WSTĘPNE UWAGI O WYZNACZANIU GRANICY EFEKTYWNOŚCI UKŁADÓW TRANSPORTOWYCH PRELIMINARY NOTES ON DETERMINING EFFICIENCY BORDER OF TRANSPORT SYSTEMS
|
|
- Laura Pawłowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Sławomr Dorosewcz Instytut Transportu Samochodowego WSTĘPNE UWAGI O WYZNACZANIU GRANICY EFEKTYWNOŚCI UKŁADÓW TRANSPORTOWYCH W artykule zaprezentowano semparametryczną modyfkację metody obwedn danych (Data Envelopment Analyss, DEA), służącą pomarow efektywnośc funkcjonowana tych sektorów gospodark, których produkcja zależy od welkośc produkcj globalnej. Metoda ta, w przypadku jej zastosowana do danych przekrojowych dla gospodarek różnych krajów, może służyć do oszacowana kształtu grancy technologcznej dla wspomnanych sektorów. PRELIMINARY NOTES ON DETERMINING EFFICIENCY BORDER OF TRANSPORT SYSTEMS The paper presents a semparametrc modfcaton of the Data Envelopment Analyss for measurng the effectveness of a sector, whose producton depends on the sze of ts global output. Ths method appled to cross-sectonal data from dfferent economes can be used to estmate the shape of the world technologcal fronter for consdered sector.
2 Transport Samochodowy Uwag wstępne W nnejszej pracy proponujemy, bazującą na metodze obwedn danych (Data Envelopment Analyss, DEA), semparametryczną metodę analzy wynków osąganych przez wybrany sektor gospodark na przykład sektor przewozów (pasażerskch lub towarowych). DEA jest jedną z metod analzowana efektywnośc układów gospodarczych wskazywana tych, które charakteryzują sę najlepszym charakterystykam w tym względze (por. np. źródłową pracę [2]). Pod pojęcem efektywnośc będzemy rozumel tzw. efektywność technologczną, czyl efektywność procesu przekształcana nakładów w produkty fnalne procesu wytwarzana 1. Sama zaś efektywność danej jednostk-układu gospodarczego, jeśl rozumeć ją w sense Pareto, oznacza, że żadna pozycja zaangażowanych tam nakładów uzyskanych efektów ne może być poprawona bez pogorszena nnych pozycj wspomnanych nakładów lub efektów [5]. Metoda DEA posługuje sę pojęcem efektywnośc względnej, szacownej w drodze porównań efektywnośc badanej jednostk (układu gospodarczego) z efektywnoścą uzyskwaną w nnych, branych aktualne pod uwagę, jednostkach. Dokładnej rzecz ujmując, daną jednostkę uważa sę za efektywną, jeśl stosując technologe wytwarzana dostępne we wszystkch analzowanych układach gospodarczych ne jest możlwa poprawa uzyskwanych w tej jednostce efektów [5]. W praktyce stosowana jest zwykle neparametryczna wersja metody, w której przyjmuje sę mnmalną lczbę założeń odnośne funkcj produkcj opsującej relacje nakładów uzyskwanych wynków. Metoda DEA w takm zakrese była jest stosowana w analzach różnych sektorów gospodark, np. do oceny efektywnośc organzacj non proft [1], podmotów sektora energetycznego [7], banków [2, 8], funduszy nwestycyjnych [1, 4, 6, 9]. W nektórych sektorach gospodark, często także w sektorze transportowym lub jego wydzelonych składowych, często trudno o szczegółową specyfkację wspomnanych efektów, a przede wszystkm nakładów. Jeśl jednak można przyjąć, ż produkcja badanego sektora jest funkcją produkcj całej gospodark, to możlwa staje sę, przeprowadzona w duchu metody DEA, analza wynków tego sektora na tle wynków całej gospodark 2. Pokazane tego stanow zasadnczy cel kolejnej częśc pracy. Jej perwszą część pośwęcmy metodze DEA, drugą rozważanom odnoszącym sę do analzy pozycj wyróżnonego sektora. 2. Ops procedury 2.1. Metoda DEA Przedmotem analzy jest pewna lczba jednostek. Na użytek nnejszej pracy można je uważać za (makro)układy gospodarcze, np. gospodark poszczególnych krajów lub regonów. Procesy wytwarzana opsane są welkoścą ponoszonych nakładów (loścą wykorzystywanych czynnków produkcj) uzyskwanych wynków (welkoścą 1 W analzach efektywnośc procesów wytwarzana w skal całych gospodarek zwykle analzowane są średne produktywnośc poszczególnych czynnków produkcj wyrażone welkoścą produkcj do welkośc wykorzystanych czynnków (Debreu Farell). W nnych przypadkach np. analzach mezo- lub mkroekonomcznych zwykle berze sę pod uwagę welkośc stosowne zdefnowanych efektów ponesonych nakładów [5]. 2 Wydaje sę, że stneją pewne przesłank śwadczące, ż z dobrą dokładnoścą produkcja sektora transportu (towarowego) jest funkcją produktu krajowego brutto (por. np. [3]). 6
3 Wstępne uwag wyznaczanu produkcj). W okrese do którego odnoszą sę rozważana, jednostka ( I ) jest scharakteryzowana wektorem nakładów x oraz welkoścą produkcj y. Bez zmnejszena ogólnośc, zwłaszcza z makroekonomcznego punktu wdzena, można założyć, ż relację nakładów ( x ) wynków ( y ) w efektywnym układze gospodarczym opsuje funkcja produkcj y F(x), natomast take relacje w obserwowanych, nekoneczne efektywnych, układach mają postać y F(x), gdze parametr ( 0 1) stanow swostą marę efektywnośc: przypadek 1 oznacza pełną efektywność, 0 całkowty jej brak. Identyfkacja funkcj F jest w praktyce co najmnej trudna, jeśl w ogóle możlwa. Wymagałaby bowem dekompozycj procesów produkcyjnych aż do pozomu mkroskal szczegółowej analzy poszczególnych etapów procesów wytwarzana, co w przypadku złożonych układach gospodarczych ne jest w zasadze wykonalne. Szczęślwe, przyjęce założena o stałych efektach skal (tj. -krotna zmana nakładów czynnków produkcj prowadz do -krotnej zmany welkośc produkcj dla 0 ) pozwala wskazać jednostk efektywne bez odwoływana sę do konkretnej postac funkcj produkcj (jedynym czynonym założenem jest, ż jest funkcją rosnącą jednorodną stopna 1). Metoda DEA pozwala wskazać te jednostk, które wśród analzowanych są najbardzej efektywne które tym samym można uznać (w danym okrese) za najblższe maksymalnej efektywnośc wytwarzana, czyl grancy technologcznej. Zwykle trudno oczekwać, ż wyłonone jednostk określają wspomnaną grancę. Najprawdopodobnej ne jest to prawdą zawsze można bowem oczekwać, że w wynku usprawneń w mkro- czy mezoskal, efektywność wskazanych układów gospodarczych można jeszcze polepszyć. Analza efektywnośc jednostk scharakteryzowanej welkoścam nakładów wynków y opera sę na porównanu welkośc jej produkcj z potencjalne możlwą do wyznaczena przy dostępnych nakładach. Kluczowe znaczene ma przy tym spostrzeżene, ż jednorodność funkcj produkcj oraz dopuszczene swobodnego transferu technolog pomędzy badanym jednostkam oznacza, ż nakłady y I I x generują produkcję I x F( x ) y. (1) Tym samym, wyznaczene tej maksymalnej produkcj wymaga rozwązana lnowego zadana programowana matematycznego postac: przy warunkach (pw.): Welkość I y max, x (2) x x I, (3) 0, I. (4) y/ y, (5) 7
4 Transport Samochodowy której manownk jest maksymalną wartoścą funkcj w zadanu (2-4), defnuje prostą marę efektywnośc. W każdym przypadku mamy 0 1, przy czym wartość mnejsza od jednośc oznacza, ż badany układ ne jest efektywny, jednostkowa wartość odpowada natomast układow, który w najwększym stopnu można uznać za efektywny. Równoważnym względem (2-4) narzędzem analzy efektywnośc jest zadane: pw.: max, (6) x x I, (7) y y I, (8) 0, I. (9) Wartość funkcj celu tego zadana pokrywa sę z (5). Rozwązane szeregu powyższych zadań defnuje grancę technologczną, czyl zbór nakładów potencjalne najlepszych wynków, które mogą zostać osągnęte: x, y / : S R, (10) gdze S x y I I, I : 0,. (11) Ta część procedury stanow klasyczną kwntesencję metody DEA ma charakter neparametryczny. Założene o stałych korzyścach skal pozwala, nezależne od konkretnej postac (jednorodnej) funkcj produkcj, sprowadzć analzę efektywnośc produkcj do rozwązana cągu zadań programowana lnowego. Zadana te mają tą samą postać nezależne od konkretnej postac (jednorodnej) funkcj produkcj Analza pozycj wyróżnonego sektora Sformułujemy obecne klka uwag odnoszących sę do analzy pozycj zajmowanej w gospodarce przez jej określoną część, roboczo zwaną dalej sektorem. Sektor tak, może być w zasadze dowolne zdefnowany przykładowo może obejmować sferę przewozów towarowych albo pasażerskch, czy też wydzelone, pomnejsze ch segmenty. Klasyczna analza efektywnośc sektora wymaga, o czym już psalśmy, zestawena porównań efektów (produkcj) towarzyszących m nakładów. W welu jednak przypadkach mogą pojawć sę problemy z odpowedno dokładnym oszacowanem tych kategor, natomast łatwejszym zadanem w szczególnośc obarczonym mnejszym błędam kosztam pozyskwana danych może być porównane produkcj gospodark jej analzowanego sektora, o le stneje dostateczne dokładna zależność pomędzy nm. Przyjmjmy, że taka zależność stneje, a węc produkcja badanego sektora jest funkcją produkcj globalnej całej gospodark. Udzał produkcj sektora w produkcj ogółem defnuje jego pozycję w całym układze gospodarczym. Postulowana pozycja pownna być w nektórych przypadkach możlwe najbardzej znacząca (najwększa), w nnych zaś przecwne mnmalna. 8
5 Wstępne uwag wyznaczanu Proponowany sposób analzy pozycj wydzelonego sektora wykorzystuje pewne elementy metody DEA. W przecweństwe do nej, ma jednak charakter parametryczny z uwag na postulowaną funkcyjną zależność produkcj sektorowej oraz produkcj globalnej. Założymy, że w każdej analzowanej gospodarce ( I ) produkcja, T, wyróżnonego sektora zależy jedyne od welkośc produkcj globalnej ( y ) tej gospodark: T T ( y ), (12) gdze składnk jest zmenną losową o rozkładze prawdopodobeństwa nezależnym od y zerowej wartośc oczekwanej 3. Jeśl, jak w metodze DEA, przyjąć możlwość swobodnego transferu czynnków produkcj, to przy welkośc nakładów równej I w produkcj globalnej, I y, wynos I T ( y ) I x. y, udzał produkcj transportowej W przypadku, gdy udzał ten pownen być możlwe najwększy, dla układu gospodarczego o wektorze nakładów/wynków ( x, y ) odpowednkem zadana (2-4) jest następujący nelnowy problem programowana matematycznego: pw.: (13) max, (14) x x I, (15) y y I, (16) T ( ), I y y (17) 0, 0, I. (18) I Najlepsza pozycja badanego sektora jest określona przez maksymalną wartość funkcj celu (14), natomast granca najlepszych osągalnych pozycj badanego sektora jest zdefnowana jako zbór wyznaczony przez maksymalne welkośc produkcj sektorowej: y, max x I T ( y : y 0, (19) 3 Oszacowana zależnośc (12) dla różnych krajów sugerują, że T ne jest funkcją jednorodną (por. [3]). Dokładnej, -krotny wzrost wartośc produkcj globalnej skutkuje zwykle wolnejszym nż lnowy wzrostem welkośc przewozów towarowych. 9
6 Transport Samochodowy gdze są optymalnym wartoścam zmennych decyzyjnych (, I ) w zadanu (14-18), natomast maksmum w wyrażenu (19) oblczane jest po zborze tych wszystkch wartośc x dla których zadane (14-18) jest nesprzeczne. Jeśl udzał produkcj sektora w produkce ogółem pownen być możlwe najmnejszy, odpowednkem (14-18) jest zadane, w którym kryterum optymalnośc oraz zwrot nerównośc w warunku (17) są przecwne. W określenu grancy efektywnośc zamast max " oblczane jest stosowne mnmum. " x 3. Uwag końcowe Oszacowana grancy (19) mogą zostać wykorzystane w badanach porównawczych, manowce w tych, w których przedmotem rozważań jest relacja całej gospodark jej wyróżnonego sektora. Rozwązane szeregu zadań (14-18) pozwala tym dokładnej, m wększy jest zbór analzowanych układów oszacować pozycje wyróżnonego sektora w badanych gospodarkach, przy okazj tworząc stosowny ch rankng. Tego typu oblczena mogą węc pośredno, zwłaszcza w przypadku nepełnych twardych danych o welkośc nakładów wynków, posłużyć do sformułowana wstępnych wnosków na temat efektywnośc sektora. Badana take, powtarzane w różnych okresach, pozwalają na prześledzene zman pozycj badanego sektora określene w jakm stopnu wynkają one ze zwększena efektywnośc jego lub całej gospodark, w jakm zaś zmany te wynkają ze zwykłej akumulacj czynnków produkcj. Podkreślmy, ż proponowana procedura może zostać zastosowana do badań w zasadze dowolnego sektora gospodark nezależne od jego welkośc natury; jedynym ogranczenem jest dobrze umotywowana (np. przy zastosowanu narzędz ekonometrycznych) zależność wynków tego sektora od produktu globalnego. Postać funkcyjna tej zależnośc może także uwzględnać łączne nakłady czynnków produkcj stosowna modyfkacja procedury jest natychmastowa. LITERATURA: [1] A. Basso and S. Funar. A data envelopment analyss approach to measure the mutual fund performance. European Journal of Operatonal Research, 135: , [2] A. Charnes, W.W. Cooper, and E. Rhodes. Measurng the effcency of decson makng unts. European Journal of Operatonal Research, 3: , [3] S. Dorosewcz. Konunktura w transporce. Metodyka badań, wynk, modele. Instytut Transportu Samochodowego, [4] D. Galagedera and P. Slvapulle. An Australan mutual fund performance apprasal usng data envelopment analyss. Manageral Fnance, 9:60 73, [5] G. Kozuń-Ceślak. Wykorzystane metody DEA do oceny efektywnośc w usługach sektora publcznego. Wadomośc Statystyczne, 3, [6] B. Murth, Y. Cho, and P. Desa. Effcency of mutual funds and portfolo performance measurement: A non-parametrc approach. European Journal of Operatonal Research, 98: , [7] A Prędk. Analza efektywnośc za pomocą metody DEA: podstawy formalne lustracja ekonomczna. Przegląd Statystyczny, 1:87 100, [8] Y.B. Yun, H. Nakayama, and T. Tanno. A generalzed model for data envelopment analyss. European Journal of Operatonal Research, 157:87 105, [9] A. Zamojska. Zastosowane metody DEA w ocene efektywnośc zarządzana portfelem funduszu. Taksonoma, 13: ,
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW
SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH
PRZEGLĄD STATYSTYCZNY R. LVI ZESZYT 3-4 2009 ANNA ZAMOJSKA ZASTOSOWANIE METODY DEA W KLASYFIKACJI FUNDUSZY INWESTYCYJNYCH 1. WSTĘP Analza ocena wynków osąganyc przez fundusze nwestycyjne jest jednym z
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE
Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:
Zaawansowane metody numeryczne
Wykład 9. jej modyfkacje. Oznaczena Będzemy rozpatrywać zagadnene rozwązana następującego układu n równań lnowych z n newadomym x 1... x n : a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x
Propozycja modyfikacji klasycznego podejścia do analizy gospodarności
Jacek Batóg Unwersytet Szczecńsk Propozycja modyfkacj klasycznego podejśca do analzy gospodarnośc Przedsęborstwa dysponujące dentycznym zasobam czynnków produkcj oraz dzałające w dentycznych warunkach
Ocena jakościowo-cenowych strategii konkurowania w polskim handlu produktami rolno-spożywczymi. dr Iwona Szczepaniak
Ocena jakoścowo-cenowych strateg konkurowana w polskm handlu produktam rolno-spożywczym dr Iwona Szczepanak Ekonomczne, społeczne nstytucjonalne czynnk wzrostu w sektorze rolno-spożywczym w Europe Cechocnek,
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych
Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,
Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup
Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
BADANIA OPERACYJNE. Podejmowanie decyzji w warunkach niepewności. dr Adam Sojda
BADANIA OPERACYJNE Podejmowane decyzj w warunkach nepewnośc dr Adam Sojda Teora podejmowana decyzj gry z naturą Wynk dzałana zależy ne tylko od tego, jaką podejmujemy decyzję, ale równeż od tego, jak wystąp
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
EKONOMIA MENEDŻERSKA. Wykład 3 Funkcje produkcji 1 FUNKCJE PRODUKCJI. ANALIZA KOSZTÓW I KORZYŚCI SKALI. MINIMALIZACJA KOSZTÓW PRODUKCJI.
EONOMIA MENEDŻERSA Wykład 3 Funkcje rodukcj 1 FUNCJE PRODUCJI. ANAIZA OSZTÓW I ORZYŚCI SAI. MINIMAIZACJA OSZTÓW PRODUCJI. 1. FUNCJE PRODUCJI: JEDNO- I WIEOCZYNNIOWE Funkcja rodukcj określa zależność zdolnośc
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 15. ALGORYTMY GENETYCZNE Częstochowa 014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TERMINOLOGIA allele wartośc, waranty genów, chromosom - (naczej
Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu
PRACE KOMISJI GEOGRAFII PRZEMY SŁU Nr 7 WARSZAWA KRAKÓW 2004 Akadema Pedagogczna, Kraków Kształtowane sę frm nformatycznych jako nowych elementów struktury przestrzennej przemysłu Postępujący proces rozwoju
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
APROKSYMACJA QUASIJEDNOSTAJNA
POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 73 Electrcal Engneerng 213 Jan PURCZYŃSKI* APROKSYMACJA QUASIJEDNOSTAJNA W pracy wykorzystano metodę aproksymacj średnokwadratowej welomanowej, przy
ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH
Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.
5. OPTYMALIZACJA GRAFOWO-SIECIOWA
. OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik
Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
Model ASAD. ceny i płace mogą ulegać zmianom (w odróżnieniu od poprzednio omawianych modeli)
Model odstawowe założena modelu: ceny płace mogą ulegać zmanom (w odróżnenu od poprzedno omawanych model) punktem odnesena analzy jest obserwacja pozomu produkcj cen (a ne stopy procentowej jak w modelu
Wykład IX Optymalizacja i minimalizacja funkcji
Wykład IX Optymalzacja mnmalzacja funkcj Postawene zadana podstawowe dee jego rozwązana Proste metody mnmalzacj Metody teracj z wykorzystanem perwszej pochodnej Metody teracj z wykorzystanem drugej pochodnej
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki
Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody
MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5
MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając
WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO
Walenty OWIECZKO WPŁYW PARAMETRÓW DYSKRETYZACJI A IEPEWOŚĆ WYIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO STRESZCZEIE W artykule przedstaono ynk analzy nepenośc pomaru ybranych cech obektu obrazu cyfroego. Wyznaczono
OPTYMALIZACJA PROCESU PRZESIEWANIA W PRZESIEWACZACH WIELOPOKŁADOWYCH
Prace Naukowe Instytutu Górnctwa Nr 136 Poltechnk Wrocławskej Nr 136 Studa Materały Nr 43 2013 Jerzy MALEWSKI* Marta BASZCZYŃSKA** przesewane, jakość produktów, optymalzacja OPTYMALIZACJA PROCESU PRZESIEWANIA
SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 7. KLASYFIKATORY BAYESA Częstochowa 4 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska TWIERDZENIE BAYESA Wedza pozyskwana przez metody probablstyczne ma
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
Badanie optymalnego poziomu kapitału i zatrudnienia w polskich przedsiębiorstwach - ocena i klasyfikacja
Jacek Batóg Unwersytet Szczecńsk Badane optymalnego pozomu kaptału zatrudnena w polskch przedsęborstwach - ocena klasyfkacja Prowadząc dzałalność gospodarczą przedsęborstwa kerują sę jedną z dwóch zasad
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.
Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)
Proces narodzin i śmierci
Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do
Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5
± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości
Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość
STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU
Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc
ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XVI/3, 2015, str. 248 257 ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ Sławomr
Rozmyta efektywność portfela
Krzysztof PIASECKI Akadema Ekonomczna w Poznanu Problem badawczy Rozmyta ektywność portfela Buckley [] Calz [] zaproponowal reprezentowane wartośc przyszłych nwestycj fnansowych przy pomocy lczb rozmytych.
KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA
KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany
Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru
Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru
6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO
Różnce mędzy obserwacjam statystycznym ruchu kolejowego a samochodowego 7. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO.. Obserwacje odstępów mędzy kolejnym wjazdam na stację
Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.
Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane
Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB
Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe
MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH
MIĘDZYNARODOWE UNORMOWANIA WYRAśANIA ANIA NIEPEWNOŚCI POMIAROWYCH Adam Mchczyńsk W roku 995 grupa nstytucj mędzynarodowych: ISO Internatonal Organzaton for Standardzaton (Mędzynarodowa Organzacja Normalzacyjna),
BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20
Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca
Metody gradientowe poszukiwania ekstremum. , U Ŝądana wartość napięcia,
Metody gradentowe... Metody gradentowe poszukwana ekstremum Korzystają z nformacj o wartośc funkcj oraz jej gradentu. Wykazując ch zbeŝność zakłada sę, Ŝe funkcja celu jest ogranczona od dołu funkcją wypukłą
Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)
Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.
A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009 Unwersytet Mkołaja Kopernka w Torunu Katedra Ekonometr Statystyk Elżbeta
WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO
WSKAŹNIK OCENY SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO Dagmara KARBOWNICZEK 1, Kazmerz LEJDA, Ruch cała człoweka w samochodze podczas wypadku drogowego zależy od sztywnośc nadwoza
Rachunek niepewności pomiaru opracowanie danych pomiarowych
Rachunek nepewnośc pomaru opracowane danych pomarowych Mędzynarodowa Norma Oceny Nepewnośc Pomaru (Gude to Epresson of Uncertanty n Measurements - Mędzynarodowa Organzacja Normalzacyjna ISO) http://physcs.nst./gov/uncertanty
Laboratorium ochrony danych
Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz
KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE
Adranna Mastalerz-Kodzs Unwersytet Ekonomczny w Katowcach KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE Wprowadzene W dzałalnośc nstytucj fnansowych, takch
Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch
Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym
Mikroekonometria 15. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 15 Mkołaj Czajkowsk Wktor Budzńsk Mkroekonometra podsumowane kursu Zagadnena ogólne NLOGIT Metoda maksymalzacj funkcj ML Testy statystyczne Metody numeryczne, symulacje Metody wyceny nerynkowej
MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI
Alcja Wolny-Domnak Unwersytet Ekonomczny w Katowcach MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI Wprowadzene
Makroekonomia Gospodarki Otwartej Wykład 8 Polityka makroekonomiczna w gospodarce otwartej. Model Mundella-Fleminga
Makroekonoma Gospodark Otwartej Wykład 8 Poltyka makroekonomczna w gospodarce otwartej. Model Mundella-Flemnga Leszek Wncencak Wydzał Nauk Ekonomcznych UW 2/29 Plan wykładu: Założena analzy Zaps modelu
WikiWS For Business Sharks
WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace
Statystyka Inżynierska
Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje
PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH
PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA
Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA
ORGANIZACJA ZAJĘĆ OPTYMALIZACJA GLOBALNA WSTĘP PLAN WYKŁADU. Wykładowca dr inż. Agnieszka Bołtuć, pokój 304, e-mail: aboltuc@ii.uwb.edu.
ORGANIZACJA ZAJĘĆ Wykładowca dr nż. Agneszka Bołtuć, pokój 304, e-mal: aboltuc@.uwb.edu.pl Lczba godzn forma zajęć: 15 godzn wykładu oraz 15 godzn laboratorum 15 godzn projektu Konsultacje: ponedzałk 9:30-11:00,
MINISTER EDUKACJI NARODOWEJ
4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),
STATYSTYCZNA ANALIZA WYNIKÓW POMIARÓW
Zakład Metrolog Systemów Pomarowych P o l t e c h n k a P o z n ańska ul. Jana Pawła II 4 60-965 POZAŃ (budynek Centrum Mechatronk, Bomechank anonżyner) www.zmsp.mt.put.poznan.pl tel. +48 61 665 5 70 fax
banków detalicznych Metody oceny efektywnoœci operacyjnej
Metody oceny efektywnoœc operacyjnej banków detalcznych Danuta Skora, mgr, doktorantka Wydza³u Nauk Ekonomcznych, Dyrektor Regonu jednego z najwêkszych banków detalcznych Adran Kulczyck, mgr, doktorant
Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1
Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Statystyka. Zmienne losowe
Statystyka Zmenne losowe Zmenna losowa Zmenna losowa jest funkcją, w której każdej wartośc R odpowada pewen podzbór zboru będący zdarzenem losowym. Zmenna losowa powstaje poprzez przyporządkowane każdemu
EKONOMETRIA I Spotkanie 1, dn. 05.10.2010
EKONOMETRIA I Spotkane, dn. 5..2 Dr Katarzyna Beń Program ramowy: http://www.sgh.waw.pl/nstytuty/e/oferta_dydaktyczna/ekonometra_stacjonarne_nest acjonarne/ Zadana, dane do zadań, ważne nformacje: http://www.e-sgh.pl/ben/ekonometra
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
Stanisław Cichocki. Natalia Nehrebecka. Wykład 11
Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra
ZAJĘCIA X. Zasada największej wiarygodności
ZAJĘCIA X Zasada najwększej warygodnośc Funkcja warygodnośc Estymacja wg zasady maksymalzacj warygodnośc Rodzna estymatorów ML Przypadk szczególne WPROWADZEIE Komputerowa dentyfkacja obektów Przyjęce na
ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna
Analiza ryzyka jako instrument zarządzania środowiskiem
WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument
KONCEPCJA OCENY HYBRYDOWYCH SYSTEMÓW ENERGETYCZNYCH
2-2010 PROBLEMY ESPLOATACJI 159 Robert DZIERŻAOWSI Poltechnka Warszawska OCCJA OCEY HYBRYDOWYCH SYSTEMÓW EERGETYCZYCH Słowa kluczowe Hybrydowy system energetyczny, skojarzony system energetyczny, generator
Parametry zmiennej losowej
Eonometra Ćwczena Powtórzene wadomośc ze statysty SS EK Defncja Zmenną losową X nazywamy funcję odwzorowującą przestrzeń zdarzeń elementarnych w zbór lczb rzeczywstych, taą że przecwobraz dowolnego zboru
1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ
Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych
Wyznaczanie lokalizacji obiektu logistycznego z zastosowaniem metody wyważonego środka ciężkości studium przypadku
B u l e t y n WAT Vo l. LXI, Nr 3, 2012 Wyznaczane lokalzacj obektu logstycznego z zastosowanem metody wyważonego środka cężkośc studum przypadku Emla Kuczyńska, Jarosław Zółkowsk Wojskowa Akadema Technczna,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 5 Mkołaj Czajkowsk Wktor Budzńsk Uogólnone modele lnowe Uogólnone modele lnowe (ang. Generalzed Lnear Models GLM) Różną sę od standardowego MNK na dwa sposoby: Rozkład zmennej objaśnanej
NAFTA-GAZ marzec 2011 ROK LXVII. Wprowadzenie. Tadeusz Kwilosz
NAFTA-GAZ marzec 2011 ROK LXVII Tadeusz Kwlosz Instytut Nafty Gazu, Oddzał Krosno Zastosowane metody statystycznej do oszacowana zapasu strategcznego PMG, z uwzględnenem nepewnośc wyznaczena parametrów
Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja
Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest
V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH
Krs na Stdach Doktoranckch Poltechnk Wrocławskej wersja: lty 007 34 V. WPROWADZENIE DO PRZESTRZENI FUNKCYJNYCH. Zbór np. lczb rzeczywstych a, b elementy zbor A a A b A, podzbór B zbor A : B A, sma zborów
Rozliczanie kosztów Proces rozliczania kosztów
Rozlczane kosztów Proces rozlczana kosztów Koszty dzałalnośc jednostek gospodarczych są złoŝoną kategorą ekonomczną, ujmowaną weloprzekrojowo. W systeme rachunku kosztów odbywa sę transformacja jednych
ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH
Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH
Mateusz Baryła Unwersytet Ekonomczny w Krakowe O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH Wprowadzene
ZESZYTY NAUKOWE NR x(xx) AKADEMII MORSKIEJ W SZCZECINIE. Metody wymiarowania obszaru manewrowego statku oparte na badaniach rzeczywistych
ISSN 009-069 ZESZYTY NUKOWE NR () KDEMII MORSKIEJ W SZCZECINIE IV MIĘDZYNRODOW KONFERENCJ NUKOWO-TECHNICZN E X P L O - S H I P 0 0 6 Paweł Zalewsk, Jakub Montewka Metody wymarowana obszaru manewrowego
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są