Podobniejakwzadaniunr1skorzystamyzwzoru ( ) k.ponieważmamy do) czynienia z 3 równoważnymi f elektronami mamy więc: =364.
|
|
- Jacek Janiszewski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Rozwiązaia zadań Zadaie 1. Ile jest dozwoloych staów elektroowych dla trzech ierówoważych elektroów a podpowłokach f w ramach sprzężeia LS. Wskazówka: policzwsageodpowiedie ( ) k. Należyskorzystaćzwzoru ( ) k.poieważmamydoczyieiaz3ierówoważymi ) ( f elektroami ) mamy więc: ( =2744 ) ( 14 1 Zadaie 2. Jak wiele staów jest dozwoloych dla trzech rówoważych ( f elektroów ) w ramach sprzężeia LS. Wskazówka: policz w sage odpowiedie k. Podobiejakwzadaiur1skorzystamyzwzoru ( ) k.poieważmamy do) czyieia z 3 rówoważymi f elektroami mamy więc: =364. ( 14 3 Zadaie 3. Wyzacz termy atomowe i wskaż term podstawowy dla kofiguracji2p 1 3d 1 wramachsprzężeials. Jak widać dwa elektroy różią się główą i poboczą liczbą kwatową, czyli mamy do czyieia z elektroami ierówoważymi i w związku z tym ie ma ograiczeń przy składaiu mometów pędu. Obliczmay wartości wypadkowych liczb L, S a astępie J zgodie ze wzorami podaymi we wstępie teoretyczym. Kofiguracja2p 1 3d 1 :l 1 =1,l 2 =2;s 1 =1/2,s 2 =1/2 Możliwe wartości L i S: L=3,2,1 S=1,0 Możliwe stay: L S termy L=3 S=1 3 F 4 (9) 3 F 3 (7) 3 F 2 (5) L=3 S=0 1 F 3 (7) L=2 S=1 3 D 3 (7) 3 P 2 (5) 3 P 1 (3) L=2 S=0 1 D 2 (5) L=1 S=1 3 P 2 (5) 3 P 1 (3) 3 P 0 (1) L=1 S=0 1 P 1 (3) Każdywyrazzawiera2J+1staów,czyliwtymprzypadkujesttoukład 60 staów. Degeeracje poziomów podao w awiasach. Rówoważą liczbę 1
2 możliwychstaówotrzymamyposługującsięwzorem ( () ( ) k),czyli = 60. Termem podstawowym, zgodie z regułami Huda, ma być term o ajwyższejmultipletowości,czylimożetobyć: 3 F, 3 Dlub 3 P.Następiekorzystamy z kolejej reguły Huda, która mówi, że spośród termów o ajwyższej multipletowści termem podstawowym jest term o ajwiększej wartości L, czyliwaszymprzypadkubędzieto 3 F.NakoiecokreślamyliczbęJzgodie z trzecią regułą Huda. Jeśli podpowłoka jest zapełioa miej iż w połowie, tak jak w aszym przypadku, to termem podstawowym jest term o ajmiejszejwartościj,czylitermempodstawowymdlakofiguracji2p 1 3d 1 jestterm 3 F 2. Zadaie 4. Wyzacz termy atomowe i wskaż term podstawowy dla kofiguracjis 1 p 1 wramachsprzężeials. Postępujemy aalogiczie jak w zadaiu r 3, jako że mamy do czyieia z elektroami ierówoważymi. Poiższa tabela zestawia możliwe wartości liczb wypadkowych L i S dla tej kofiguracji i odpowiadające jej termy. L S termy L=1 S=1 3 P 2 (5) 3 P 1 (3) 3 P 0 (1) L=1 S=0 1 P 1 (3) Termempodstawowymjestterm 3 P 0. Zadaie 5. Wyzacz termy atomowe i wskaż term podstawowy dla kofiguracjid 1. W takich przypadkach kiedy mamy jede iesparoway elektro l = L orazs=s.naszelektrojestaorbitalutypudtakwięcl 1 =2=La s 1 =1/2=S. MożliwestaydlaL=2iS=1/2: 2 D 5/2 (6), 2 D 3/2 (4).Każdywyrazzawiera 2J+1staów(degeeracjęliczyJpodaowawiasach) jesttoukład10 staów. Termpodstawowy: 2 D 3/2. Wywołując program xterms a serwerze zcht, sprawdzimy komplet wygeerowaych termów, podając liczbę elektroów(1) i wartość liczby l(2). 2
3 Zadaie 6. Wyzacz termy atomowe i wskaż term podstawowy dla kofiguracjif 13. Postępujemy podobie jak w zadaiu r 5 poieważ zamiast liczyć dla kofiguracjif 13 możemyliczyćdlakofiguracjif 14 13,czylidlaf 1.Dokładie jak w zadaiu poprzedim mamy jede elektro i aalogiczą procedurę postępowaia. Naszelektrojestaorbitalutypufczylil 1 =3=Las 1 =1/2=S. MożliwestaydlaL=3iS=1/2: 2 F 7/2 (8), 2 F 5/2 (6). Termpodstawowy: 2 F 7/2 jako,żewspomagaliśmysięprzyliczeiukompletutermówkofiguracjąf 1 aleasząwyjściowąkofiguracjąjestkofiguracja f 13,czyliJ=L+S. Wywołując program xterms a serwerze zcht, sprawdzimy komplet wygeerowaych termów, podając liczbę elektroów(13) i wartość liczby l(3). Zadaie 7. Wyzacz termy atomowe i wskaż podstawowy dla kofiguracji f 2 wramachsprzężeials. Jest to przykład wyzaczaia termów dla elektroów rówoważych. W związku z tym a dodawaie wektorów akłada się zakaz Pauliego. Zatem: l 1 =3 l 2 =3 = L=6,5,4,3,2,1,0 s 1 = 1 2 s 2 = 1 2 = S=1,0 Podobie: m l1 =3,2,1,0, 1, 2, 3 m l2 =3,2,1,0, 1, 2, 3 = M L =6,5,4,3,2,1,0, 1, 2, 3, 4, 5, 6 Aalogiczie: m s1 =± 1 2 m s2 =± 1 2 = M s =1,0, 1 Postać tabeli główej, która posłuży do wyzaczeia kompletu termów, jest astępująca: M S \M L
4 Przeprowadzając aalizę metody wyczerpywaia staów jak w przykładziewewstępieteoretyczymdochodzimydokompletutermów: 3 H 6 (13), 3 H 5 (11), 3 H 4 (9), 3 F 4 (9), 3 F 3 (7), 3 F 2 (5), 3 P 2 (5), 3 P 1 (3), 3 P 0 (1), 1 I 6 (13), 1 G 4 (9), 1 D 2 (5), 1 S 0 (1).Degeeracjepoziomówpodaowawiasach.Sumującliczby w awiasach otrzymujemy 91 staów. Termempodstawowymjestterm: 3 H 4. Wywołując program xterms a serwerze zcht sprawdzimy komplet wygeerowaych termów, podając liczbę elektroów(2) i wartość liczby l(3). Zadaie 8. Wyzacz termy atomowe i wskaż podstawowy dla kofiguracji d 8 wramachsprzężeials. Postępujemy aalogiczie jak w zadaiu r 7 jako, że mamy do czyieia z elektroami rówoważymi. Poadto zamiast geerować komplet termów dlakofiguracjid 8 będziemyjewyzaczaćdlakofiguracjid 10 8,czylidla d 2,cozaczącoupraszczazadaie. Zatem: l 1 =2 l 2 =2 = L=4,3,2,1,0 s 1 = 1 2 s 2 = 1 2 = S=1,0 Podobie: m l1 =2,1,0, 1, 2 m l2 =2,1,0, 1, 2 Aalogiczie: = M L =4,3,2,1,0, 1, 2, 3, 4 m s1 =± 1 2 m s2 =± 1 2 = M s =1,0, 1 Postać tabeli główej, która posłuży do wyzaczeia kompletu termów, jest astępująca: M S \M L Przeprowadzając aalizę metody wyczerpywaia staów jak w przykładziewewstępieteoretyczymdochodzimydokompletutermów: 3 F 4 (9), 3 F 3 (7), 4
5 3 F 2 (5), 3 P 2 (5), 3 P 1 (3), 3 P 0 (1), 1 G 4 (9), 1 D 2 (5), 1 S 0 (1).Degeeracjepoziomów podao w awiasach. Sumując liczby w awiasach otrzymujemy 45 staów. Termempodstawowymjestterm: 3 F 4 jako,żewspomagaliśmysięprzy geerowaiukompletutermówkofiguracjąd 2 aleasząwyjściowąkofiguracjąjestkofiguracjad 8,czyliJ=L+S. Uruchamiając program xterms a serwerze zcht, sprawdzamy poprawość wygeerowaych termów, podając jako liczbę elektroów 8 a jako wartość liczbyl2. Zadaie 9. Wyzacz komplet termów dla atomu fluoru i wskaż term podstawowy. Wskazówka: uruchom program xterms a serwerze zcht w celu sprawdzeia poprawości wygeerowaia kompletu termów. KofiguracjaelektroowaF:[He]2s 2 2p 5. Rozpatrujemy tylko otwartą podpowłokę p obsadzoą pięcioma elektroami. Poieważdlakofiguracjip 6 5,czylip 1,otrzymamytesamezbiorytermów, takwięcbędziemywyzaczaćkomplettermówdlakofiguracjip 1.Należy pamiętać,żeasządocelowąkofiguracjąjestkofiguracjap 5 przypodawaiu wartości J dla termu podstawowego. Komplet termów i sposób ich geerowaiadlakofiguracjip 1 jestpodaywewstępieteoretyczym. Komplettermów: 2 P 3/2, 2 P 1/2 Termpodstawowy: 2 P 3/2. Zadaie 10. Podaj kofigurację elektroową i term stau podstawowego dla atomu arseu. Wskazówka: policz sposobem klatkowym. KofiguracjaelektroowaAs:[Ne]3d 10 4s 2 4p 3.Rozpatrujemytylkootwartą podpowłokę p obsadzoą trzema elektroami: ZpowyższegozapisuklatkowegoobliczamyM L im S,którewyoszą0 i 3/2, odpowiedio. W związku z tym termem podstawowym dla atomu As jestterm 4 S 3/2. 5
6 Zadaie11.Obliczeergiestaówelektroowych: 2 P, 2 S, 2 Pdlaatomu boru przy użyciu pakietu ACES2, stosując metodę EOM-CC a poziomie CCSD i bazę AUG-CC-PVDZ. Wskazówka: połącz się z serwerem zcht, przygotuj plik iputowy oraz skrypt do pakietu ACES2 a astępie go uruchom. Korzystając z pakietu metod kwatowochemiczych ACES2, wykoamy obliczeiaea(powiowactwaelektroowego)dlajoub + okofiguracjielektroowj1s 2 2s 2 wceluotrzymaiaeergiitermówatomowychotwartopowłokowegoatomuboruokofiguracjielektroowej1s 2 2s 2 2p 1 : B + EA B Zadaie ależy wykoać a podobej zasadzie jak w przypadku atomu litu, omówioym we wstępie teoretyczym. Postać pliku wejściowego(zmatu) jest astępująca: ENERGIE STANOW ELEKTRONOWYCH DLA ATOMU BORU NA ACES2*(CALCLEVEL=CCSD,BASIS=CC-PVDZ,SYMMETRY=OFF EA CALC=EA EOMCC,EA SYM=7,CHARGE=1) Poieważ iteresują as stay P, S, P dlatego przy EA SYM podaliśmy liczbę7(3+1+3). Plik do uruchamiaia programu ma postać: cd/scr/zcht/ mkdir b cdb ualias rm rm* ls cp/home/zcht/dat/zmat ZMAT l-s/home/zcht/aces2/basis/genbas GENBAS /home/zcht/aces2/bi/xaces2 >/home/zcht/b.out rm* Pliki z daymi wejściowymi(zmat) i skrypt do uruchamiaia programu są umieszczoe w części z Dodatkami we wstępie teoretyczym. 6
7 Pisząc z liii komed a serwerze zcht skrypt aces2, uruchamiamy program ACES2. Wyiki obliczeń zajdują sie w pliku b.out. Poiżej zaprezetoway jest fragmet outputu(b.out) z iteresującymi as eergiami: Summary of electro attachmet eom-cc calculatio Multiplet orb. irrep eergy diff(ev) % sigles total eergy Doublet 3 [1] Doublet 2 [1] Doublet 1 [1] Doublet 4 [1] Doublet 6 [1] Doublet 7 [1] Doublet 5 [1] Eergietermów 2 P, 2 Si 2 Pwyosząodpowiedio: au, au, au. 7
Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu.
Wizualizacja Graficzna reprezentacja orbitali atomowych s, p i d. Graficzny obraz schematu EA w obliczeniach energii termów atomowych dla atomu sodu. Graficzny obraz schematu DEA w obliczeniach energii
Struktura atomów wieloelektronowych w ujęciu prostych metod obliczeniowych chemii kwantowej Termy atomowe
Struktura atomów wieloelektronowych w ujęciu prostych metod obliczeniowych chemii kwantowej Termy atomowe 1 Wstęp Termy atomowe(poziomy energetyczne atomu) określamy przez podanie zespołu liczb kwantowych
siętzw.operatorcałkowitego(wewnętrznego)momentupęduĵ(ĵ):
Wstęp Termy atomowe(poziomy energetyczne atomu) określamy przez podanie zespołu liczb kwantowych określających dany term(poziom) i odpowiadają one rzeczywistym, obserwowanym w eksperymentach spektroskopowych
Metody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
Moduł 4. Granica funkcji, asymptoty
Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae
ANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek
Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
ZADANIA - ZESTAW 2. Zadanie 2.1. Wyznaczyć m (n)
ZADANIA - ZESTAW Zadaie.. Wyzaczyć m (), D ( ) dla procesu symetryczego (p = q =,) błądzeia przypadkowego. Zadaie.. Narysuj graf łańcucha Markowa symetrycze (p = q =,) błądzeie przypadkowe z odbiciem.
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
Zasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności
Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1
Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.
Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =
Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka
ELEKTROTECHNIKA I ELEKTRONIKA
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU
II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych: sprzężenie LS i
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/ n 333))
46. Wskazać liczbę rzeczywistą k, dla której graica k 666 + 333)) istieje i jest liczbą rzeczywistą dodatią. Obliczyć wartość graicy przy tak wybraej liczbie k. Rozwiązaie: Korzystając ze wzoru a różicę
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy
III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:
Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:
Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.
Trzeba pokazać, że dla każdego c 0 c Mc 0. ) = oraz det( ) det( ) det( ) jest macierzą idempotentną? Proszę odpowiedzieć w
Zad Dae są astępujące macierze: A =, B, C, D, E 0. 0 = = = = 0 Wykoaj astępujące działaia: a) AB, BA, C+E, DE b) tr(a), tr(ed), tr(b) c) det(a), det(c), det(e) d) A -, C Jeśli działaia są iewykoale, to
KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1
KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę
PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY. Monika Musiał. c.us.edu.pl/ mm
PRZYBLIŻENIE JEDNOELEKTRONOWE ATOM WIELOELEKTRONOWY http://zcht.mf c.us.edu.pl/ mm przybliżenie jednoelektronowe Układy wieloelektronowe- atomy i cz asteczki zawieraj ace dwa i wiȩcej elektronów; układy
Lista 6. Estymacja punktowa
Estymacja puktowa Lista 6 Model metoda mometów, rozkład ciągły. Zadaie. Metodą mometów zaleźć estymator iezaego parametru a w populacji jedostajej a odciku [a, a +. Czy jest to estymator ieobciążoy i zgody?
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.
Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe
I kolokwium z Analizy Matematycznej
I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
Ćwiczenia IV i V. 1 Rozwiązanie: Π. średnia liczba obsługiwanych klientów: 6.67 w ciągu godziny = Π1
Ćwiczeia IV i V We wszystkich poiższych zadaiach ależy przyjąć, że zgłoszeia (lub ich odpowiediki) przychodzą zgodie z rozkładem Poissoa, a czasy obsługi podlegają rozkładowi wykładiczemu. Zadaia r i pochodzą
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2012 POZIOM PODSTAWOWY CZĘŚĆ I WYBRANE: Czas pracy: 75 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INFORMATYKI
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Budowa atomów. Budowa atomu wodoru
05-0- Budowa atomów atom wodoru atomy wieloelektroowe zakaz Pauliego układ okresowy pierwiastków Budowa atomu wodoru atom wodoru składa się z pojedyczego elektrou (-e) związaego z jądrem protoem (+e) przyciągającą
Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik
Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem
Jarosław Wróblewski Analiza Matematyczna A1, zima 2011/12. Kresy zbiorów. x Z M R
Kresy zbiorów. Ćwiczeia 21.11.2011: zad. 197-229 Kolokwium r 7, 22.11.2011: materiał z zad. 1-249 Defiicja: Zbiór Z R azywamy ograiczoym z góry, jeżeli M R x Z x M. Każdą liczbę rzeczywistą M R spełiającą
Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych
Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych Justyna Cembrzyńska Zakład Mechaniki Kwantowej Uniwersytet
Przykład Obliczenie wskaźnika plastyczności przy skręcaniu
Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego
Chemiateoretyczna. Monika Musiał. Ćwiczenia
Chemiateoretyczna Monika Musiał Ćwiczenia SYSTEM LINUX- podstawowe komendy Operacje na katalogach i plikach pwd wypisanie ścieżki do bieża cego katalogu. oznacza katalog bieża cy.. oznacza katalog nadrzȩdny
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
Egzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Struktura czasowa stóp procentowych (term structure of interest rates)
Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,
Ł ć ć Ł Ą Ń Ę Ą Ń Ń Ą Ą ć Ń Ń ć Ą ć ć ź ć ź Ł Ł Ą Ę ć ć ć ć ć ć Ź ć Ę ĘĄ ć Ę ĘĄ Ę Ł Ł ź Ę ć ć ć Ę Ł Ż Ę Ł ź ć Ł ć ź Ę ź Ą Ą ć ć ć Ą Ł Ł Ą ć Ę Ę Ę ć ć ć ć Ą Ę Ń Ę Ą Ń ć Ł Ą Ń Ę Ą Ń Ę ć Ń ć Ć ć Ń Ń ć ć ć
Ź Ó Ź Ź Ą ź ź Ń Ó ć Ź ć ć Ź Ó Ń ź Ó Ś Ó Ó Ó Ą ź ź Ó Ą Ą Ź ć Ź Ó Ó Ó Ą ć ć ć Ą ć Ó Ść ć Ś Ść Ś Ó ć ć Ś Ó Ó ć Ś ć ć ć Ó Ó ć ć Ó Ś Ą Ó ć Ź ĘĄ Ó Ó Ą Ś Ó Ź Ą Ł Ś ć Ź Ł Ł Ą Ó Ś Ł ć ć Ź Ó Ź Ł Ć ć Ó ć Ś Ź Ó ć
ć ć Ą Ę Ę Ę Ę Ą ć ć ć ć ć ź Ą Ą Ą Ą ć Ą Ą Ą Ą ź Ę Ż ć ć Ł Ł ź ź Ł ć Ę Ę Ń Ż Ń ć Ę ć Ś Ś ć Ą Ę ć ć ć Ę ź Ę Ę Ń Ę Ń Ę Ę ć Ę Ę Ę Ę ć ć ź ć ć Ę ć Ę ć ć ć ć Ę Ę ź Ł Ę Ą Ą Ą Ę ź ź ć ź ć Ł ć Ł Ę ć Ą Ł
ż Ź Ą Ż Ż Ż ć Ó Ą Ó ź ć Ż Ż ź ż ż Ź ż ć ż Ż ć Ż Ż ż Ę Ą Ę Ą Ż Ść ć ż ż Ą ć Ź Ś ć Ż ż ż ż ż Ż ż Ż ż ż Ś ż Ź ż Ą ĘĄ Ż ć ć ż ż ż Ż ż Ż ć ż Ż ż ć ż Ż Ś Ż ż ć ż Ź Ż Ź ż ć Ź Ś ż Ź ż ż ź ż Ż ż Ż ż ż ż ż ż Ę Ś
ź Ę Ą ć ź Ą ć ć ć ź ć ć ź ć ć Ł Ę ź ć ź ć Ś Ę ź Ę Ą Ą Ś Ę ć ź ć ć ć ć ź Ę Ę ć ć ź ź ć ź ć ź ź ź ć ź ć ć ź ź ź ć Ę ć ć Ę ć Ń ć Ł Ą Ę ź Ę ć ź ć ź Ł Ę ź ź Ą Ę ć Ś Ś Ś ź Ś ź ź ź Ś Ś ć Ż Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś
Kombinatoryka. Karolina Lewalska 23 marca 2017
Kombiatoryka Karolia Lewalska 23 marca 2017 Zadaie 1 Ile istieje liczb aturalych sześciocyfrowych? Ile istieje liczb sześciocyfrowych takich, w których cyfra setek to sześć? 9 10 10 10 10 10 Pierwszą cyfrę
Model Bohra atomu wodoru
Model Bohra atomu wodoru Widma liiowe pierwiastków. wodór hel eo tle węgiel azot sód Ŝelazo Aby odpowiedzieć a pytaie dlaczego wodór i ie pierwiastki ie emitują wszystkich częstotliwości fal elektromagetyczych
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n 4n n 1
30. Obliczyć wartość graicy ( 0 ( ( ( 4 +1 + 1 4 +3 + 4 +9 + 3 4 +7 +...+ 1 4 +3 + 1 ( ( 4 +3. Rozwiązaie: Ozaczmy sumę występującą pod zakiem graicy przez b. Zamierzamy skorzystać z twierdzeia o trzech
Twierdzenie Cayleya-Hamiltona
Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest
Parametryzacja rozwiązań układu równań
Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,
PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy
Metody badania zbieżności/rozbieżności ciągów liczbowych
Metody badaia zbieżości/rozbieżości ciągów liczbowych Ryszard Rębowski 14 grudia 2017 1 Wstęp Kluczowe pytaie odoszące się do zagadieia badaia zachowaia się ciągu liczbowego sprowadza się do sposobu opisu
a) symbole logiczne (wspólne dla wszystkich języków) zmienne przedmiotowe: x, y, z, stałe logiczne:,,,,,, symbole techniczne: (, )
PROGRAMOWANIE W JĘZYU OGII WPROWADZENIE OGIA PIERWSZEGO RZĘDU Symbole języka pierwszego rzędu dzielą się a: a symbole logicze (wspóle dla wszystkich języków zmiee przedmiotowe: x y z stałe logicze: symbole
UKŁADY RÓWNAŃ LINOWYCH
Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a
Statystyka opisowa - dodatek
Statystyka opisowa - dodatek. *Jak obliczyć statystyki opisowe w dużych daych? Liczeie statystyk opisowych w dużych daych może sprawiać problemy. Dla przykładu zauważmy, że aiwa implemetacja średiej arytmetyczej
Zadania z algebry liniowej - sem. I Liczby zespolone
Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C
O liczbach naturalnych, których suma równa się iloczynowi
O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą
Chemia Teoretyczna I (6).
Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez
ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y
Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:
Prawdopodobieństwo i statystyka r.
Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)
Ą Ą Ą Ń Ę Ę ń ń ń Ń Ń Ń ń Ą Ą ń ń ćż Ą Ę ń ń ń Ó ń Ż Ą ń ŚĆ Ń Ś Ń Ś Ą Ś ć ń ć ź ń Ń ń ć ź Ń Ś Ó Ż ń ź ź ń ĄŚ Ą Ś Ń ń ń ń Ę Ę ń Ż Ż Ż ń ć ń Ń ć ń Ń ŚĆ Ć ń Ń Ń ŚÓ Ą ć ć Ą Ń ź Ę ć ć ć ź ć ć ź ć ź ć ź Ę ć
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA
ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością
co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P
Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za
Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA
Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz
Analiza I.1, zima wzorcowe rozwiązania
Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw
Liczby kwantowe elektronu w atomie wodoru
Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
ZADANIA NA ĆWICZENIA 3 I 4
Agata Boratyńska Statystyka aktuariala... 1 ZADANIA NA ĆWICZENIA 3 I 4 1. Wygeeruj szkody dla polis z kolejych lat wg rozkładu P (N = 1) = 0, 1 P (N = 0) = 0, 9, gdzie N jest liczbą szkód z jedej polisy.
Mechanika kwantowa III
Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (
Prawo odbicia i załamania. Autorzy: Zbigniew Kąkol Piotr Morawski
Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol Piotr Morawski 207 Prawo odbicia i załamaia Autorzy: Zbigiew Kąkol, Piotr Morawski Jeżeli światło pada a graicę dwóch ośrodków, to ulega zarówo odbiciu a
8. Optymalizacja decyzji inwestycyjnych
8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI
Zad: 1 Spośród poniższych jonów wybierz te, które mają identyczną konfigurację elektronową:
Zad: 1 Spośród poniższych jonów wybierz te, które mają identyczną konfigurację elektronową: Zad: 2 Zapis 1s 2 2s 2 2p 6 3s 2 3p 2 (K 2 L 8 M 4 ) przedstawia konfigurację elektronową atomu A. argonu. B.
będą niezależnymi zmiennymi losowymi z rozkładu jednostajnego na przedziale ( 0,
Zadaie iech X, X,, X 6 będą iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), a Y, Y,, Y6 iezależymi zmieymi losowymi z rozkładu jedostajego a przedziale ( 0, ), gdzie, są iezaymi
Chemiczne metody analizy ilościowej (laboratorium)
Cheicze etody aalizy ilościowej (laboratoriu) Broiaoetria 9. Przygotowaie iaowaego roztworu broiau (V) potasu Broia(V) potasu ależy do stosowaych w aalizie cheiczej substacji podstawowych. oże być otrzyay
Jarosław Wróblewski Analiza Matematyczna 1A, zima 2014/15. n = Rozwiązanie: Stosując wzór na wartość współczynnika dwumianowego otrzymujemy
12. Dowieść, że istieje ieskończeie wiele par liczb aturalych k < spełiających rówaie ( ) ( ) k. k k +1 Stosując wzór a wartość współczyika dwumiaowego otrzymujemy ( ) ( )!! oraz k k! ( k)! k +1 (k +1)!
Geometrycznie o liczbach
Geometryczie o liczbach Geometryczie o liczbach Łukasz Bożyk Dodatią liczbę całkowitą moża iterpretować jako pole pewej figury składającej się z kwadratów jedostkowych Te prosty pomysł pozwala w aturaly