Wstęp do grafiki inżynierskiej
|
|
- Urszula Kołodziejczyk
- 9 lat temu
- Przeglądów:
Transkrypt
1 Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT
2 Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały 1-6, 9 i 11 opracowanie: dr inż. Prokop Środa, dr inż. Marcin Kot Rozdziały 7, 8 i 10 opracowanie: dr inż. Prokop Środa Copyright by Wydawnictwo Naukowe AKAPIT, Kraków 2009 Printed in Poland Książkę można zamówić drogą elektroniczną: wn@akapit.krakow.pl Wydanie publikacji dofinansowane przez Wydział Odlewnictwa Akademii Górniczo-Hutniczej ISBN Wydawnictwo Naukowe Akapit, Kraków tel./fax (012) ; wn@akapit.krakow.pl Nakład: 200 egz.
3 SPIS TREŚCI Wykaz oznaczeń... 9 Słowo wstępne Rozdział 1. Przestrzenie: Euklidesa E 3, rzutowa E3 i kreatywna K Geometria w przestrzeni Euklidesa E Kartezjańskie układy odniesienia Przestrzeń rzutowa E Geometryczne transformacje utworów w przestrzeni E Współrzędne jednorodne Macierzowy zapis transformacji izometrycznych Macierzowy zapis transformacji afinicznych Przestrzeń kreatywna K Rozdział 2. Rzuty Monge a Rodzaje rzutów Rzut środkowy Rzut równoległy Rzut prostokątny Rzuty Monge a podstawowych elementów geometrycznych (punktu, prostej, płaszczyzny) Układ rzutni i rzuty punktu Rzuty prostej Ślady prostej Proste szczególne Odwzorowanie płaszczyzny Ślady płaszczyzny Płaszczyzny szczególne Elementy przynależne do siebie Punkt i prosta przynależne do siebie Prosta i płaszczyzna przynależne do siebie Punkt i płaszczyzna przynależne do siebie Elementy wspólne Punkt wspólny dwóch prostych Prosta wspólna dwóch płaszczyzn Punkt wspólny prostej i płaszczyzny Punkt wspólny trzech płaszczyzn... 66
4 6 Wstęp do grafiki inżynierskiej. Rzuty prostokątne 2.5. Elementy równoległe Proste równoległe Płaszczyzny równoległe Równoległość prostej i płaszczyzny Elementy prostopadłe Prostopadłość prostych Prostopadłość prostej i płaszczyzny Prostopadłość płaszczyzn Zagadnienia miarowe Obroty i kłady Obrót dookoła prostej Kład punktu Kład odcinka Kład płaszczyzny Kład płaszczyzny rzutującej Kład płaszczyzny w położeniu ogólnym Transformacje układu odniesienia Rzut boczny i rzuty uzupełniające Rozdział 3 Rzuty wielościanów Definicja i klasyfikacja wielościanów Przekroje i rozwinięcia wielościanów Punkty przebicia wielościanu prostą Przenikanie wielościanów Rozdział 4 Powierzchnie obrotowe i bryły obrotowe Sfera (powierzchnia kuli) Powierzchnia pierścieniowa (torus) Powierzchnia walcowa Powierzchnia stożkowa Przekroje powierzchni stożkowej obrotowej Hiperboloida jednopowłokowa obrotowa Rozdział 5 Krzywe i powierzchnie śrubowe Linia śrubowa walcowa Linia śrubowa stożkowa Powierzchnie śrubowe Rozdział 6 Przenikanie powierzchni Rozdział 7 Krzywe i powierzchnie Béziera Krzywe Béziera Sposoby modyfikacji krzywych Béziera
5 Spis treści Powierzchnie Béziera Modyfikacja powierzchni Béziera Rozdział 8 Powierzchnie Coonsa i Catalana Powierzchnie Coonsa Powierzchnie Catalana Rozdział 9 Rzut aksonometryczny Pojęcia podstawowe Współczynniki deformacji liniowych Układ osi aksonometrycznych Podstawowe równanie aksonometrii Współrzędne aksonometryczne Rodzaje aksonometrii Aksonometrie ukośne Aksonometria kawalerska Aksonometria wojskowa Aksonometria prostokątna Skrócenia aksonometrii prostokątnej Podstawowe równanie aksonometrii prostokątnej Izometria prostokątna Współczynnik skali Dimetria prostokątna Anizometria prostokątna Aksonometria prostokątna okręgu Rozdział 10 Rzutowanie w grafice komputerowej Określenie obiektu geometrycznego Konstruktywna geometria brył Rodzaje rzutów i parametry rzutowania Obcinanie przez bryłę widzenia Rzutowanie prostokątne (ortogonalne) w układzie rzutni Monge a Rzutowanie prostokątne na rzutnię dowolną (rzut aksonometryczny prostokątny) Rozdział 11 Rysunki dodatkowe Uwaga końcowa Bibliografia
6 SŁOWO WSTĘPNE Od zarania dziejów ludzkość dążyła i dąży obecnie do utrwalenia w czasie i przekazania następnym pokoleniom informacji o zaistniałych zdarzeniach, ideach i odkryciach naukowych. Rysunki naskalne w jaskini Lascaux (Francja) p.n.e., piramidy egipskie 2500 p.n.e., odkopany w roku 1974 grobowiec chińskiego cesarza Qin Shi Huangdi z 7000 terakotowymi żołnierzami (rys. 11.1), a w obecnych czasach wysłanie w przestrzeń międzygwiezdną statku kosmicznego. który ma na swoim pokładzie pozłacaną aluminiową płytkę z wytrawionym rysunkiem przedstawiającym: atom wodoru, planety układu słonecznego, położenie Słońca względem 14 pulsarów oraz postać mężczyzny i kobiety (rys. I), są tylko tego wybranymi przykładami. Potrzeba wzajemnej komunikacji była przyczyną powstania różnych języków i odpowiadającym im pism jak np.: pismo klinowe w Babilonie (rys. II), pismo obrazkowe w Egipcie czy np. zapis węzełkowy na sznurach w Peru (rys. III). Współczesna cywilizacja stosuje odmienne zapisy (języki) w różnych dziedzinach np.: w chemii, fizyce, matematyce zapis symbolowy, w informatyce zapis zerojedynkowy, w geodezji i kartografii rzut cechowany, nauki inżynieryjne rzutowanie prostokątne, w malarstwie rzut środkowy czyli tzw. perspektywa. Oprócz tego istnieją język Morse a, Braila, język znaków drogowych itp. Rys. I
7 14 Wstęp do grafiki inżynierskiej. Rzuty prostokątne Tak szybki rozwój techniki w XIX, XX i obecnym wieku nie miałby miejsca gdyby nie opracowano zapisu na płaskim arkuszu papieru kształtu i rozmiarów przedmiotów trójwymiarowych. Pierwsze opracowania z tego zakresu pochodzą od francuskiego matematyka G. Monge a ( ). Nauka ta rozwijała się pod nazwą geometria wykreślna co było uzasadnione tym, iż konstrukcje geometryczne kreślono ręcznie przy pomocy cyrkla i liniału. Obecnie konstrukcje te wykonuje się najczęściej przy pomocy komputera dlatego autorzy niniejszego opracowania proponują nową nazwę grafika inżynierska. Rys. II Rys. III W pierwszym rozdziale podane zostały pojęcia przestrzeni Euklidesa, rzutowej i kreatywnej oraz omówiono szczegółowo aksjomaty przestrzeni Euklidesa. W rozdziale drugim omówiono zasady rzutów Monge a podstawowych elementów geometrycznych, ich przynależności do siebie, równoległości i prostopadłości. Następnie przedstawiono zagadnienia miarowe i możliwości ich rozwiązywania metodami: obrotu, kładu i transformacji układu odniesienia. Następne rozdziały 3-6 dotyczą rzutów wielościanów, krzywych przestrzennych, powierzchni oraz przenikania powierzchni i brył obrotowych. Dodatkowo uzupełniono podręcznik rozdziałami 7 i 8 dotyczącymi powierzchni Catalana, Coonsa oraz krzywych i powierzchni Béziera. W rozdziale 9 przedstawiono zasady rzutowania aksonometrycznego. W rozdziale 10 omówiono zasady rzutowania w grafice komputerowej. Podręcznik jest przystosowany do nauczania na studiach technicznych na kierunkach, które mają w programach grafikę inżynierską opartą na rzutowaniu prostokątnym. W szczególności adresowany jest do studentów Wydziału Odlewnictwa AGH w Krakowie.
Spis treści. Słowo wstępne 7
Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne
Ćwiczenia nr 4. TEMATYKA: Rzutowanie
TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej
Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ
Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Sesja Naukowa objęta honorowym patronatem przez Jego Magnificencję Rektora Politechniki Śląskiej prof. dr hab. inż. Andrzeja
ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII
WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty
Geometria wykreślna 7. Aksonometria
Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the
Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.
RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego
płaskie rzuty geometryczne
płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny
Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Geometria i grafika inżynierska Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.
Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek
PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.
WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle
RZUTOWANIE PROSTOKĄTNE
RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Budownictwo Forma
Geometria wykreślna. Dr inż. Renata Górska
Dr inż. Renata Górska rgorska@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej L-5 Katedra Metod Obliczeniowych w Mechanice L-52 Projekty (sala 404 WIL): dr inż. Renata Górska dr
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
Karta (sylabus) przedmiotu
WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Grafika inżynierska I Kod przedmiotu Status przedmiotu: obowiązkowy MBM 1 N 0 1 19-0_0 Język wykładowy:
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Grafika inżynierska i systemy CAD Rok akademicki: 2014/2015 Kod: MIC-1-208-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność:
Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu
Wygenerowano: 2017-10-02 16:54:58.414135, A-1-16-17 Podhalańska Państwowa Wyższa Szkoła Zawodowa w Nowym Targu Informacje ogólne Nazwa Geometria wykreślna Status Obowiązkowy Wydział / Instytut Instytut
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Grafika inżynierska geometria wykreślna. 9. Aksonometria
Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria
GEOMETRIA WYKREŚLNA ZADANIA TESTOWE
Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...
RYSUNEK TECHNICZNY Z GEOMETRIĄ WYKREŚLNĄ
Nazwa przedmiotu: RYSUNEK TECHNICZNY Z GEOMETRIĄ WYKREŚLNĄ 1. Wydział: InŜynierii Środowiska i Geodezji 2. Kierunek studiów: InŜynieria Środowiska 3. Rodzaj i stopień studiów: studia I stopnia, inŝynierskie,
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 209/2020 Kierunek studiów: Budownictwo Forma sudiów:
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r.
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geometria wykreślna i grafika komputerowa CAD Nazwa modułu w języku angielskim
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Opanowanie sposobu
aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie
aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie Przykładowy rzut (od lewej) izometryczny, dimetryczny ukośny i dimetryczny prostokątny Podział aksonometrii ze względu na kierunek rzutowania:
Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i
GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY
Instytut Geologii, Uniwersytet im. A. Mickiewicza w oznaniu GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY prof. UAM, dr hab. Jędrze Wierzbicki racownia Geologii Inżynierskie i Geotechniki p. 251, e-mail: wi@amu.edu.pl
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.
Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
Odwzorowanie rysunkowe przedmiotów w rzutach
Odwzorowanie rysunkowe przedmiotów w rzutach Rzutem nazywamy rysunkowe odwzorowanie przedmiotu lub bryły geometrycznej na płaszczyźnie rzutów, zwanej rzutnią, którą jest płaszczyzna rysunku. Rzut każdej
Grafika inżynierska i projektowanie geometryczne WF-ST1-GI--12/13Z-GRAF. Liczba godzin stacjonarne: Wykłady: 15 Zajęcia projektowe: 40
Karta przedmiotu Wydział: Wydział Finansów Kierunek: Gospodarka przestrzenna I. Informacje podstawowe Nazwa przedmiotu Grafika inżynierska i projektowanie geometryczne Nazwa przedmiotu w j. ang. Język
Trójwymiarowa grafika komputerowa rzutowanie
Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie
Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA
WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA 311206 Lp Wiadomości wstępne, normy rysunkowe 1 Lekcja organizacyjna
WSTSP. str. 1, Wstęp... t e Elementy niewłaściwe p_r o_a_t_ojk_jjb_jtt_e_;_. Rozdział I. Punkt, prosta i płaszczyzna,,
- 640 - \ S P I S TREŚCI WSTSP. str. 1, Wstęp.... t... 1 2 e Elementy niewłaściwe... 1 CZjjlŚó I.! i f R aju. t y p_r o_a_t_ojk_jjb_jtt_e_;_ Rozdział I. Punkt, prosta i płaszczyzna,, 3. Rauty punktów właściwych...
Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza
Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska
Rozdział VII. Przekształcenia geometryczne na płaszczyźnie Przekształcenia geometryczne Symetria osiowa Symetria środkowa 328
Drogi Czytelniku 9 Oznaczenia matematyczne 11 Podstawowe wzory 15 Rozdział I. Zbiory. Działania na zbiorach 21 1. Zbiór liczb naturalnych 22 1.1. Działania w zbiorze liczb naturalnych 22 1.2. Prawa działań
Kod modułu Geometria wykreślna i grafika komputerowa CAD. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geometria wykreślna i grafika komputerowa CAD Nazwa modułu w języku angielskim
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 08/09 Kierunek studiów: Budownictwo Forma sudiów:
3. Model Kosmosu A. Einsteina
19 3. Model Kosmosu A. Einsteina Pierwszym rozwiązaniem równań pola grawitacyjnego w 1917 r. było równanie hiperpowierzchni kuli czterowymiarowej, przy założeniu, że materia kosmiczna tzw. substrat jest
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu E-E-0862-s1 Nazwa modułu Geometria i grafika inżynierska Nazwa modułu w języku angielskim
Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne
2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl
Grafika inżynierska geometria wykreślna. 11. Rzut cechowany.
Grafika inżynierska geometria wykreślna 11. Rzut cechowany. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 11. Rzut cechowany.
Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
Geometria i grafika komputerowa
Geometria i grafika komputerowa Anna Franczyk Katedra Geoinformatyki i Informatyki Stosowanej Wydział Geologii, Geofizyki i Ochrony Środowiska Akademia Górniczo Hutnicza Kraków Podstawowe informacje gdzie
Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej
Matematyka stosowana Zastosowania geometrii wykreślnej w praktyce inżynierskiej 1. Perspektywa dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka
AKADEMIA MORSKA w GDYNI
AKADEMIA MORSKA w GDYNI WYDZIAŁ MECHANICZNY Nr 13 Przedmiot: Grafika inżynierska I, II, III Kierunek/Poziom kształcenia: Forma studiów: Profil kształcenia: Specjalność: MiBM/studia pierwszego stopnia stacjonarne
Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014
Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014 Ćwiczenie nr 1 Temat: Rzutowanie prostokątne punktu, odcinka, wycinka płaszczyzny i prostej bryły przestrzennej.
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Grafika inżynierska Rok akademicki: 2014/2015 Kod: MIM-1-307-s Punkty ECTS: 3 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność: - Poziom
WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA
RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA DR INŻ. ELŻBIETA RUDCZYK-MALIJEWSKA Wydział Budownictwa i Inżynierii Środowiska
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2017/2018
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 07/08 Kierunek studiów: Budownictwo Forma sudiów:
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Grafika inżynierska i systemy CAD Rok akademicki: 2016/2017 Kod: MIC-1-208-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność:
Rzutowanie. dr Radosław Matusik. radmat
www.math.uni.lodz.pl/ radmat Warunki zaliczenia przedmiotu Na ćwiczeniach przez cały semestr będą realizowane dwa projekty w Unity (3D i 2D). Do uzyskania 3 z ćwiczeń wystarczy poprawnie zrealizować oba
Grafika komputerowa Wykład 4 Geometria przestrzenna
Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe
WPROWADZENIE DO PROBLEMATYKI ZAPISU KONSTRUKCJI MECHANICZNYCH.NORMALIZACJA. RZUTOWANIE PROSTOKĄTNE
Zapis i Podstawy Konstrukcji Wprowadzenie. Rzuty prostokątne 1 WPROWADZENIE DO PROBLEMATYKI ZAPISU KONSTRUKCJI MECHANICZNYCH.NORMALIZACJA. RZUTOWANIE PROSTOKĄTNE Zapis konstrukcji stanowi zbiór informacji
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 9 tygodni 6 godzin = 7 godziny Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna.
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Budownictwo Forma sudiów:
Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne
46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,
Podstawowe [P] zna przedmiotowe zasady oceniania omawia regulamin pracowni. omawia wyposażenie apteczki i sprzęt ppoż.
WYMAGANIA Z ZAJĘĆ TECHNICZNYCH W GIMNAZJUM NR 4 GLIWICE Osiągnięcia szczegółowe uczniów Dział podręcznika Temat lekcji Treści nauczania Wiadomości Umiejętności Podstawowe [P] Ponadpodstawowe [PP] Podstawowe
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
2. Wymagania wstępne w zakresie wiedzy, umiejętności oraz kompetencji społecznych (jeśli obowiązują):
WYŻSZA SZKOŁA UMIEJĘTNOŚCI SPOŁECZNYCH SYLABUS PRZEDMIOT Perspektywa i aksonometria I. Informacje ogólne 1. Nazwa przedmiotu: Perspektywa i aksonometria 2. Rodzaj przedmiotu - obowiązkowy 3. Poziom i kierunek
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ
PLAN WYNIKOWY Z MATEMATYKI DLA KLASY I ZASADNICZEJ SZKOŁY ZAWODOWEJ Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Liczby i wyrażenia. Uczeń: Uczeń: 1 Liczby naturalne i całkowite. - sprawnie
I. KARTA PRZEDMIOTU CEL PRZEDMIOTU
I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: GRAFIKA INŻYNIERSKA 2. Kod przedmiotu: Ki 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy
Temat 14 : Podstawowe wiadomości o rysunku technicznym. Prezentacja Pismo techniczne.pps 1. - język porozumiewawczy między inżynierem a konstruktorem. Jest znormalizowany, tzn. istnieją normy (przepisy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
Program nauczania zajęć technicznych Rysunek techniczny. Cele kształcenia wymagania ogólne zajęć technicznych. Rysunek techniczny
Program nauczania zajęć technicznych Rysunek techniczny Cele kształcenia wymagania ogólne zajęć technicznych Rysunek techniczny Jacek Odolczyk Gimnazjum im. św. Franciszka z Asyżu w Teresinie Strona 1
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Rok akademicki: 2014/2015 Kod: NIP s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Grafika inżynierska i rysunek techniczny Rok akademicki: 2014/2015 Kod: NIP-1-209-s Punkty ECTS: 3 Wydział: Metali Nieżelaznych Kierunek: Zarządzanie i Inżynieria Produkcji Specjalność: -
ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS.
Anna BŁACH, Piotr DUDZIK, Anita PAWLAK Politechnika Śląska Ośrodek Geometrii i Grafiki Inżynierskiej ul. Krzywoustego 7 44-100 Gliwice tel./ fax: 0-32 237 26 58, e-mail: anna.blach@polsl.pl, piotr.dudzik@polsl.pl,
Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum
Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku
Rok akademicki: 2013/2014 Kod: CIM s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Grafika inżynierska Rok akademicki: 2013/2014 Kod: CIM-1-106-s Punkty ECTS: 4 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów: Studia
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
Rok akademicki: 2016/2017 Kod: CIM s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Grafika inżynierska Rok akademicki: 2016/2017 Kod: CIM-1-106-s Punkty ECTS: 4 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów: Studia
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1
MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry
TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10
TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.
M10. Własności funkcji liniowej
M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji
Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość.
Grafika inżynierska geometria wykreślna 2. Przynależność. Równoległość. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
GEOMETRIA I GRAFIKA INŻYNIERSKA (1)
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TECHNIKI ŚWIETLNEJ GEOMETRIA I GRAFIKA INŻYNIERSKA (1) 1. WIADOMOŚCI WSTĘPNE 1.1. Informacje o wykładzie i warunkach zaliczenia
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE
RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
DLA KLAS 3 GIMNAZJUM
DLA KLAS 3 GIMNAZJUM ROLA RYSUNKU W TECHNICE Rysunek techniczny - wykonany zgodnie z przepisami i obowiązującymi zasadami - stał się językiem, którym porozumiewają się inżynierowie i technicy wszystkich
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony Program nauczania zgodnie z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
Kierunek studiów Elektrotechnika Studia I stopnia. Geometria i grafika inżynierska Rok:
0-68 Lublin tel. (+48 8) 538 47 / fax (+48 8) 538 45 80 Kierunek studiów Elektrotechnika Studia I stopnia Przedmiot: Geometria i grafika inżynierska Rok: II Semestr: 3 Forma studiów: Studia stacjonarne
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Algebra liniowa i geometria analityczna II Linear algebra and geometry II Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka
RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE
SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1
w jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego