ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII"

Transkrypt

1 WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty Monge a aksonometria Opracował: dr inż. Radosław Łyszkowski

2 Informacje ogólne Semestr Forma zajęć, liczba godzin (+ zaliczenie) razem wykłady ćwiczenia laboratoria ECTS I GRAFIKA INŻYNIERSKA 1. Podstawowe elementy przestrzeni, podstawy rzutowania prostokątnego, rzuty punktów, prostej, płaszczyzny, brył. 2. Przekroje brył płaszczyznami rzutującymi, aksonometria. PODSTAWY KONSTRUKCJI MASZYN 1. Projektowanie i rysowanie części maszyn, podstawowe zasady obliczeń. 2. Elementy projektowania węzłów konstrukcji. METROLOGIA WIELKOŚCI GEOMETRYCZNYCH 1. Metrologia wielkości geometrycznych, wzorce długości i kąta, przyrządy suwmiarkowe, mikrometryczne i czujniki. 2. Technika mierzenia, pomiary części maszyn o złożonym kształcie, zarządzanie jakością w inżynierii wytwarzania. MATERIAŁY INŻYNIERSKIE I TECHNIKI WYTWARZANIA 2 - prowadzący dr inż. Dariusz ZASADA

3 Tematy ćwiczeń TEMATY ĆWICZEŃ AUDYTORYJNYCH 1. Rzuty prostokątne w rysunkach technicznych. 2. Zasady zapisu kształtu części maszyn. 3. Rysunki złożeniowe. 4. Schematy konstrukcji, normy rysunkowe. 5. Komputerowe wspomaganie w projektowaniu inżynierskim (CAD). 6. Zasady doboru materiałów. 7. Dobór technik wytwarzania. TEMATY ĆWICZEŃ LABORATORYJNYCH 1. Obsługa systemu komputerowego wspomagania projektowania (CAD). 2. Projektowanie elementu maszyny - zapis konstrukcji z wykorzystaniem (CAD). 3. Metody termicznego spajania materiałów. 4. Sposoby obróbki skrawaniem. 5. Pomiary przyrządami suwmiarkowymi i mikrometrycznymi. 6. Pomiary mikroskopami. 7. Pomiary przyrządami czujnikowymi. 8. Stopy żelaza z węglem. 9. Metale kolorowe. 10. Obróbka cieplna. 11. Właściwości mechaniczne materiałów inżynierskich. 7 x 2 = 14 godzin 11 x 2 = 22 godziny 3

4 Informacje ogólne Literatura A. Bieliński Grafika inżynierska cz. I, Geometria wykreślna W. Jakubiec, J. Malinowski Metrologia wielkości geometrycznych G. Wojnar, P. Folęga, P. Czech Graficzny zapis konstrukcji maszyn L. Dobrzański Materiały inżynierskie i projektowanie materiałowe J. Dobrzański Rysunek techniczny A. Bober, M. Dudziak Zapis konstrukcji W. Szafrański Materiały pomocnicze do projektowania konstrukcji M. Gabrylewski, J. Gąsienica- Samek, I. Łosik ZASADY ZALICZANIA na podstawie: kolokwiów pisane po odbyciu wykładów z bloków 1-3 (RŁ) oraz 4 (DZ); wykonanych prac domowych; uczestnictwa w wykładach, a zwłaszcza poprawności i jakości wykonanych notatek (rysunków). Zaliczenie przedmiotu (uzyskanie wpisu) jest możliwe po zaliczeniu wykładów z cz. I. (bloki tematyczne 1-3) oraz cz. II (blok 4) a także wcześniejszym zaliczeniu ćwiczeń audytoryjnych i laboratoryjnych. 4 Mechaniczna Technologia Metali, ćwiczenia laboratoryjne

5 Pomoce rysunkowe HB (1) 10 kartek formatu A4 0.5 mm 5

6 297 mm Formaty arkuszy rysunkowych A3 A2 Wymiary: A5-148 x 210 A4-210 x 297 A3-297 x 420 A2-420 x 594 A1-594 x 841 A0-841 x 1189 A5 A4 A5 210 mm A1 6

7 Linie rysunkowe, wg PN-82/N Linia cienka 2. Linia gruba 3. Linia bardzo gruba s mm A3, A4 s mm ( mm) s 1 : s : s 2 = 1 : 2 : 4 (1 : 3 : 6) ciągła kreskowa punktowa; dwupunktowa falista zygzakowa 7

8 Elementy przestrzeni 1. Punkt 2. Prosta dwa punkty 3. Płaszczyzna trzy punkty nie leżące na jednej prostej, dwie nie pokrywające się proste równoległe, dwie proste przecinające się, prosta i nie leżący na niej punkt. A B C A B a b c a B 8

9 Elementy przestrzeni - przykłady Przez dany punkt P poprowadź prostą równoległą do ścian ABW i CDW ostrosłupa ABCDW P Wyznaczyć przekrój sześcianu ABCDEFGH płaszczyzną przechodzącą przez jego środek i równoległą do płaszczyzny wyznaczonej wierzchołkami A, C i H. E b R H c P F G N a E Belkę o przekroju w kształcie litery L przeciąć płaszczyzną wyznaczoną przez P Q punkty P, Q i R. k 1 K D O M C U S R k 2 A L B T 9

10 Zadanie domowe Belkę o przekroju w kształcie litery H (+) przeciąć dowolną sieczną płaszczyzną, wyznaczoną przez punkty A, B i C. P Q R 10

11 Odwzorowanie przestrzeni na płaszczyznę Punkt niewłaściwy S S D S C S = c d a b S = a b c d r = a 1 k = a 3 a 2 a 1 ' k a 3 ' a 2 ' 11

12 Punkt, prosta, płaszczyzna właściwa lub niewłaściwa 12

13 Rzutowanie środkowe (perspektywa) p m A p - rzutnia C S A C B m B A = S A m' p 13

14 Rzutowanie równoległe ukośne p S l A = S A p A l' A p Własności rzutu równoległego: 1. Rzutem punktu jest punkt, punkty rzutni p są swymi rzutami; 2. Rzutem prostej dowolnej jest prosta, natomiast rzutem prostej rzutującej jest punkt; 3. Rzutem płaszczyzny dowolnej jest cała rzutnia p, zaś rzutem płaszczyzny rzutującej jest prosta. 14

15 Rzutowanie równoległe ukośne Niezmienniki rzutowania to pewne właściwości figur, które w trakcie rzutowania nie ulegają zmianom, czyli są przenoszone bez zmiany z figury na jej rzut. Rzutowanie równoległe zachowuje: 1. Przynależność elementów; 2. Współliniowość elementów; 3. Równoległość prostych; 4. Stosunek podziału odcinka przez punkt; 5. Stosunek długości odcinków równoległych; 6. Metrykę figur leżących w płaszczyznach równoległych do rzutni. Rzutowanie równoległe jest odwzorowaniem jednoznacznym przestrzeni na płaszczyznę. Każdy punkt przestrzeni ma jeden obraz na rzutni, ale nie odwrotnie. 15

16 Rzutowanie prostokątne p S A A p Rzutowanie prostokątne jest szczególnym przypadkiem rzutowania równoległego i posiada wszystkie jego własności (zachowuje dotychczasowe niezmienniki) oraz własność charakterystyczną (kierunek rzutowania jest prostopadły do rzutni). 16

17 Rzutowanie prostokątne S 17 p Wykreślić rzut prostokątny ośmiościanu foremnego o danej krawędzi a, którego ściana ABF jest równoległa do rzutni.

18 Aksonometryczne układy rzutowania Dimetrią nazywamy układ aksonometryczny, w którym na dwóch osiach są jednakowe skróty, a izometrią układ o jednakowych skrótach na wszystkich trzech osiach. Izometria wojskowa - osie x' i y' są, skróty 1:1; Izometria równokątna - osie x', y' i z' dzielą kąt pełny na trzy równe części, skróty 1:1; Dimetria kawalerska - osie x' i z' są, a oś y' jest dwusieczną kąta, jaki tworzą osie x' i z', skróty osi y2:3 lub 1:2; Dimetria prawie prostokątna - osie x' i y' obrócone, skrót osi y1:2. 18

19 Aksonometria - przykłady z 1:1 W przyjętym układzie aksonometrycznym, wykreślić obraz ostrosłupa prawidłowego o wysokości h i boku a. y 1:1 x 3:4 z 1:1 W przyjętym układzie aksonometrycznym, wykreślić obraz belki o zadanym przekroju, ograniczony płaszczyzną przekrój przechodzącego przez punkty PRQ. x 1:3 y 1:1 19

20 Rzuty Monge'a S 2 I p 2 A A II p 1 - rzutnia pozioma i prostopadła do niej rzutnia pionowa p 2. x = p 1 p 2 nazywamy osią rzutów. Rzutnie p 1 i p 2 dzielą przestrzeń na cztery ćwiartki. S 1 x A p 1 IV III Punkty przestrzeni rzutujemy prostokątnie na rzutnie p 1 i p 2, wówczas punkt A' = p 1 AS 1 jest rzutem poziomym punktu A, a punkt A'' = p 2 AS 2 jest rzutem pionowym. 20

21 Odwzorowanie prostej i płaszczyzny S 2 I p 2 A A A A B B l l II A B l S 1 p 1 A A B l' x A B l' IV III 21

22 Szczególne położenia prostej Prosta lub płaszczyzna, która nie jest równoległa ani nie jest prostopadła do rzutni, ma położenie ogólne, w przeciwnym razie jest w położeniu szczególnym. Prostą do rzutni poziomej nazywamy prostą poziomą, a do rzutni poziomej prostą czołową. A'' B'' p B" p" m n" x A' x A" x x B' p' A' B' p' m' n' Prosta poziomo-rzutująca (pionowa) to prosta do rzutni poziomej, jej rzutem poziomym jest punkt, a pionowym prosta do osi x. Prosta pionowo-rzutująca (celowa) to prosta do rzutni pionowej, jej rzutem pionowym jest punkt, a poziomym prosta do osi x. 22

23 Szczególne położenia płaszczyzn Płaszczyzna poziomo-rzutującą to płaszczyzna do rzutni poziomej, jej rzutem poziomym jest prosta, a rzutem pionowym - rzutnia p 2. Płaszczyznę p 1 wyznacza trójkąt ABC. Rzut poziomy ABC jest odcinkiem prostej '. Kąt utworzony przez prostą ' i oś x jest kątem, jaki płaszczyzna tworzy z rzutnią pionową. A'' A' B'' B' C'' C' x ' Płaszczyzna pionowo-rzutująca to płaszczyzna do rzutni pionowej, jej rzutem pionowym jest prosta. Płaszczyznę do rzutni poziomej nazywamy płaszczyzną poziomą, do rzutni pionowej - płaszczyzną czołową, natomiast płaszczyznę do obu rzutni płaszczyzną profilową. A" B" C" " ' = " B' x x A' C' 23

24 Równoległość, prostopadłość Proste mające wspólny punkt niewłaściwy (ten sam kierunek) są prostymi równoległymi. Prosta i płaszczyzna są II jeśli mają wspólny punkt niewłaściwy (istnieje na płaszczyźnie taka prosta s 1, że jest II do s). Płaszczyzny mające wspólną prostą niewłaściwą są płaszczyznami II (dwie proste przecinające się jednej płaszczyzny, muszą mieć II odpowiedniki na drugiej). a c Proste, których punkty niewłaściwe tworzą kąt prosty są prostymi. Jeżeli prosta jest do dwu dowolnych prostych danej płaszczyzny, to jest ona również do tej płaszczyzny. Jeżeli płaszczyzna zawiera prostą do drugiej płaszczyzny, to są one. s s 1 t t 1 T S b 24

25 Wynik przebicia Płaszczyzny rzutującej prostą Niech dana będzie płaszczyzna poziomo-rzutująca i dowolna prosta l o rzutach l i l". Punkt P = I należy jednocześnie do płaszczyzny i do prostej l, a więc rzut poziomy P' punktu P leży w przecięciu ' i l' tzn. P' = ' l'. Rzut pionowy P" punktu P otrzymujemy przez odniesienie P' na rzut pionowy I" prostej l. l" ł" P" Q" k" l" l l" P P" p 2 x l' x P' Q' ł' p 1 l' P' ' = k' Płaszczyzny rzutującej płaszczyzną dowolną Przyjmujemy płaszczyznę poziomo-rzutującą i płaszczyznę dowolną wyznaczoną prostymi równoległymi l i ł. Krawędź dwóch płaszczyzn wyznaczają dwa rożne punkty wspólne tych płaszczyzn. Punkty P i Q wyznaczają krawędź k płaszczyzny i, której rzut poziomy k' pokrywa się z rzutem poziomym ' płaszczyzny, a k" wyznaczają punkty P" i Q". 25

26 Elementy wspólne Przez dany punkt P poprowadzić płaszczyznę prostopadłą do danej prostej l. Wyznaczyć przenikanie się trójkątów ABC i KLM. 26

27 Przebicia i przekroje brył Wyznaczyć punkt przebicia graniastosłupa prostego prostą l. Przeciąć ostrosłup płaszczyzną pionowo-rzutująca. 27

28 Trzy rzutnie p 2 A z A z A A A p 3 x x y p 1 A y A y p 3 rzutnia boczna 28

29 Rzuty figur Wykreślić trzy rzuty sześcianu o krawędzi a ustawionego na rzutni poziomej. Wykreślić rzuty ostrosłupa o podstawie na rzutni poziomej z odciętą płaszczyzną poziomorzutującą jego częścią. 29

30 Rzutowanie metodą europejską 30

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.

Bardziej szczegółowo

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek

Bardziej szczegółowo

Geometria wykreślna 7. Aksonometria

Geometria wykreślna 7. Aksonometria Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the

Bardziej szczegółowo

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu. Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość.

Grafika inżynierska geometria wykreślna. 2. Przynależność. Równoległość. Grafika inżynierska geometria wykreślna 2. Przynależność. Równoległość. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje. Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...

Bardziej szczegółowo

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2. WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów.

Grafika inżynierska geometria wykreślna. 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. Grafika inżynierska geometria wykreślna 5. Wielościany. Punkty przebicia. Przenikanie wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka

Bardziej szczegółowo

Spis treści. Słowo wstępne 7

Spis treści. Słowo wstępne 7 Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie Przykładowy rzut (od lewej) izometryczny, dimetryczny ukośny i dimetryczny prostokątny Podział aksonometrii ze względu na kierunek rzutowania:

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Grafika inżynierska Rok akademicki: 2014/2015 Kod: MIM-1-307-s Punkty ECTS: 3 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność: - Poziom

Bardziej szczegółowo

METODA RZUTÓW MONGE A (II CZ.)

METODA RZUTÓW MONGE A (II CZ.) RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,

Bardziej szczegółowo

Geometria wykreślna. 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 6. Punkty przebicia, przenikanie wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 6. Punkty

Bardziej szczegółowo

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr

Bardziej szczegółowo

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem

przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem przebicie ostrosłupa prostą, przecięcie graniastosłupa płaszczyzną, przenikanie graniastosłupa z ostrosłupem WSA - wykład VII w dn. 12. I. 2014 r: Przenikanie wzajemne brył nieobrotowych (graniastosłupów,

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

Imię i NAZWISKO:... Grupa proj.: GP... KOLOKWIUM K1 X 1. Geometria Wykreślna 2018/19. z plaszczyznami skarp o podanych warstwicach.

Imię i NAZWISKO:... Grupa proj.: GP... KOLOKWIUM K1 X 1. Geometria Wykreślna 2018/19. z plaszczyznami skarp o podanych warstwicach. A1 Zad. 1. Podaj definicję rzutu przestrzeni 3D na płaszczyznę D Zad.. Wymień wszystkie znane sposoby definicji płaszczyzny w przestrzeni 3D Zad. 3. Podaj definicję rzutu cechowanego Zad. 4. Co daje założenie

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Grafika inżynierska i systemy CAD Rok akademicki: 2014/2015 Kod: MIC-1-208-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność:

Bardziej szczegółowo

DLA KLAS 3 GIMNAZJUM

DLA KLAS 3 GIMNAZJUM DLA KLAS 3 GIMNAZJUM ROLA RYSUNKU W TECHNICE Rysunek techniczny - wykonany zgodnie z przepisami i obowiązującymi zasadami - stał się językiem, którym porozumiewają się inżynierowie i technicy wszystkich

Bardziej szczegółowo

Rzuty, przekroje i inne przeboje

Rzuty, przekroje i inne przeboje Rzuty, przekroje i inne przeboje WYK - Grafika inżynierska Piotr Ciskowski, Sebastian Sobczyk Wrocław, 2015-2016 Rzuty prostokątne Rzuty prostokątne pokazują przedmiot z kilku stron 1. przedmiot ustawiamy

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany.

Grafika inżynierska geometria wykreślna. 11. Rzut cechowany. Grafika inżynierska geometria wykreślna 11. Rzut cechowany. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 11. Rzut cechowany.

Bardziej szczegółowo

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1

Bardziej szczegółowo

Geometria wykreślna. Dr inż. Renata Górska

Geometria wykreślna. Dr inż. Renata Górska Dr inż. Renata Górska rgorska@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej L-5 Katedra Metod Obliczeniowych w Mechanice L-52 Projekty (sala 404 WIL): dr inż. Renata Górska dr

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: CIM s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: CIM s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Grafika inżynierska Rok akademicki: 2013/2014 Kod: CIM-1-106-s Punkty ECTS: 4 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów: Studia

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: CIM s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2016/2017 Kod: CIM s Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Grafika inżynierska Rok akademicki: 2016/2017 Kod: CIM-1-106-s Punkty ECTS: 4 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Specjalność: Poziom studiów: Studia

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

płaskie rzuty geometryczne

płaskie rzuty geometryczne płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny

Bardziej szczegółowo

Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014

Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014 Rok I studia stacjonarne Tematy ćwiczeń z Grafiki inżynierskiej Rok akademicki 2013/2014 Ćwiczenie nr 1 Temat: Rzutowanie prostokątne punktu, odcinka, wycinka płaszczyzny i prostej bryły przestrzennej.

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 9. Aksonometria

Grafika inżynierska geometria wykreślna. 9. Aksonometria Grafika inżynierska geometria wykreślna 9. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr I 9. Aksonometria

Bardziej szczegółowo

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy Temat 14 : Podstawowe wiadomości o rysunku technicznym. Prezentacja Pismo techniczne.pps 1. - język porozumiewawczy między inżynierem a konstruktorem. Jest znormalizowany, tzn. istnieją normy (przepisy)

Bardziej szczegółowo

Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Geometria i grafika inżynierska Rok akademicki: 2015/2016 Kod: EEL-1-205-n Punkty ECTS: 4 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika

Bardziej szczegółowo

Trójwymiarowa grafika komputerowa rzutowanie

Trójwymiarowa grafika komputerowa rzutowanie Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA

WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA 311206 Lp Wiadomości wstępne, normy rysunkowe 1 Lekcja organizacyjna

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE WPROWADZENIE Wykonywanie rysunku technicznego - zastosowanie Rysunek techniczny przedmiotu jest najczęściej podstawą jego wykonania, dlatego odwzorowywany przedmiot nie powinien

Bardziej szczegółowo

WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA

WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA RYSUNEK TECHNICZNY I GEOMETRIA WYKREŚLNA WYKŁAD I RZUT RÓWNOLEGŁY NEZMIENNIKI RZUTU RÓWNOLEGŁEGO RZUT PROSTOKĄTNY AKSONOMETRIA DR INŻ. ELŻBIETA RUDCZYK-MALIJEWSKA Wydział Budownictwa i Inżynierii Środowiska

Bardziej szczegółowo

Wytyczne co do zaliczenia wykładów i ćwiczeń Niezbędne pomoce rysunkowe

Wytyczne co do zaliczenia wykładów i ćwiczeń Niezbędne pomoce rysunkowe UWAGI WSTĘPNE Wytyczne co do zaliczenia wykładów i ćwiczeń Zaliczenie całości przedmiotu odbywa się na podstawie oceny cząstkowych z I jego części, obejmującej tematy: Grafika inżynierska, Podstawy konstrukcji

Bardziej szczegółowo

Wstęp do grafiki inżynierskiej

Wstęp do grafiki inżynierskiej Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Grafika inżynierska i systemy CAD Rok akademicki: 2016/2017 Kod: MIC-1-208-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Ciepła Specjalność:

Bardziej szczegółowo

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c).

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c). Konstrukcje podstawowe 1. Konstrukcja elementu przynależnego (KEP) 1.1. przynależność punktu do prostej (typowe zadania to wykreślenie punktu leżącego na prostej A m oraz wykreślenia prostej przechodzącej

Bardziej szczegółowo

WPROWADZENIE DO PROBLEMATYKI ZAPISU KONSTRUKCJI MECHANICZNYCH.NORMALIZACJA. RZUTOWANIE PROSTOKĄTNE

WPROWADZENIE DO PROBLEMATYKI ZAPISU KONSTRUKCJI MECHANICZNYCH.NORMALIZACJA. RZUTOWANIE PROSTOKĄTNE Zapis i Podstawy Konstrukcji Wprowadzenie. Rzuty prostokątne 1 WPROWADZENIE DO PROBLEMATYKI ZAPISU KONSTRUKCJI MECHANICZNYCH.NORMALIZACJA. RZUTOWANIE PROSTOKĄTNE Zapis konstrukcji stanowi zbiór informacji

Bardziej szczegółowo

Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku

Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku jego wymiary (długość, szerokość, grubość). Wymiary te

Bardziej szczegółowo

E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

E-E-0862-s1. Geometria i grafika inżynierska. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu E-E-0862-s1 Nazwa modułu Geometria i grafika inżynierska Nazwa modułu w języku angielskim

Bardziej szczegółowo

(a) (b) (c) o1" o2" o3" o1'=o2'=o3'

(a) (b) (c) o1 o2 o3 o1'=o2'=o3' Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że

Bardziej szczegółowo

Odwzorowanie rysunkowe przedmiotów w rzutach

Odwzorowanie rysunkowe przedmiotów w rzutach Odwzorowanie rysunkowe przedmiotów w rzutach Rzutem nazywamy rysunkowe odwzorowanie przedmiotu lub bryły geometrycznej na płaszczyźnie rzutów, zwanej rzutnią, którą jest płaszczyzna rysunku. Rzut każdej

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2019/2020 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 209/2020 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r.

Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geometria wykreślna i grafika komputerowa CAD Nazwa modułu w języku angielskim

Bardziej szczegółowo

Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ

Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Po co nam geometria? Monika Sroka-Bizoń OŚRODEK GEOMETRII I GRAFIKI INŻYNIERSKIEJ Sesja Naukowa objęta honorowym patronatem przez Jego Magnificencję Rektora Politechniki Śląskiej prof. dr hab. inż. Andrzeja

Bardziej szczegółowo

GEOMETRIA I GRAFIKA INŻYNIERSKA (1)

GEOMETRIA I GRAFIKA INŻYNIERSKA (1) WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI KATEDRA URZĄDZEŃ ELEKTRYCZNYCH I TECHNIKI ŚWIETLNEJ GEOMETRIA I GRAFIKA INŻYNIERSKA (1) 1. WIADOMOŚCI WSTĘPNE 1.1. Informacje o wykładzie i warunkach zaliczenia

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Opanowanie sposobu

Bardziej szczegółowo

Kierunek studiów Elektrotechnika Studia I stopnia. Geometria i grafika inżynierska Rok:

Kierunek studiów Elektrotechnika Studia I stopnia. Geometria i grafika inżynierska Rok: 0-68 Lublin tel. (+48 8) 538 47 / fax (+48 8) 538 45 80 Kierunek studiów Elektrotechnika Studia I stopnia Przedmiot: Geometria i grafika inżynierska Rok: II Semestr: 3 Forma studiów: Studia stacjonarne

Bardziej szczegółowo

Geometria wykreślna. 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław

Geometria wykreślna. 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław Geometria wykreślna 4. Związki kolineacji i powinowactwa. Przekroje wielościanów. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr

Bardziej szczegółowo

AKADEMIA MORSKA w GDYNI

AKADEMIA MORSKA w GDYNI AKADEMIA MORSKA w GDYNI WYDZIAŁ MECHANICZNY Nr 13 Przedmiot: Grafika inżynierska I, II, III Kierunek/Poziom kształcenia: Forma studiów: Profil kształcenia: Specjalność: MiBM/studia pierwszego stopnia stacjonarne

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: NIP s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2014/2015 Kod: NIP s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Grafika inżynierska i rysunek techniczny Rok akademicki: 2014/2015 Kod: NIP-1-209-s Punkty ECTS: 3 Wydział: Metali Nieżelaznych Kierunek: Zarządzanie i Inżynieria Produkcji Specjalność: -

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY

GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY Instytut Geologii, Uniwersytet im. A. Mickiewicza w oznaniu GEOMETRIA WYKREŚLNA I RYSUNEK TECHNICZNY prof. UAM, dr hab. Jędrze Wierzbicki racownia Geologii Inżynierskie i Geotechniki p. 251, e-mail: wi@amu.edu.pl

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Grafika inżynierska I Kod przedmiotu Status przedmiotu: obowiązkowy MBM 1 N 0 1 19-0_0 Język wykładowy:

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne 2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.

Bardziej szczegółowo

Rzutowanie. dr Radosław Matusik. radmat

Rzutowanie. dr Radosław Matusik.  radmat www.math.uni.lodz.pl/ radmat Warunki zaliczenia przedmiotu Na ćwiczeniach przez cały semestr będą realizowane dwa projekty w Unity (3D i 2D). Do uzyskania 3 z ćwiczeń wystarczy poprawnie zrealizować oba

Bardziej szczegółowo

Kod modułu Geometria wykreślna i grafika komputerowa CAD. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy)

Kod modułu Geometria wykreślna i grafika komputerowa CAD. kierunkowy (podstawowy / kierunkowy / inny HES) obowiązkowy (obowiązkowy / nieobowiązkowy) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012 r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Geometria wykreślna i grafika komputerowa CAD Nazwa modułu w języku angielskim

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: [1]. Grafika inżynierska Engineering Graphics Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia I stopnia forma studiów: studia stacjonarne

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2018/2019 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 08/09 Kierunek studiów: Budownictwo Forma sudiów:

Bardziej szczegółowo

Grafika inżynierska i projektowanie geometryczne WF-ST1-GI--12/13Z-GRAF. Liczba godzin stacjonarne: Wykłady: 15 Zajęcia projektowe: 40

Grafika inżynierska i projektowanie geometryczne WF-ST1-GI--12/13Z-GRAF. Liczba godzin stacjonarne: Wykłady: 15 Zajęcia projektowe: 40 Karta przedmiotu Wydział: Wydział Finansów Kierunek: Gospodarka przestrzenna I. Informacje podstawowe Nazwa przedmiotu Grafika inżynierska i projektowanie geometryczne Nazwa przedmiotu w j. ang. Język

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Budownictwo Forma

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Grafika inżynierska Engineering Graphics Kierunek: Zarządzanie i Inżynieria Produkcji Rodzaj przedmiotu: Poziom studiów: obowiązkowy studia I stopnia Rodzaj zajęć: Wyk. Ćwicz. Lab. Sem.

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: GRAFIKA INŻYNIERSKA 2. Kod przedmiotu: Ki 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja

Bardziej szczegółowo

RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA

RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA WYKŁAD 2 dr inŝ. Beata Sadowska 1. Zasady rzutowania elementów i obiektów budowlanych 2. Rzuty budynku 3. Wymiarowanie rysunków architektoniczno-budowlanych Normy

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019

Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,

Bardziej szczegółowo

Spis treści. www.wsip.pl

Spis treści. www.wsip.pl Spis treści Wstęp, czyli trochę o historii i znaczeniu rysunku technicznego... 5 Rozdział 1. Prawie wszystko o rysunkach budowlanych... 8 Projekt budowlany co to takiego? 8 Projekt zagospodarowania działki

Bardziej szczegółowo

Rysunek Techniczny. Podstawowe definicje

Rysunek Techniczny. Podstawowe definicje Rysunek techniczny jest to informacja techniczna podana na nośniku informacji, przedstawiona graficznie zgodnie z przyjętymi zasadami i zwykle w podziałce. Rysunek Techniczny Podstawowe definicje Szkic

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

Podstawowe [P] zna przedmiotowe zasady oceniania omawia regulamin pracowni. omawia wyposażenie apteczki i sprzęt ppoż.

Podstawowe [P] zna przedmiotowe zasady oceniania omawia regulamin pracowni. omawia wyposażenie apteczki i sprzęt ppoż. WYMAGANIA Z ZAJĘĆ TECHNICZNYCH W GIMNAZJUM NR 4 GLIWICE Osiągnięcia szczegółowe uczniów Dział podręcznika Temat lekcji Treści nauczania Wiadomości Umiejętności Podstawowe [P] Ponadpodstawowe [PP] Podstawowe

Bardziej szczegółowo

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Mechanika i Budowa Maszyn I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2015/2016

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Kryteria oceniania z matematyki Klasa III poziom podstawowy

Kryteria oceniania z matematyki Klasa III poziom podstawowy Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi

Bardziej szczegółowo

Plan wynikowy klasa 3. Zakres podstawowy

Plan wynikowy klasa 3. Zakres podstawowy Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA

Bardziej szczegółowo

ARKUSZ VIII

ARKUSZ VIII www.galileusz.com.pl ARKUSZ VIII W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Iloczyn liczb 2+ 3 i odwrotności liczby 2 3 jest równy A) 2 3 B) 1 C) 2 3 D) 2+

Bardziej szczegółowo

SZa 98 strona 1 Rysunek techniczny

SZa 98 strona 1 Rysunek techniczny Wstęp Wymiarowanie Rodzaje linii rysunkowych i ich przeznaczenie 1. linia ciągła cienka linie pomocnicze, kreskowanie przekrojów, linie wymiarowe, 2. linia ciągła gruba krawędzie widoczne 3. linia kreskowa

Bardziej szczegółowo

WSTSP. str. 1, Wstęp... t e Elementy niewłaściwe p_r o_a_t_ojk_jjb_jtt_e_;_. Rozdział I. Punkt, prosta i płaszczyzna,,

WSTSP. str. 1, Wstęp... t e Elementy niewłaściwe p_r o_a_t_ojk_jjb_jtt_e_;_. Rozdział I. Punkt, prosta i płaszczyzna,, - 640 - \ S P I S TREŚCI WSTSP. str. 1, Wstęp.... t... 1 2 e Elementy niewłaściwe... 1 CZjjlŚó I.! i f R aju. t y p_r o_a_t_ojk_jjb_jtt_e_;_ Rozdział I. Punkt, prosta i płaszczyzna,, 3. Rauty punktów właściwych...

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE. Grafika inżynierska. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Marek Krynke. ogólnoakademicki.

PRZEWODNIK PO PRZEDMIOCIE. Grafika inżynierska. Logistyka (inżynierskie) niestacjonarne. I stopnia. dr inż. Marek Krynke. ogólnoakademicki. Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Grafika inżynierska Logistyka (inżynierskie) niestacjonarne I stopnia

Bardziej szczegółowo