego) zbioru P, o którym myślimy jak o zbiorze zmiennych zdaniowych i skończonego zbioru symboli, o których

Bardziej szczegółowo

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze

Bardziej szczegółowo

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia

Informacja w perspektywie obliczeniowej. Informacje, liczby i obliczenia Informacja w perspektywie obliczeniowej Informacje, liczby i obliczenia Cztery punkty odniesienia (dla pojęcia informacji) ŚWIAT ontologia fizyka UMYSŁ psychologia epistemologia JĘZYK lingwistyka nauki

Bardziej szczegółowo

KONKURS MATEMATYCZNY KOMA 2018

KONKURS MATEMATYCZNY KOMA 2018 ELIMINACJE SZKOLNE RACHUNEK LAMBDA NOTATKI Z WYKŁADU - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14

Logika i teoria mnogości Wykład 14 Teoria rekursji Teoria rekursji to dział logiki matematycznej zapoczątkowany w latach trzydziestych XX w. Inicjatorzy tej dziedziny to: Alan Turing i Stephen Kleene. Teoria rekursji bada obiekty (np. funkcje,

Bardziej szczegółowo

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych.

1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Elementy logiki i teorii zbiorów. 1. Wstęp do logiki. Matematyka jest nauką dedukcyjną. Nowe pojęcia definiujemy za pomocą pojęć pierwotnych lub pojęć uprzednio wprowadzonych. Pojęcia pierwotne to najprostsze

Bardziej szczegółowo

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ

O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ O LICZBACH NIEOBLICZALNYCH I ICH ZWIĄZKACH Z INFORMATYKĄ Jakie obiekty matematyczne nazywa się nieobliczalnymi? Jakie obiekty matematyczne nazywa się nieobliczalnymi? Najczęściej: a) liczby b) funkcje

Bardziej szczegółowo

Złożoność obliczeniowa. wykład 1

Złożoność obliczeniowa. wykład 1 Złożoność obliczeniowa wykład 1 Dwa wykłady: wtorek / środa różnice niewielkie Sprawy organizacyjne wtorek: trochę szybciej, parę dodatkowych rzeczy dedykowana grupa ćw. M. Pilipczuka - ale śmiało mogą

Bardziej szczegółowo

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski

Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki

Bardziej szczegółowo

Maszyna Turinga, ang. Turing Machine (TM)

Maszyna Turinga, ang. Turing Machine (TM) Maszyna Turinga, ang. Turing Machine (TM) Alan Turing wybitny angielski matematyk, logik i kryptolog, jeden z najważniejszych twórców informatyki teoretycznej, któremu zawdzięczamy pojęcie maszyny Turinga

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń

Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 6. Prof. dr hab. inż. Jan Magott Problemy łatwe i trudne Problemy łatwe to problemy rozwiązywalne w czasie wielomianowym. Problemy trudne to takie, których

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga

Bardziej szczegółowo

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B:

Część wspólna (przekrój) A B składa się z wszystkich elementów, które należą jednocześnie do zbioru A i do zbioru B: Zbiory 1 Rozważmy dowolne dwa zbiory A i B. Suma A B składa się z wszystkich elementów, które należą do zbioru A lub do zbioru B: (x A B) (x A x B). Część wspólna (przekrój) A B składa się z wszystkich

Bardziej szczegółowo

Zasady krytycznego myślenia (1)

Zasady krytycznego myślenia (1) Zasady krytycznego myślenia (1) Andrzej Kisielewicz Wydział Matematyki i Informatyki 2017 Przedmiot wykładu krytyczne myślenie vs logika praktyczna (vs logika formalna) myślenie jasne, bezstronne, oparte

Bardziej szczegółowo

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017

Logika Stosowana. Wykład 1 - Logika zdaniowa. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2016/2017 Logika Stosowana Wykład 1 - Logika zdaniowa Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2016/2017 Marcin Szczuka (MIMUW) Logika Stosowana 2017 1 / 30 Plan wykładu 1 Język

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 9

Języki formalne i automaty Ćwiczenia 9 Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.

Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/

Bardziej szczegółowo

Podstawy Informatyki Maszyna Turinga

Podstawy Informatyki Maszyna Turinga Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga 2 3 4 Czym jest Programowanie maszyny Turinga Teza Churcha-Turinga,

Bardziej szczegółowo

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d

Matematyka Dyskretna 2/2008 rozwiązania. x 2 = 5x 6 (1) s 1 = Aα 1 + Bβ 1. A + B = c 2 A + 3 B = d C. Bagiński Materiały dydaktyczne 1 Matematyka Dyskretna /008 rozwiązania 1. W każdym z następujących przypadków podać jawny wzór na s n i udowodnić indukcyjnie jego poprawność: (a) s 0 3, s 1 6, oraz

Bardziej szczegółowo

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S.

- Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. 1 Zbiór potęgowy - Dla danego zbioru S zbiór wszystkich jego podzbiorów oznaczany symbolem 2 S. - Dowolny podzbiór R zbioru 2 S nazywa się rodziną zbiorów względem S. - Jeśli S jest n-elementowym zbiorem,

Bardziej szczegółowo

iks plus trzy dzielone na dwa iks razy iks plus pięć

iks plus trzy dzielone na dwa iks razy iks plus pięć ELIMINACJE SZKOLNE RACHUNEK LAMBDA NOTATKI Z WYKŁADU - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Bardziej szczegółowo

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne.

Algorytm. Słowo algorytm pochodzi od perskiego matematyka Mohammed ibn Musa al-kowarizimi (Algorismus - łacina) z IX w. ne. Algorytm znaczenie informatyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Efektywna analiza składniowa GBK

Efektywna analiza składniowa GBK TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji

Bardziej szczegółowo

JAO - Wprowadzenie do Gramatyk bezkontekstowych

JAO - Wprowadzenie do Gramatyk bezkontekstowych JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa

Bardziej szczegółowo

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów

Bardziej szczegółowo

O pewnych związkach teorii modeli z teorią reprezentacji

O pewnych związkach teorii modeli z teorią reprezentacji O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej

Bardziej szczegółowo

Symbol, alfabet, łańcuch

Symbol, alfabet, łańcuch Łańcuchy i zbiory łańcuchów Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Symbol, alfabet, łańcuch Symbol Symbol jest to pojęcie niedefiniowane (synonimy: znak, litera)

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 7

Języki formalne i automaty Ćwiczenia 7 Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia

Bardziej szczegółowo

Metoda Tablic Semantycznych

Metoda Tablic Semantycznych Procedura Plan Reguły Algorytm Logika obliczeniowa Instytut Informatyki Plan Procedura Reguły 1 Procedura decyzyjna Logiczna równoważność formuł Logiczna konsekwencja Procedura decyzyjna 2 Reguły α, β,

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Turing i jego maszyny

Turing i jego maszyny Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan

Bardziej szczegółowo

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1

Elementy rachunku lambda. dr hab. inż. Joanna Józefowska, prof. PP 1 Elementy rachunku lambda λ 1 Notacja λ x 3x + 7 3x + 7 jest różniczkowalna 3x + 7 jest mniejsze od 2 (2,3) 5 f(2, 3) = 2 + 3 g(2) = 2 + 3 λx(3x + 7) 3x + 7 λx λy(x + y) = λxy(x + y) λx(x + 3) 2 Rachunek

Bardziej szczegółowo

Dowód pierwszego twierdzenia Gödela o. Kołmogorowa

Dowód pierwszego twierdzenia Gödela o. Kołmogorowa Dowód pierwszego twierdzenia Gödela o niezupełności arytmetyki oparty o złożoność Kołmogorowa Grzegorz Gutowski SMP II rok opiekun: dr inż. Jerzy Martyna II UJ 1 1 Wstęp Pierwsze twierdzenie o niezupełności

Bardziej szczegółowo

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW

ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW MASZYNY O DOSTEPIE SWOBODNYM (RAM) Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 INSTRUKCJE MASZYNY RAM Instrukcja Argument Znaczenie READ

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 4: Podzielność liczb całkowitych Gniewomir Sarbicki Dzielenie całkowitoliczbowe Twierdzenie: Dla każdej pary liczb całkowitych (a, b) istnieje dokładnie jedna para liczb całkowitych

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

O geometrii semialgebraicznej

O geometrii semialgebraicznej Inauguracja roku akademickiego 2018/2019 na Wydziale Matematyki i Informatyki Uniwersytetu Łódzkiego O geometrii semialgebraicznej Stanisław Spodzieja Łódź, 28 września 2018 Wstęp Rozwiązywanie równań

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym.

Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym. Wyrażenie nawiasowe Wyrażeniem nawiasowym nazywamy dowolny skończony ciąg nawiasów. Każdemu nawiasowi otwierającemu odpowiada dokładnie jeden nawias zamykający. Poprawne wyrażenie nawiasowe definiujemy

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ

OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ OBLICZALNOŚĆ I NIEOBLICZALNOŚĆ Dwa konteksty obliczalności OBLICZALNE i NIEOBLICZALNE problemy (kontekst informatyczny) liczby (kontekst matematyczny) Problem nieobliczalny jest to problem nierozwiązywalny

Bardziej szczegółowo

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne

Logika i teoria mnogości Wykład 14 1. Sformalizowane teorie matematyczne Logika i teoria mnogości Wykład 14 1 Sformalizowane teorie matematyczne W początkowym okresie rozwoju teoria mnogości budowana była w oparciu na intuicyjnym pojęciu zbioru. Operowano swobodnie pojęciem

Bardziej szczegółowo

Hierarchia Chomsky ego

Hierarchia Chomsky ego Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1.

Monoidy wolne. alfabetem. słowem długością słowa monoidem wolnym z alfabetem Twierdzenie 1. 3. Wykłady 3 i 4: Języki i systemy dedukcyjne. Klasyczny rachunek zdań. 3.1. Monoidy wolne. Niech X będzie zbiorem niepustym. Zbiór ten będziemy nazywać alfabetem. Skończony ciąg elementów alfabetu X będziemy

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 2

Języki formalne i automaty Ćwiczenia 2 Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 4

Języki formalne i automaty Ćwiczenia 4 Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji

Bardziej szczegółowo

Algorytmy sztucznej inteligencji

Algorytmy sztucznej inteligencji www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego

Bardziej szczegółowo

Struktury formalne, czyli elementy Teorii Modeli

Struktury formalne, czyli elementy Teorii Modeli Struktury formalne, czyli elementy Teorii Modeli Szymon Wróbel, notatki z wykładu dra Szymona Żeberskiego semestr zimowy 2016/17 1 Język 1.1 Sygnatura językowa Sygnatura językowa: L = ({f i } i I, {P j

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100

Matematyka dyskretna. Andrzej Łachwa, UJ, 2019 Zadania 1-100 Matematyka dyskretna Andrzej Łachwa, UJ, 2019 andrzej.lachwa@uj.edu.pl Zadania 1-100 Udowodnij, że A (B C) = (A B) (A C) za pomocą diagramów Venna. Udowodnij formalnie, że (A B i A C) A B C oraz że (A

Bardziej szczegółowo

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel

Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Metody dowodzenia twierdzeń i automatyzacja rozumowań Na początek: teoria dowodu, Hilbert, Gödel Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@.edu.pl OSTRZEŻENIE Niniejszy plik nie zawiera

Bardziej szczegółowo

LOGIKA Klasyczny Rachunek Zdań

LOGIKA Klasyczny Rachunek Zdań LOGIKA Klasyczny Rachunek Zdań Robert Trypuz trypuz@kul.pl 5 listopada 2013 Robert Trypuz (trypuz@kul.pl) Klasyczny Rachunek Zdań 5 listopada 2013 1 / 24 PLAN WYKŁADU 1 Alfabet i formuła KRZ 2 Zrozumieć

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo