CZY STAŁA STRUKTURY SUBTELNEJ JEST WŁASNOŚCIĄ PRZESTRZENI?

Wielkość: px
Rozpocząć pokaz od strony:

Download "CZY STAŁA STRUKTURY SUBTELNEJ JEST WŁASNOŚCIĄ PRZESTRZENI?"

Transkrypt

1 CZY STAŁA STRUKTURY SUBTELNEJ JEST WŁASNOŚCIĄ PRZESTRZENI? O KWANTOWEJ TEORII LICZBY Łukasz Bratek Zakład Fizyki Matematycznej i Astrofizyki Teoretycznej Instytut Fizyki Jądrowej PAN Seminarium Instytutowe 25 IV 2013

2 1 stała struktury subtelnej i moment magnetyczny elektronu 2 paradoks klasyczności ładunku elementarnego i jego rozwiązanie 3 problem (nie)statyczności pola Coulomba 4 kwantowa teoria ładunku

3 Elektron i proton rozmiar protonu i elektronu (promień ładunkowy) z częstości przejść w atomie wodoru oraz z rozpraszania elektronu na protonie r p = (51) [fm] ( ) r e < [fm] r p/r e > 2200 (xpromień klasyczny elektronu α 2 a 0 = (27)[fm]) stosunek masy protonu do masy elektronu: (75) ( ) MATEMATYCZNIE RÓWNY SPIN fakt ten wyjaśnia teoria reprezentacji grupy obrotów euklidesowych [G (1), G (2) ] = i ħ G (3), [G (2), G (3) ] = i ħ G (1), [G (3), G (1) ] = i ħ G (2) ( G 2 ) (1) + G2 (2) + G2 (3) j, m = j(j + 1) ħ 2 j, m, G (3) j, m = m ħ, G ± = G (1) ± ig (2) : j = n ħ, n = 0, 1, 2,..., m = j, j + 1,..., j 1, j 2 j = ħ : G (1) = ħ 2 2 [ 1 1/2, +1/2 ˆ= 0 ( ] [ 0, 1/2, 1/2 ˆ= 1 ), G (2) = ħ ( 0 i 2 i 0 ] ), G (3) = ħ ( ) ( ) 2010 CODATA recommended values, Reviews Of Modern Physics, Vol. 84, October December 2012

4 Elektron i proton równość ładunku elektrycznego Q p/q e 1 < Vernon W. Hughes (1957) Phys. Rev. 105, Experimental Limit for the Electron-Proton Charge Difference największa koincydencja numeryczna w Naturze. Fakt ten nie posiada ogólnie przyjętego wyjaśnienia. ta niezwykła degeneracja może być pochodzenia kinematycznego (podobnie jak degeneracja spinu) Próba zrozumienia znacznie mniejszej koincydencji numerycznej doprowadziła do powstania Ogólnej Teorii Względności: równość masy inercyjnej i grawitacyjnej: m i = m g(1 ± 10 8 ) (czasy Einsteina), m i = m g(1 ± ) (obecnie) R µν 1 8π G R gµν + Λgµν = 2 c 4 Tµν 0 = δ c3 16π G R + Λ + L gd 4 x Hilbert 1915

5 Stała struktury subtelnej (1916) Sommerfeld - wprowadza stałą α (poprawki relatywistyczne do linii spektralnych modelu Bohra), (v e = αc) E n = w [ ( n α2 1 n k 3 )], α = e2 4n ħc fundamentalna miara siły oddziaływań elektromagnetycznych numeryczna wartość α wpływa na dokładnośc wyznaczenia wielu innych stałych (np moment magnetyczny miuonu) Obecnie najdokładniejsza wartość to α 1 = (51) z porównania teoretycznego rozwinięcia anomalnego momentu magnetycznego elektronu z wartoścą zmierzoną na elektronie w pułapce Penninga Dlaczego e2 ħc = ? Feynman o liczbie α: all good theoretical physicists put this number up on their wall and worry about it [...] one of the greatest damn mysteries of physics [...] a magic number that comes to us with no understanding by man

6 Stała struktury subtelnej Problem obliczalności liczby α W przypadku liczby π można podać wiele, na pierwszy rzut oka różnych, jej definicji. Najbardziej znany wzór na π w postaci szeregu naprzemiennego otrzymamy z tożsamości 2dx π = cosh (x) = 4 e x dx 1 + e 2x 0 0 co daje π 4 = π = 4 ( 1) k e (2k+1)x dx, k=0 k=0 0 ( 1) k 2k + 1 = liczba π jako klasa równoważności wszystkich funkcji analitycznych w otoczeniu punktu z 0: 1 f(z) π = dz 2 i f(z o) C z z o gdzie C jest dowolnym konturem zamkniętym okalającym z o i zawartym w tym otoczeniu

7 Historia momentu magnetycznego elektronu (1922) Stern i Gerlach - eksperymentalne potwierdzenie hipotezy Bohra i Sommerfelda o kwantyzacji kierunku momentu pędu atomu (1925) Goudsmit i Uhlenbeck - postulat o wewnętrznym momencie pędu elektronu (+ stowarzyszony dipolowy moment magnetyczny) µ = g e e 2 m e s µ e = g e eħ 4 m e (1927) Pauli - równanie Pauliego-Schrödingera (spin + pole elektromagnetyczne) [ ] ψu ψ =, eħ ( ) ( ) ( ) i 1 0 ψ d 2mc σ B ψ, σ x =, σ 1 0 y =, σ i 0 z = 0 1 (1928) Dirac - relatywistyczna teoria elektronu (g = 2)

8 Moment magntyczny elektronu Struktura subtelna poziomów energetycznych w atomie wodoru Poziomy energetyczne (równanie Diraca) E n,j m ec 2 = 1 1 α n j (j+ 1 2 ) 2 α 2 E n,j,l (1 m ec 2 = α2 2 n 2 + α2 2 n 2 [ 4 n 3 j 3/2 2 j + 1 ] + O ( α 4) + O njl ( QED α 3 )) n = 1, 2,..., l = 0, 1, dots, n 1, n, j = l ± 1 2, l > 0

9 Moment magntyczny elektronu wg. P.A.M. Diraca P. A. M. Dirac (1928), The Quantum Theory of the Electron Proc. R. Soc. Lond. A 117, Fundamentalne równanie falowe relatywistycznej teorii elektronu (i / ec /A mc ) Ψ = 0 /a a µγ µ Związek z mechaniką hamiltonowską i µ p µ {mc + H/c, p}, A µ {Φ, A} H = eφ 1 2mc 2 (H eφ) m Związek z równaniem Kleina-Gordona kwantowego odpowiednika równań ruchu dla punktowej cząstki naładowanej ( i / e /A c + mc) ( i / e /A c mc) Ψ = 0 [ (i e c A)2 m 2 c 2] Ψ = e c Fµν i 4 [γµ, γ ν ] Ψ ( p e c A ) 2 + e 2mc Fµν i 4 [ γ µ, γ ν] e i [ c Fµν γ µ, γ ν] = e [ σ i B c σ ] [ ] E B i 4 c c σ, σ B = z B x ib y E σ B B x + iby B z -moment magnetyczny i elektryczny moment dipolowy granica nierelatywistyczna w polu magnetycznym (równanie Pauliego (1927)) H nr = 1 ( p e ) 2 A 2m c e 2mc σ B, µ = e mc 2 σ,

10 Anomalny moment magntyczny elektronu: poprawki QED Anomalia momentu magnetycznego a e = ge 2, a e Dirac = 0 2 najprecyzyjniej zmierzona i najlepiej zbadana teoretycznie wielkość w fizyce cząstek Poprawki radiacyjne od członu oddziaływania e ψγ µ ψa µ Γ µ = γ µ F E (q 2 ) + i σµν q ν m e F M (q 2 ) q = p out p in (1948) Schwinger - poprawka jednopętlowa do anomalnego momentu magnetycznego od wirtualnego oddziaływania foton-elektron: a QED e = α 2π a th e = a QED e O(α 1 ) + a weak e O(α 3 ) + a hadr e O(α 3 ) a th e jest niemalże całkowicie efektem QED, a QED e - to składnik dominujący, a th mało czuły na efekty w sektorze słabym i silnym a także spoza SM

11 Poprawki QED II i IV rzędu do anomalnego momentu magnetycznego elektronu

12 Anomalny moment magntyczny elektronu: poprawki QED a QED = 1 ( α ) 2 π Schwinger (1948) + [ π (6 ln 2 1) ] ( α ) 2 4 ζ(3) π Karplus&Kroll (1950), Sommerfield (1957), Petermann (1957) + ( α ) grafów ( α ) grafy ( α ) (35) + 0.0(4.6)... π π π Aoyama, Kinoshita, Nio, Hayakawa ( ) a O(α 2 ) + ( ) me, me m µ m τ

13 Anomalny moment magntyczny elektronu: pomiary Pułapka Penninga stosunek h m Rb (atom 87 Rb) a exp e = (28) α 1 = (51) (r e < [m]) D. Hanneke, S. Fogwell Hoogerheide, and G. Gabrielse Phys.Rev.A 83, (2011) a e = (84) α 1 exp = (91) (r e < [m]) R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, Phys. Rev. Lett.106, (2011).

14 Ładunek elementarny Ładunek elementarny stały parametr w modelu standardowym cząstek Ładunek elektryczny jest zjawiskiem o zerowej częstości Q = 1 E d S, R ω 0 4π S 2 (zasada nieoznaczoności Heisenberga) w granicy ω 0 prawa fizyki kwantowej stają się klasyczne: dσ dω = u ω = ħω3 π 2 c 3 1 exp ħ ω k T 1 rozkład Plancka ω 2 k T π 2 c 3 rozkład Rayleigha Jeansa χ 1 =1+ ħ ω me c2 (1 cos θ) α 2 r 2 ( ) c 2 χ2 χ + χ cos 2 θ rozpraszanie Comptona, Klein Nishina (1929)) r2 ( ) e 1 + cos 2 θ 2 Ładunek elektryczny jest skwantowany w sposób uniwersalny (fakt obserwacyjny) Paradoks: pole Coulomba klasyczny obiekt o skwantowanej amplitudzie

15 Pole statyczne jest klasyczne V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii (1980) QUANTUM ELECTRODYNAMICS, (I ed. 1971) Warunek quasi-klasyczności pola elektromagnetycznego (BLP) Pole elektromagnetyczne uśredniowane po interwale czasowym t może być uważane za klasyczne gdy ( t) 2 ħc E 2 c 2 Wniosek (BLP) Wystarczająco słabe pole zmienne nie jest quasi-klasyczne. Pole statyczne jest zawsze klasyczne! średniowanie pola E w interwale czasowym t fourierowski rozkład E: ( e iωt ) w E istotne tylko oscylatory o częstości ω t 1 wystarczy by liczby kwantowe tych oscylatorów były duże gęstość oscylatorów o częstościach 0 < ω < ( t) 1 jest rzędu (ω/c) 3 (c t) 3 gęstość energii pola E 2 = E 2 liczba fotonów o częstości ω: N ω E 2 (ħω)(ω/c) 3 dla quasistacjonarności N ω 1 E 2 ħc c 2 ( t) 2

16 Rozwiązanie paradoksu klasyczności pola Coulomba Literatura: A.Staruszkiewicz (1998) konkluzja BLP wydaje się słuszna (np. model Diraca atomu wodoru) ukazuje ona brak koherencji w rozumieniu zjawiska kwantyzacji ładunku elementarnego (analogia do: orbity klasyczne o skwantowanej wielkości) jeśli konkluzja BLP jest słuszna to nie dowiemy się dlaczego α = 1/ Ograniczenie na t - jedyny sposób uniknięcia konkluzji BLP Brehmstrahlung (o zerowej częstości) A µ(x) lim λ Aµ(λ x) λ transf.gervais Zwanziger { x µ uµ s, s < 0 (s) = w µ s, s > 0 [ ] uµ A µ(x) = Q Θ( xx) r(u) wµ r(w) { 0, ξ < 0 Θ(ξ) = r(u) = (ux) 1, ξ > 0 2 (uu)(xx) de Sitter: c 2 t 2 x 2 y 2 z 2 = 1 (R = x 2 + y 2 + z 2 ) promieniowanie o zerowej częstości występuje w zewnętrzu stożka R < c t < R ( t) 2 E 2 ħc c 2 ( 2R c )2 Q R 2 ħc c 2 Q 1 4 e ħc e 2 Q 1 4 α e 2.93e Konkluzja: Ładunek elektryczny jest obiektem klasycznym gdy jest znacznie większy niż trzy ładunki elementarne Q 3e. Ładunek elementarny jest obiektem kwantowym.

17 O (nie)statyczności pola Coulomba Literatura: A.Staruszkiewicz (2002) obiektem fundamentalnym w elektrodynamice jest potencjał wektorowy A µ symetrią fundamentalną w elektrodynamice jest symetria cechowania A µ A µ + µφ pojęcie statyczności w sensie pochodnej Liego nie jest gauge-inwariantne L ξ η ν = [ξ, η] ν L ξ η ν = ξ µ µη ν η µ µξ ν [ x, y]f = x yf y xf = 0f e r = x x + y y x2 + y 2 L ξ η ν = ξ µ µη ν + η µ νξ µ v ν νa µ(u) = e uµ r 3 (u) xu xv e φ = y x + x y [e r, e φ ] f = 0 uu uv L ua(u) = 0 L ξ A ν = ξ µ µa ν + A µ νξ µ = ξ µ µa ν νa µξ µ + ν ( Aµξ µ) L ξ A ν ν ( Aµξ µ) = ξ µ F µν L ξ Aν ξµ F µν L (xu) uν (uu) xν uaν(u) = e r 3 (u) ˆ= {0, E} Konkluzja: jeśli pojęcie statyczności ma być gauge-inwariantne to Pole Coulomba w układzie spoczynkowym elektronu nie jest statyczne!

18 Składnik ruchomy pola Coulomba Q 0 w przestrzennej nieskończoności A µ jest jednorodne stopnia 1 A µ(λ x) = λ 1 A µ(x), xx, λ > 0 twierdzenie Eulera o funkcjach jednorodnych stopnia n f(λx) = λ n f(x) x µ µf = nf, x ν νa µ = A µ x ν F µν = x ν µa ν x ν νa µ = A µ = µ (x ν A ν) δ ν µa ν + A µ całe pole zawiera się w funkcji x µ A µ (inna niezależna funkcja, zwana magnetyczną, wprowadza ujemny znak do członu kinetycznego w całce działania, odrzucenie jej nie wpływa na teorię ładunku) x µ A µ jest gauge-inwariantne gdy n = 0: x µ µf = 0 dla pola Coulomba: x µ A µ = Q ux r(u) Q t r u x µ A µ jest gauge-inwariantną ruchomą komponentą pola Coulomba

19 Kwantowa teoria ładunku elektrycznego Literatura: A.Staruszkiewicz (1989) przestrzenna nieskończoność jest naturalną areną dla kwantowej teorii ładunku elektrycznego 1) ograniczenie na t ładunek elektryczny obiektem kwantowym 2) identyfikacja ruchomej komponenty pola Coulomba istnieje ogólna relacja między gęstoscią ładunku ρ oraz fazą S źródła pola poddanego drugiej kwantyzacji ρ jest pędem kanonicznie sprzężonym z S/e j µ = L(eA S) = e L(eA S) ρ j A 0 = e L µ ( µs) ( 0 S) [ρ(y), S(x)/e] = iδ 3 ( x y) x 0 =y0 [Q, S(x)] = i e w nieskończoności przestrzennej tylko jeden kandydat (x µ A µ) do konstrukcji fazy zmiennej kanonicznie sprzężonej z calkowitym ładunkiem jest to uniwersalność kwantyzacji ładunku (reszta informacji wytłumiona przez masy masywne ) exp (mr) r - wszystkie cząstki naładowane są

20 Kwantowa teoria ładunku elektrycznego Teoria kwantowa fazy i ładunku A.Staruszkiewicz (1989) Ann. Phys. (New York) 190, 354 [Q, S(x)] = i e S(x) = e x µ A µ (x) dla skończonych x jest to twierdzenie. Załada się, że obowiązuje ono również w granicy xx hipoteza struktura teorii zależy od numerycznej wartości liczby α teoria przewiduje krytyczne spektrum dla α z gęstości prawdopodobieństw pewnych obserwabli lub ich elementow macierzowych w kwantowym polu Coulomba: np. α π = 1 1 2n 2, 4n 2 teoria ustala związek między parametrem numerującym reprezentacje grupy Lorentza a stałą struktury subtelnej 1 2 MµνMµν = α π ( 2 α ) < 1 π Jeśli ta teoria jest poprawna, wówczas α jest własnością czasoprzestrzeni (podobnie jak π)

21 Literatura praca główna, zawierająca sformułowanie kwantowej teorii ładunku A. Staruszkiewicz (1989) Ann. Phys. (New York) 190, 354 QUANTUM MECHANICS OF PHASE AND CHARGE AND QUANTIZATION OF THE COULOMB FIELD wybrane wykłady i teksty popularne dotyczące teorii A. Staruszkiewicz (1997) Banach Center Publications, Vol. 41, 221 ON THE QUANTAL NATURE OF THE COULOMB FIELD (zawiera argument przeciw istnieniu monopoli magnetycznych) A. Staruszkiewicz (1998) QUANTUM MECHANICS OF THE ELECTRIC CHARGE Acta Phys.Polon. B29, 4, (zawiera rozwiązanie paradoksu związanego z klasycznością pola Coulomba i kwantyzacją jego amplitudy) A. Staruszkiewicz (2002) Acta Phys.Polon. B PHYSICS OF THE ELECTRIC CHARGE (m.in. porusza zagadnienie gauge-inwariantności pojęcia statyczności pola elektromagnetycznego)

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Fizyka 3.3 WYKŁAD II

Fizyka 3.3 WYKŁAD II Fizyka 3.3 WYKŁAD II Promieniowanie elektromagnetyczne Dualizm korpuskularno-falowy światła Fala elektromagnetyczna Strumień fotonów o energii E F : E F = hc λ c = 3 10 8 m/s h = 6. 63 10 34 J s Światło

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność)

Salam,Weinberg (W/Z) t Hooft, Veltman 1999 (renomalizowalność( renomalizowalność) Teoria cząstek elementarnych 23.IV.08 1948 nowa faza mechaniki kwantowej precyzyjne pomiary wymagały precyzyjnych obliczeń metoda Feynmana Diagramy Feynmana i reguły Feynmana dziś uniwersalne narzędzie

Bardziej szczegółowo

17 Naturalne jednostki w fizyce atomowej

17 Naturalne jednostki w fizyce atomowej 7 Naturalne jednostki w fizyce atomowej W systemie CGS wszystkie wielkości fizyczne wyrażane są jako potęgi trzech fundamentalnych jednostek:. długości (l) cm,. masy (m) g, 3. czasu (t) s. Wymiary innych

Bardziej szczegółowo

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg

Mechanika kwantowa. Erwin Schrödinger ( ) Werner Heisenberg Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976 Falowe równanie ruchu (uproszczenie: przypadek jednowymiarowy) Dla fotonów Dla cząstek Równanie Schrödingera y x = 1 c y t y(

Bardziej szczegółowo

Wstęp do Modelu Standardowego

Wstęp do Modelu Standardowego Wstęp do Modelu Standardowego Plan Wstęp do QFT (tym razem trochę równań ) Funkcje falowe a pola Lagranżjan revisited Kilka przykładów Podsumowanie Tomasz Szumlak AGH-UST Wydział Fizyki i Informatyki Stosowanej

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić

Bardziej szczegółowo

WYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa

WYKŁAD Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa Wszechświat cząstek elementarnych WYKŁAD 10 29.04 29.04.2009.2009 1 Prawdopodobieństwo procesów dla bardzo dużych energii, konieczność istnienia cząstki Higgsa Cząstki fundamentalne w Modelu Standardowym

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych

II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych r. akad. 004/005 II.5 Sprzężenie spin-orbita - oddziaływanie orbitalnych i spinowych momentów magnetycznych Sprzężenie spin - orbita jest drugim, po efektach relatywistycznych, źródłem rozszczepienia subtelnego

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3)

VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) L= L =mvr (VIII.1.1a) r v. r=v (VIII.1.3) VIII. VIII.1. ORBITALNY MOMENT MAGNETYCZNY ELEKTRONU, L= r p (VIII.1.1) p=m v (VIII.1.2) Z (VIII.1.1) i (VIII.1.2) wynika (VIII.1.1a): L= L =mvr (VIII.1.1a) r v r=v (VIII.1.3) Z zależności (VIII.1.1a)

Bardziej szczegółowo

Zadania z mechaniki kwantowej

Zadania z mechaniki kwantowej Zadania z mechaniki kwantowej Gabriel Wlazłowski 13 maja 2016 Rachunek zaburzeń bez czasu 1. Metodą rachunku zaburzeń obliczyć pierwszą i drugą poprawkę dla poziomów energetycznych oscylatora harmonicznego

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Fizyka Materii Skondensowanej.

Fizyka Materii Skondensowanej. Fizyka Materii Skondensowanej Jacek.Szczytko@fuw.edu.pl Konrad.Dziatkowski@fuw.edu.pl http://www.fuw.edu.pl/~szczytko/fms Uniwersytet Warszawski 0 GryPlan 4.0 Mechanika kwantowa. Stany. Studnia kwantowa,

Bardziej szczegółowo

FIZYKA-egzamin opracowanie pozostałych pytań

FIZYKA-egzamin opracowanie pozostałych pytań FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B

Bardziej szczegółowo

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały

Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały WYKŁAD 1 Teorie wiązania chemicznego i podstawowe zasady mechaniki kwantowej Zjawiska, które zapowiadały nadejście nowej ery w fizyce i przybliżały sformułowanie praw fizyki kwantowej: promieniowanie katodowe

Bardziej szczegółowo

Spis treści. Przedmowa redaktora do wydania czwartego 11

Spis treści. Przedmowa redaktora do wydania czwartego 11 Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania

Bardziej szczegółowo

h 2 h p Mechanika falowa podstawy pˆ 2

h 2 h p Mechanika falowa podstawy pˆ 2 Mechanika falowa podstawy Hipoteza de Broglie a Zarówno promieniowanie jak i cząstki materialne posiadają naturę dwoistą korpuskularno-falową. Z każdą mikrocząstką można związać pewien proces falowy pierwotnie

Bardziej szczegółowo

Wstęp do oddziaływań hadronów

Wstęp do oddziaływań hadronów Wstęp do oddziaływań hadronów Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Wstęp do oddziaływań hadronów Wykład 9 1 / 21 Rozpraszanie

Bardziej szczegółowo

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU

RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU X. RÓWNANIE SCHRÖDINGERA NIEZALEŻNE OD CZASU Równanie Schrődingera niezależne od czasu to równanie postaci: ħ 2 2m d 2 x dx 2 V xx = E x (X.1) Warunki regularności na x i a) skończone b) ciągłe c) jednoznaczne

Bardziej szczegółowo

Statystyka nieoddziaływujących gazów Bosego i Fermiego

Statystyka nieoddziaływujących gazów Bosego i Fermiego Statystyka nieoddziaływujących gazów Bosego i Fermiego Bozony: fotony (kwanty pola elektromagnetycznego, których liczba nie jest zachowana mogą być pojedynczo pochłaniane lub tworzone. W konsekwencji,

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

Oddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)

Oddziaływania. Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED) Oddziaływania Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca Antycząstki; momenty

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ Za dzień narodzenia mechaniki kwantowej jest uważany 14 grudnia roku 1900. Tego dnia, na posiedzeniu Niemieckiego Towarzystwa Fizycznego w Instytucie Fizyki Uniwersytetu Berlińskiego

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania III

Cząstki elementarne i ich oddziaływania III Cząstki elementarne i ich oddziaływania III 1. Przekrój czynny. 2. Strumień cząstek. 3. Prawdopodobieństwo procesu. 4. Szybkość reakcji. 5. Złota Reguła Fermiego 1 Oddziaływania w eksperymencie Oddziaływania

Bardziej szczegółowo

Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW

Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych WYKŁAD 4 Maria Krawczyk, Wydział Fizyki UW 9.III.2011 Spin - historia odkrycia Fermiony i bozony Oddziaływanie słabe i rodziny cząstek fundamentalnych Spin - jeszcze jedna

Bardziej szczegółowo

Podstawy fizyki subatomowej

Podstawy fizyki subatomowej Podstawy fizyki subatomowej Zenon Janas Zakład Fizyki Jądrowej IFD UW ul. Pasteura 5 p..81 tel. 55 3 681 e-mail: janas@fuw.edu.pl http://www.fuw.edu.pl/~janas/fsuba/fizsub.htm Zasady zaliczenia Obecność

Bardziej szczegółowo

Cząstki elementarne i ich oddziaływania

Cząstki elementarne i ich oddziaływania Cząstki elementarne i ich oddziaływania IV 1. Antycząstki wg Feynmana. 2. Cząstki wirtualne 3. Propagator. 4. Oddziaływania elektromagnetyczne. 1 Interpretacja Feynmana Rozwiązania r. Diraca: są cząstkami

Bardziej szczegółowo

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów

Faculty of Applied Physics and Mathematics -> Department of Solid State Physics. dydaktycznych, objętych planem studiów Nazwa i kod przedmiotu Kierunek studiów Mechanika kwantowa, NAN1B0051 Nanotechnologia Poziom studiów I stopnia - inżynierskie Typ przedmiotu obowiąkowy Forma studiów stacjonarne Sposób realizacji na uczelni

Bardziej szczegółowo

IX. MECHANIKA (FIZYKA) KWANTOWA

IX. MECHANIKA (FIZYKA) KWANTOWA IX. MECHANIKA (FIZYKA) KWANTOWA IX.1. OPERACJE OBSERWACJI. a) klasycznie nie ważna kolejność, w jakiej wykonujemy pomiary. AB = BA A pomiar wielkości A B pomiar wielkości B b) kwantowo wartość obserwacji

Bardziej szczegółowo

Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW

Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW Wszechświat cząstek elementarnych dla humanistów WYKŁAD 9 Maria Krawczyk, A.Filip Żarnecki, Wydział Fizyki UW Teoria cząstek elementarnych- opis zdarzeń Rachunek zaburzeń i nieskończoności Renormalizacja

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

WYKŁAD 5. Maria Krawczyk, Wydział Fizyki UW. Fermiony i bozony. Oddziaływanie słabe i rodziny cząstek fundamentalnych. Spin - historia odkrycia

WYKŁAD 5. Maria Krawczyk, Wydział Fizyki UW. Fermiony i bozony. Oddziaływanie słabe i rodziny cząstek fundamentalnych. Spin - historia odkrycia Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW Spin - historia odkrycia Fermiony i bozony Oddziaływanie słabe i rodziny cząstek fundamentalnych sem letni 2013/14 Spin - jeszcze

Bardziej szczegółowo

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena

Bardziej szczegółowo

Oddziaływania. Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED)

Oddziaływania. Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana. Elementy kwantowej elektrodynamiki (QED) Oddziaływania Przekrój czynny Zachowanie liczby leptonowej i barionowej Diagramy Feynmana Elementy kwantowej elektrodynamiki (QED) Teoria Yukawy Zasięg oddziaływań i propagator bozonowy Równanie Diraca

Bardziej szczegółowo

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści

Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, Spis treści Podstawy mechaniki kwantowej / Stanisław Szpikowski. - wyd. 2. Lublin, 2011 Spis treści Przedmowa 15 Przedmowa do wydania drugiego 19 I. PODSTAWY I POSTULATY 1. Doświadczalne podłoŝe mechaniki kwantowej

Bardziej szczegółowo

Wykład 13 Mechanika Kwantowa

Wykład 13 Mechanika Kwantowa Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a

obrotów. Funkcje falowe cząstki ze spinem - spinory. Wykład II.3 29 Pierwsza konwencja Condona-Shortley a Wykład II.1 25 Obroty układu kwantowego Interpretacja aktywna i pasywna. Macierz obrotu w trzech wymiarach a operator obrotu w przestrzeni stanów. Reprezentacja obrotu w przestrzeni funkcji falowych. Transformacje

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Wykład 9. Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów

Wykład 9. Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów Wykład 9 Źródła nauki współczesnej teoria atomu, mechanika relatywistyczna i teoria kwantów 1 Przełom wieków i nauka skończona Kiedy rozpoczynałem studia fizyczne i u mego czcigodnego nauczyciela Philippa

Bardziej szczegółowo

Elementy Modelu Standardowego

Elementy Modelu Standardowego Elementy Modelu Standardowego Funkcja Lagrange a Model Standardowy, który opisuje wszystkie oddziaływania (poza grawitacyjnym) pomiędzy cząstkami elementarnymi, opiera się na kwantowej teorii pola. Podstawowym

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego

WYKŁAD 15. Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego WYKŁAD 15 Gęstość stanów Zastosowanie: oscylatory kwantowe (ª bosony bezmasowe) Formalizm dla nieoddziaływujących cząstek Bosego lub Fermiego 1 Statystyka nieoddziaływujących gazów Bosego i Fermiego Bosony

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5. Maria Krawczyk, Wydział Fizyki UW

Wszechświat cząstek elementarnych WYKŁAD 5. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW sem.letni.2012/13 Spin - historia odkrycia Fermiony i bozony Oddziaływanie słabe i rodziny cząstek fundamentalnych Spin - jeszcze

Bardziej szczegółowo

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski

II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU. Janusz Adamowski II. POSTULATY MECHANIKI KWANTOWEJ W JĘZYKU WEKTORÓW STANU Janusz Adamowski 1 1 Przestrzeń Hilberta Do opisu stanów kwantowych używamy przestrzeni Hilberta. Przestrzenią Hilberta H nazywamy przestrzeń wektorową

Bardziej szczegółowo

WYKŁAD 4 10.III.2010

WYKŁAD 4 10.III.2010 Wszechświat cząstek elementarnych WYKŁAD 4 10.III.2010 Maria Krawczyk, Wydział Fizyki UW Spin historia odkrycia fermiony i bozony spin cząstek fundamentalnych Oddziaływanie słabe i rodziny cząstek fundamentalnych

Bardziej szczegółowo

Wykład 14. Termodynamika gazu fotnonowego

Wykład 14. Termodynamika gazu fotnonowego Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

WYKŁAD 9. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW

WYKŁAD 9. Wszechświat cząstek elementarnych. Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych M.Krawczyk, AFZ WCE 9 1 WYKŁAD 9 Maria Krawczyk, Wydział Fizyki UW Teoria cząstek elementarnych- opis zdarzeń Rachunek zaburzeń i nieskończoności Renormalizacja Prawdopodobieństwo

Bardziej szczegółowo

Wybrane Dzialy Fizyki

Wybrane Dzialy Fizyki Wybrane Dzialy Fizyki (2) Elementy fizyki środowiskowej Energia - podstawowy element rozwoju społeczeństwa Podstawowe poj ecia Formy energii Współczesne źródła energii Środowisko zanieczyszczenia i jego

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o

λ(pm) p 1 rozpraszanie bez zmiany λ ze wzrostem λ p e 0,07 0,08 λ (nm) tł o W 1916r. Einstein rozszerzył swoją koncepcję kwantów światła, przypisując im pęd. Fotonowi o energii ħω odpowiada pęd p ħω/c /λ Efekt Comptona 193r. - rozpraszanie promieni X 1keV- kilka MeV na elektronac

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 13 8 stycznia 2018 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

Cząstki i siły. Piotr Traczyk. IPJ Warszawa

Cząstki i siły. Piotr Traczyk. IPJ Warszawa Cząstki i siły tworzące nasz wszechświat Piotr Traczyk IPJ Warszawa Plan Wstęp Klasyfikacja cząstek elementarnych Model Standardowy 2 Wstęp 3 Jednostki, konwencje Prędkość światła c ~ 3 x 10 8 m/s Stała

Bardziej szczegółowo

WYKŁAD X.2009 Maria Krawczyk, Wydział Fizyki UW

WYKŁAD X.2009 Maria Krawczyk, Wydział Fizyki UW Wszechświat cząstek elementarnych dla przyrodników WYKŁAD 4 28 Spin Fermiony i bozony Oddziaływanie słabe Rodziny fermionów fundamentalnych Prawe i lewe fermiony o spinie ½ Siły Porównania oddziaływań

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet

Bardziej szczegółowo

Symetrie w fizyce cząstek elementarnych

Symetrie w fizyce cząstek elementarnych Symetrie w fizyce cząstek elementarnych Odkrycie : elektronu- koniec XIX wieku protonu początek XX neutron lata 3 XX w; mion µ -1937, mezon π 1947 Lata 5 XX w zalew nowych cząstek; łączna produkcja cząstek

Bardziej szczegółowo

Podstawy fizyki subatomowej. 3 kwietnia 2019 r.

Podstawy fizyki subatomowej. 3 kwietnia 2019 r. Podstawy fizyki subatomowej Wykład 7 3 kwietnia 2019 r. Atomy, nuklidy, jądra atomowe Atomy obiekt zbudowany z jądra atomowego, w którym skupiona jest prawie cała masa i krążących wokół niego elektronów.

Bardziej szczegółowo

Wszechświat cząstek elementarnych WYKŁAD 5

Wszechświat cząstek elementarnych WYKŁAD 5 Wszechświat cząstek elementarnych WYKŁAD 5 Maria Krawczyk, Wydział Fizyki UW 17.III.2010 Oddziaływania: elektromagnetyczne i grawitacyjne elektromagnetyczne i silne (kolorowe) Biegnące stałe sprzężenia:

Bardziej szczegółowo

Dualizm korpuskularno falowy

Dualizm korpuskularno falowy Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p

Bardziej szczegółowo

Pole elektromagnetyczne. Równania Maxwella

Pole elektromagnetyczne. Równania Maxwella Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i

Bardziej szczegółowo

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω.

Podsumowanie W Spektroskopia dwufotonowa. 1. Spektroskopia nasyceniowa. selekcja prędkości. nasycenie. ω 0 ω Laser. ω 21 2ω. Podsumowanie W1 Lasery w spektroskopii atomowej/molekularnej a) spektroskopia klasyczna b) spektroskopia bezdopplerowska 1. Spektroskopia nasyceniowa nasycenie selekcja prędkości - wiązki pompująca & próbkująca

Bardziej szczegółowo

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a

Modele atomu wodoru. Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Modele atomu wodoru Modele atomu wodoru Thomson'a Rutherford'a Bohr'a Demokryt: V w. p.n.e najmniejszy, niepodzielny metodami chemicznymi składnik materii. atomos - niepodzielny Co to jest atom? trochę

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 5 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział

Bardziej szczegółowo

Mechanika kwantowa Schrödingera

Mechanika kwantowa Schrödingera Fizyka 2 Wykład 2 1 Mechanika kwantowa Schrödingera Hipoteza de Broglie a wydawała się nie zgadzać z dynamiką Newtona. Mechanika kwantowa Schrödingera zawiera mechanikę kwantową jako przypadek graniczny

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych.

Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. VII. SPIN 1 Rysunek 1: Schemat doświadczenia Sterna-Gerlacha. Rysunek 2: Schemat doświadczenia Sterna-Gerlacha w różnych rzutach przestrzennych. 1 Wstęp Spin jest wielkością fizyczną charakteryzującą cząstki

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Rozszyfrowywanie struktury protonu

Rozszyfrowywanie struktury protonu Rozszyfrowywanie struktury protonu Metody pomiaru struktury obiektów złożonych v Rozpraszanie elektronów na nukleonie czy na jego składnikach v Składniki punktowe wewnątrz nukleonu to kwarki v Definicja

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś

Elektrodynamika. Część 9. Potencjały i pola źródeł zmiennych w czasie. Ryszard Tanaś Elektrodynamika Część 9 Potencjały i pola źródeł zmiennych w czasie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 10 Potencjały i pola źródeł zmiennych w

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo